अलघुकरणीय बहुपद: Difference between revisions
Line 80: | Line 80: | ||
पूर्णांकों पर अलघुकरणीयता और अलघुकरणीयता सापेक्षों ''p'' के बीच संबंध पिछले परिणाम की तुलना में गहन है- आज तक, पूर्णांकों और परिमेय संख्याओं पर गुणनखंडन और अलघुकरणीयता के लिए सभी कार्यान्वित एल्गोरिदम एक [[सबरूटीन|उपनित्यक्रम]] के रूप में परिमित क्षेत्रों पर गुणनखंड का उपयोग करते हैं। | पूर्णांकों पर अलघुकरणीयता और अलघुकरणीयता सापेक्षों ''p'' के बीच संबंध पिछले परिणाम की तुलना में गहन है- आज तक, पूर्णांकों और परिमेय संख्याओं पर गुणनखंडन और अलघुकरणीयता के लिए सभी कार्यान्वित एल्गोरिदम एक [[सबरूटीन|उपनित्यक्रम]] के रूप में परिमित क्षेत्रों पर गुणनखंड का उपयोग करते हैं। | ||
एक क्षेत्र <math>\mathbb{F}_q</math>पर डिग्री की संख्या {{math|''n''}} अलघुकरणीय [[मोनिक बहुपद]], {{math|''q''}} के लिए एक अभाज्य | एक क्षेत्र <math>\mathbb{F}_q</math>पर डिग्री की संख्या {{math|''n''}} अलघुकरणीय [[मोनिक बहुपद]], {{math|''q''}} के लिए एक अभाज्य घात द्वारा दी गई है।<ref>{{harvnb|Jacobson|2009|loc=§4.13}}</ref> | ||
:<math>N(q, n) = \frac{1}{n}\sum_{d\mid n} \mu(d)q^\frac{n}{d},</math> | :<math>N(q, n) = \frac{1}{n}\sum_{d\mid n} \mu(d)q^\frac{n}{d},</math> | ||
जहां {{math|''μ''}} मोबियस फलन है। {{math|1=''q'' = 2}} के लिए, ऐसे बहुपद आमतौर पर छद्म यादृच्छिक बाइनरी अनुक्रम उत्पन्न करने के लिए उपयोग किए जाते हैं। | जहां {{math|''μ''}} मोबियस फलन है। {{math|1=''q'' = 2}} के लिए, ऐसे बहुपद आमतौर पर छद्म यादृच्छिक बाइनरी अनुक्रम उत्पन्न करने के लिए उपयोग किए जाते हैं। |
Revision as of 11:52, 10 December 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (March 2015) (Learn how and when to remove this template message) |
गणित में, एक अलघुकरणीय बहुपद मोटे तौर पर एक ऐसा बहुपद है जिसे दो गैर-निरंतर बहुपदों के गुणनफल में सम्मिलित नहीं किया जा सकता है। अलघुकरणीयता का गुण उन गुणांकों की प्रकृति पर निर्भर करता है जो संभावित कारकों के लिए स्वीकार किए जाते हैं, यानी वह क्षेत्र जिससे बहुपद के गुणांक और इसके संभावित कारक संबंधित होने चाहिए। उदाहरण के लिए, बहुपद x2 − 2 पूर्णांक गुणांकों वाला एक बहुपद है, लेकिन चूंकि प्रत्येक पूर्णांक भी एक वास्तविक संख्या है, इसलिए यह वास्तविक गुणांकों वाला एक बहुपद भी है। यदि इसे पूर्णांक गुणांक वाले बहुपद के रूप में माना जाता है, तो यह अलघुकरणीय है, लेकिन यह कारक के रूप में यदि इसे वास्तविक गुणांक वाले बहुपद के रूप में माना जाता है। एक का कहना है कि बहुपद x2 − 2 पूर्णांकों पर अलघुकरणीय है लेकिन वास्तविक पर नहीं।
