Rational Triangles: Difference between revisions

From Vigyanwiki
No edit summary
Line 2: Line 2:


== Rational Right Triangles - Early Solutions ==
== Rational Right Triangles - Early Solutions ==
In Śulba solution for the equation <math>x^2+y^2=z^2</math>-------(1) is available. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity.
In Śulba solution for the equation <math>x^2+y^2=z^2</math>-------(1) is available<ref>{{Cite book|last=Datta|first=Bibhutibhusan|title=History of Hindu Mathematics|last2=Narayan Singh|first2=Avadhesh|publisher=Asia Publishing House|year=1962|location=Mumbai}}</ref>. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity.


<math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2  - \left (\frac{m-n}{2} \right)^2 } </math>
<math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2  - \left (\frac{m-n}{2} \right)^2 } </math>
Line 31: Line 31:


<math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> which gives the rational solution of (1).
<math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> which gives the rational solution of (1).
== References ==

Revision as of 15:22, 31 March 2022

A rational triangle can be defined as one having all sides with rational length.

Rational Right Triangles - Early Solutions

In Śulba solution for the equation -------(1) is available[1]. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity.

where m, n are any two arbitrary numbers. Thus we get

substituting p2,q2 for m, n respectively in order to eliminate the irrational quantities, we get

which gives the rational solution of (1).

Kātyāyana gives a very simple method for finding a square equal to the sum of a number of other squares of the same size which gives us with another solution of the rational right triangle.

Kātyāyana says: "As many squares (of equal size) as you wish to combine into one, the transverse line will be (equal to) one less than that; twice a side will be (equal to) one more than that; (thus) form (an isosceles) triangle. Its arrow (i.e., altitude) will do that."

<Triangle picture to be added here>

For combining n squares of sides a each we form the isosceles triangle ABC such that and

Then which gives the formula

put m2 for n in order to make the sides of the right angled triangle without the radical, we have

which gives the rational solution of (1).

References

  1. Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). History of Hindu Mathematics. Mumbai: Asia Publishing House.