एक अभिन्न क्षेत्र में गुणांक वाले बहुपदों के लिए बहुपद अलघुकरणीयता पर विचार किया जा सकता है, और दो सामान्य परिभाषाएं हैं। सबसे अधिक बार, एक अभिन्न क्षेत्र R पर एक बहुपद को अलघुकरणीय कहा जाता है यदि यह दो बहुपदों का गुणनफल नहीं है, जिनके गुणांक R में हैं, और R, में इकाई नहीं हैं। समान रूप से, इस परिभाषा के लिए, एक अलघुकरणीय बहुपद R पर बहुपदों के छल्लों में एक अलघुकरणीय तत्व है। यदि R एक क्षेत्र है, तो अलघुकरणीयता की दो परिभाषाएँ समतुल्य हैं। दूसरी परिभाषा के लिए, एक बहुपद अलघुकरणीय है यदि इसे एक ही क्षेत्र में गुणांक वाले बहुपदों में सम्मिलित नहीं किया जा सकता है, जिसमें दोनों की सकारात्मक डिग्री है। समतुल्य रूप से, एक बहुपद अलघुकरणीय है यदि यह अभिन्न क्षेत्र के अंशों के क्षेत्र में अलघुकरणीय है। उदाहरण के लिए, बहुपद दूसरी परिभाषा के लिए अलघुकरणीय है, न कि पहली परिभाषा के लिए। दूसरी ओर, में अलघुकरणीय है दो परिभाषाओं के लिए, जबकि यह में लघुकरणीय है।
एक बहुपद जो कि गुणांक वाले किसी भी क्षेत्र पर अलघुकरणीय है, वह बिल्कुल अलघुकरणीय है। बीजगणित के मौलिक प्रमेय के अनुसार, एक अविभाजित बहुपद पूरी तरह से अलघुकरणीय है और केवल यदि इसकी डिग्री एक है। दूसरी ओर, कई अनिश्चित के साथ, किसी भी डिग्री के पूरी तरह से अलघुकरणीय बहुपद होते हैं, जैसे कि किसी भी धनात्मक पूर्णांक n के लिए।
एक बहुपद जो अलघुकरणीय नहीं होता है उसे कभी-कभी एक लघुकरणीय बहुपद कहा जाता है।[1][2]
बहुपद गुणनखंडन और बीजगणितीय क्षेत्र विस्तार के अध्ययन में अलघुकरणीय बहुपद स्वाभाविक रूप से प्रकट होते हैं।
अभाज्य बहुपदों की अभाज्य संख्याओं से तुलना करना सहायक होता है- अभाज्य संख्याएँ (समान परिमाण की संबंधित ऋणात्मक संख्याओं के साथ) अलघुकरणीय पूर्णांक हैं। वे "अलघुकरणीयता" की अवधारणा के कई सामान्य गुणों को प्रदर्शित करते हैं जो समान रूप से अलघुकरणीय बहुपदों पर लागू होते हैं, जैसे कि अभाज्य या अलघुकरणीय कारकों में अनिवार्य रूप से अद्वितीय गुणनखंडन। जब गुणांक वलय एक क्षेत्र या अन्यअद्वितीय गुणनखंड क्षेत्र होता है, तो एक अलघुकरणीय बहुपद को एक अभाज्य बहुपद भी कहा जाता है, क्योंकि यह एक प्रमुख आदर्श उत्पन्न करता है।
परिभाषा
यदि F एक क्षेत्र है, तो एक गैर-निरंतर बहुपद F पर अप्रासंगिक है यदि इसके गुणांक F से संबंधित हैं और इसे F में गुणांक वाले दो गैर-निरंतर बहुपदों के गुणनफल में सम्मिलित नहीं किया जा सकता है।
पूर्णांक गुणांक वाले एक बहुपद, या, अधिक प्रायः, एक अद्वितीय गुणनखंड क्षेत्र R में गुणांक के साथ, कभी-कभी अलघुकरणीय (या R पर अलघुकरणीय) कहा जाता है यदि यह बहुपद रिंग का एक अलघुकरणीय तत्व है, अर्थात यह उल्टा नहीं, शून्य नहीं है, और R में गुणांक वाले दो गैर-व्युत्क्रम योग्य बहुपदों के गुणनफल में कारक नहीं हो सकते। यह परिभाषा एक क्षेत्र में गुणांक की स्थिति के लिए दी गई परिभाषा को सामान्यीकृत करती है, क्योंकि, एक क्षेत्र के ऊपर, गैर-निरंतर बहुपद वास्तव में बहुपद हैं जो गैर-व्युत्क्रम और गैर-शून्य हैं।
एक अन्य परिभाषा का प्रायः उपयोग किया जाता है, जिसमें कहा गया है कि एक बहुपद R पर अलघुकरणीय है यदि यह R के अंशों के क्षेत्र (परिमेय संख्याओं का क्षेत्र, यदि R पूर्णांक है) पर अलघुकरणीय है। इस लेख में इस दूसरी परिभाषा का प्रयोग नहीं किया गया है।
कारक की प्रकृति
एक कारक के लिए एक स्पष्ट बीजगणितीय अभिव्यक्ति की अनुपस्थिति का मतलब यह नहीं है कि एक बहुपद अलघुकरणीय है। जब एक बहुपद को गुणनखंडों में कम किया जा सकता है, तो ये गुणनखंड स्पष्ट बीजगणितीय व्यंजक या अंतर्निहित व्यंजक हो सकते हैं। उदाहरण के लिए, को सम्मिश्र संख्याओं पर के रूप में स्पष्ट रूप से विभाजित किया जा सकता है। हालांकि, एबेल-रफिनी प्रमेय में कहा गया है कि 4 से अधिक किसी भी डिग्री के बहुपद हैं जिनके लिए जटिल कारक मौजूद हैं जिनकी कोई स्पष्ट बीजगणितीय अभिव्यक्ति नहीं है। इस तरह के कारक को सरल रूप में लिखा जा सकता है, जैसे, जहां को समीकरण के एक विशेष समाधान के रूप में स्पष्ट रूप से परिभाषित किया गया है जो बहुपद को 0 के बराबर निर्धारित करता है। इसके अलावा, किसी भी प्रकार के कारकों को रूटनिर्धारण एल्गोरिदम (कलन विधि ) द्वारा प्राप्त संख्यात्मक सन्निकटन के रूप में भी व्यक्त किया जा सकता है, उदाहरण के लिए उदाहरण के लिए ।
सरल उदाहरण
निम्नलिखित छह बहुपद कम करने योग्य और अलघुकरणीय बहुपदों के कुछ प्रारंभिक गुणों को प्रदर्शित करते हैं।
पूर्णांकों पर, पहले तीन बहुपद लघुकरणीय है (तीसरा एक लघुकरणीय है क्योंकि कारक 3 पूर्णांकों में व्युत्क्रमणीय नहीं है) अंतिम दो अलघुकरणीय हैं। (चौथा, निश्चित रूप से, पूर्णांकों पर बहुपद नहीं है।)
परिमेय संख्याओं पर, पहले दो और चौथे बहुपद लघुकरणीय है, लेकिन अन्य तीन बहुपद अलघुकरणीय है (परिमेय पर एक बहुपद के रूप में, 3 एक इकाई है, और इसलिए, एक कारक के रूप में नहीं गिना जाता है)।
वास्तविक संख्याओं के ऊपर, पहले पांच बहुपद लघुकरणीय है, लेकिन अलघुकरणीय है।
सम्मिश्र संख्याओं पर, सभी छह बहुपद लघुकरणीय है।
जटिल संख्याओं पर
जटिल क्षेत्र पर, और प्रायः, एक बीजगणितीय रूप से सीमित क्षेत्र पर, एक अविभाजित बहुपद अलघुकरणीय है और केवल यदि इसकी डिग्री एक है। इस तथ्य को जटिल संख्याओं की स्थिति में बीजगणित के मौलिक प्रमेय के रूप में जाना जाता है और सामान्य रूप से बीजगणितीय रूप से सीमित होने की स्थिति के रूप में जाना जाता है।
यह इस प्रकार है कि प्रत्येक गैर-निरंतर अविभाज्य बहुपद के रूप में कारक हो सकते हैं।
जहाँ डिग्री है, अग्रणी गुणांक है और बहुपद के शून्य हैं (जरूरी नहीं कि अलग हों, और जरूरी नहीं कि स्पष्ट बीजगणितीय अभिव्यक्तियां हों)।
सम्मिश्र संख्याओं पर प्रत्येक डिग्री के अलघुकरणीय बहुभिन्नरूपी बहुपद हैं। उदाहरण के लिए बहुपद हैं
- जो फर्मेट वक्र को परिभाषित करता है, प्रत्येक सकारात्मक n के लिए अलघुकरणीय है।
वास्तविक से अधिक
वास्तविकताओं के क्षेत्र में, एक अलघुकरणीय अविभाजित बहुपद की डिग्री या तो एक या दो है। अधिक सटीक रूप से, अलघुकरणीय बहुपद एक डिग्री के बहुपद और द्विघात बहुपद हैं जिसका एक ऋणात्मक विविक्तक है। यह इस प्रकार है कि प्रत्येक गैर-निरंतर अविभाज्य बहुपद को अधिकतम दो डिग्री के बहुपदों के गुणनफल के रूप में कारक बनाया जा सकता है। उदाहरण के लिए, वास्तविक संख्याओं को के रूप में कारक बनाता है। और इसे आगे कारक नहीं बनाया जा सकता है, क्योंकि दोनों कारकों में एक ऋणात्मक विविक्तक है।
अद्वितीय गुणनखंडन गुण
एक क्षेत्र F पर प्रत्येक बहुपद को एक गैर-शून्य स्थिरांक और अलघुकरणीय (F से अधिक) बहुपदों की एक परिमित संख्या के गुणनफल में कारक बनाया जा सकता है। यह अलघुकरणीय कारकों के क्रम और गैर-शून्य स्थिरांक वाले कारकों के गुणन तक अद्वितीय है जिसका गुणनफल 1 है।
एक अद्वितीय गुणनखंड क्षेत्र पर वही प्रमेय सही है, लेकिन साधारण बहुपद की धारणा का उपयोग करके अधिक सटीक रूप से तैयार किया गया है। एक साधारण बहुपद एक अद्वितीय गुणनखंड क्षेत्र पर एक बहुपद है, जैसे कि 1 इसके गुणांकों का सबसे बड़ा सामान्य विभाजक है।
F को एक अद्वितीय गुणनखंडन क्षेत्र होने दें। F पर एक गैर-स्थिर अलघुकरणीय बहुपद साधारण है। और केवल यदि यह F के अंशों के क्षेत्र में अलघुकरणीय है। F पर प्रत्येक बहुपद को एक गैर-शून्य स्थिरांक और गैर-निरंतर अलघुकरणीय साधारण बहुपद की एक परिमित संख्या के गुणनफल में विघटित किया जा सकता है। गैर-शून्य स्थिरांक स्वयं F की एक इकाई के गुणनफल और F के अलघुकरणीय तत्वों की एक परिमित संख्या में विघटित हो सकता है। दोनों गुणनखंड कारकों के क्रम और F की एक इकाई द्वारा कारकों के गुणन तक अद्वितीय हैं।
यह वह प्रमेय है जो प्रेरित करता है कि एक अद्वितीय गुणनखंड क्षेत्र पर अलघुकरणीय बहुपद की परिभाषा प्रायः यह मानती है कि बहुपद गैर-निरंतर है।
सभी कलन विधि जो वर्तमान में पूर्णांकों और परिमेय संख्याओं पर बहुपदों के गुणनखंडन के लिए कार्यान्वित किए जाते हैं, इस परिणाम का उपयोग करते हैं (बहुपदों का गुणनखंडन देखें)।
पूर्णांकों और परिमित क्षेत्रों पर
पूर्णांकों पर एक बहुपद की अलघुकरणीयता का संबंध तत्व (अभाज्य के लिए ) के क्षेत्र से है विशेष रूप से, यदि पर एक अविभाज्य बहुपद f , पर अलघुकरणीय है कुछ अभाज्य के लिए जो f के प्रमुख गुणांक (चर की उच्चतम शक्ति का गुणांक) को विभाजित नहीं करता है, तो (अर्थात, यह पूर्णांक गुणांक वाले दो गैर-निरंतर बहुपदों का गुणनफल नहीं है) पर अलघुकरणीय है। आइनस्टीन का मानदंड इस गुण का प्रकार है जहां पर अलघुकरणीयता भी सम्मिलित है।
हालांकि, व्युत्क्रम सच नहीं है- मनमाने ढंग से बड़ी डिग्री के बहुपद हैं जो पूर्णांकों पर अलघुकरणीय हैं और प्रत्येक परिमित क्षेत्र पर लघुकरणीय हैं।[3] ऐसे बहुपद का एक सरल उदाहरण है।
पूर्णांकों पर अलघुकरणीयता और अलघुकरणीयता सापेक्षों p के बीच संबंध पिछले परिणाम की तुलना में गहन है- आज तक, पूर्णांकों और परिमेय संख्याओं पर गुणनखंडन और अलघुकरणीयता के लिए सभी कार्यान्वित एल्गोरिदम एक उपनित्यक्रम के रूप में परिमित क्षेत्रों पर गुणनखंड का उपयोग करते हैं।
एक क्षेत्र पर डिग्री की संख्या n अलघुकरणीय मोनिक बहुपद, q के लिए एक अभाज्य घात द्वारा दी गई है।[4]
जहां μ मोबियस फलन है। q = 2 के लिए, ऐसे बहुपद आमतौर पर छद्म यादृच्छिक बाइनरी अनुक्रम उत्पन्न करने के लिए उपयोग किए जाते हैं।
कुछ अर्थों में, शून्य या एक गुणांक वाले लगभग सभी बहुपद पूर्णांकों पर अलघुकरणीय होते हैं। अधिक सटीक रूप से, यदि डेडेकाइंड ज़ेटा फलन के लिए रीमैन परिकल्पना का एक संस्करण माना जाता है, तो {0, 1} में यादृच्छिक गुणांक वाले बहुपद के लिए पूर्णांकों पर अलघुकरणीय होने की संभावना डिग्री बढ़ने पर एक हो जाती है।[5][6]
एल्गोरिदम (कलन विधि)
बहुपदों के अद्वितीय गुणनखंड गुण का अर्थ यह नहीं है कि किसी दिए गए बहुपद के गुणनखंड की हमेशा गणना की जा सकती है। यहां तक कि एक बहुपद की अलघुकरणीयता को हमेशा गणना द्वारा सिद्ध नहीं किया जा सकता है ऐसे क्षेत्र हैं जिन पर स्वैच्छिक बहुपदों की अलघुकरणीयता तय करने के लिए कोई एल्गोरिदम मौजूद नहीं हो सकता है।[7]
बहुपदों के गुणनखंडन और अलघुकरणीयता तय करने के लिए एल्गोरिद्म कंप्यूटर बीजगणित प्रणालियों में पूर्णांकों, परिमेय संख्याओं, परिमित क्षेत्रों और इन क्षेत्रों के परिमित रूप से उत्पन्न क्षेत्र विस्तार पर बहुपदों के लिए जाना जाता है और कार्यान्वित किया जाता है। ये सभी एल्गोरिदम परिमित क्षेत्रों पर बहुपदों के गुणनखंडन के लिए एल्गोरिदम का उपयोग करते हैं।
क्षेत्र विस्तार
अलघुकरणीय बहुपद और बीजगणितीय क्षेत्र विस्तार की धारणाएं निम्नलिखित तरीके से दृढ़ता से संबंधित हैं।
मान लीजिए x क्षेत्र K के विस्तार L का एक अवयव है। इस अवयव को बीजगणितीय कहा जाता है यदि यह K में गुणांक वाले एक शून्येतर बहुपद का रूट है। बहुपदों में से x एक रूट है, ठीक एक ऐसा है जो एकात्मक और न्यूनतम डिग्री का होता है, जिसे x का अल्पिष्ठ (न्यूनतम) बहुपद कहा जाता है। L के एक बीजगणितीय तत्व x का न्यूनतम बहुपद अलघुकरणीय है, और अद्वितीय मोनिक अलघुकरणीय बहुपद है जिसमें से x एक रूट है। x का न्यूनतम बहुपद प्रत्येक बहुपद को विभाजित करता है जिसकी रूट के रूप में x है (यह एबेल की अलघुकरणीयता प्रमेय है)।
इसके विपरीत, यदि क्षेत्र K पर एक अविभाजित बहुपद है, तो मान लीजिए बहुपद वलय का भागफल वलय हो P द्वारा उत्पन्न आदर्श। फिर L एक क्षेत्र है और केवल अगर P, K के ऊपर अलघुकरणीय है। इस स्थिति में यदि x की छवि है, तो X का न्यूनतम बहुपद इसके अभाज्य गुणांक द्वारा P का भागफल है।
उपरोक्त का एक उदाहरण जटिल संख्याओं की मानक परिभाषा है।
यदि एक बहुपद P में K, के पर एक अलघुकरणीय कारक Q है, जिसकी डिग्री एक से अधिक है, तो एक बीजगणितीय विस्तार के पिछली संरचना के लिए Q पर लागू हो सकता है, जिसमें P की तुलना में K में कम से कम एक अधिक रूट है। इस संरचना को दोहराते हुए, अंततः एक ऐसा क्षेत्र प्राप्त होता है जिस पर P रैखिक कारकों में कारक होता है। क्षेत्र समरूपता के लिए अद्वितीय यह क्षेत्र, P का विभाजन क्षेत्र कहलाता है।
एक अभिन्न क्षेत्र पर
यदि R एक अभिन्न क्षेेत्र है, तो R का एक तत्व f जो न तो शून्य है और न ही एक इकाई को अलघुकरणीय कहा जाता है यदि कोई गैर-इकाइयां g और h, f = gh के साथ नहीं हैं, कोई यह दिखा सकता है कि प्रत्येक अभाज्य तत्व अलघुकरणीय है।[8] इसका विलोम सामान्य रूप से सत्य नहीं है, बल्कि अद्वितीय गुणनखंड क्षेत्र में है। बहुपद वलय F[x] एक क्षेत्र F (या कोई अद्वितीय-गुणनखंडन क्षेत्र) पर फिर से एक अद्वितीय गुणनखंडन क्षेत्र है। आगमनात्मक रूप से, इसका मतलब यह है कि n अनिश्चित में बहुपद का वलय (एक वलय R पर) एक अद्वितीय गुणनखंड क्षेत्र है यदि R के लिए भी यही सच है।
यह भी देखें
- गॉस की प्रमेयिका (बहुपद)।
- परिमेय रूट प्रमेय, यह पता लगाने की एक विधि कि क्या एक बहुपद में परिमेय गुणांकों वाला एक रैखिक गुणनखंड है।
- आइनस्टीन का मानदंड।
- पेरॉन की अलघुकरणीयता मानदंड।
- हिल्बर्ट की अलघुकरणीयता प्रमेय।
- कोहन की अलघुकरणीयता मानदंड।
- सांस्थितिक समष्टि का अलघुकरणीय घटक।
- परिमित क्षेत्रों पर बहुपदों का गुणनखंडन।
- क्वार्टिक फलन § लघुकरणीय क्वार्टिक्स।
- घन फलन § गुणनखंडन।
- कैसस अलघुकरणीय, अलघुकरणीय घनीय तीन वास्तविक रूट के साथ।
- द्विघात समीकरण § द्विघात गुणनखंडन।
टिप्पणियाँ
- ↑ Gallian 2012, p. 311
- ↑ Mac Lane & Birkhoff 1999 do not explicitly define "reducible", but they use it in several places. For example: "For the present, we note only that any reducible quadratic or cubic polynomial must have a linear factor." (p. 268).
- ↑ David Dummit; Richard Foote (2004). "ch. 9, Proposition 12". सार बीजगणित. Wiley. p. 309. ISBN 0-471-43334-9.
- ↑ Jacobson 2009, §4.13
- ↑ Breuillard, Emmanuel; Varjú, Péter P. (2018). "बड़ी डिग्री के यादृच्छिक बहुपदों की इरेड्यूसबिलिटी". arXiv:1810.13360 [math.NT].
- ↑ Hartnett, Kevin. "समीकरणों के ब्रह्मांड में, वस्तुतः सभी प्रधान हैं". Quanta Magazine. Retrieved 2019-01-13.
- ↑ Fröhlich, A.; Shepherson, J.C. (1955), "On the factorisation of polynomials in a finite number of steps", Mathematische Zeitschrift, 62 (1): 331–4, doi:10.1007/BF01180640, ISSN 0025-5874, S2CID 119955899
- ↑ Consider p a prime that is reducible: p = ab. Then p | ab ⇒ p | a or p | b. Say p | a ⇒ a = pc, then we have: p = ab = pcb ⇒ p(1 − cb) = 0. Because R is a domain, we have cb = 1. So b is a unit, and p is irreducible.
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556. This classical book covers most of the content of this article.
- Gallian, Joseph (2012), Contemporary Abstract Algebra (8th ed.), Cengage Learning, ISBN 978-1285402734
- Lidl, Rudolf; Niederreiter, Harald (1997), Finite fields (2nd ed.), Cambridge University Press, ISBN 978-0-521-39231-0, pp. 91.
- Mac Lane, Saunders; Birkhoff, Garrett (1999), Algebra (3rd ed.), American Mathematical Society, ISBN 9780821816462
- Menezes, Alfred J.; Van Oorschot, Paul C.; Vanstone, Scott A. (1997), Handbook of applied cryptography, CRC Press, ISBN 978-0-8493-8523-0, pp. 154.
इस पेज में लापता आंतरिक लिंक की सूची
- स्थिर बहुपद
- सकारात्मक असर
- गुणक
- अंक शास्त्र
- इकाई (अंगूठी सिद्धांत)
- अंशों का क्षेत्र
- अविभाज्य बहुपद
- बिल्कुल अप्रासंगिक
- बीजगणित का मौलिक प्रमेय
- प्रधान आदर्श
- बहुपद की अंगूठी
- निहित समारोह
- बीजगणतीय अभिव्यक्ति
- रूट-फाइंडिंग एल्गोरिदम
- जटिल संख्या
- एक बहुपद की डिग्री
- बीजीय रूप से बंद क्षेत्र
- विभेदक
- महत्तम सामान्य भाजक
- छद्म आयामी द्विआधारी अनुक्रम
- निश्चित रूप से उत्पन्न फ़ील्ड एक्सटेंशन
- कंप्यूटर बीजगणित प्रणाली
- परिमित क्षेत्रों पर बहुपदों का गुणनखंडन
- एक समारोह का शून्य
- फील्ड एक्सटेंशन
- भागफल की अंगूठी
- नेतृत्व गुणांक
- विभाजन क्षेत्र
- प्रधान तत्व
- तर्कसंगत जड़ प्रमेय
बाहरी संबंध
- Weisstein, Eric W. "Irreducible Polynomial". MathWorld.
- Irreducible Polynomial at PlanetMath.
- Information on Primitive and Irreducible Polynomials, The (Combinatorial) Object Server.