Rational Triangles: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
== Rational Right Triangles - Early Solutions == | == Rational Right Triangles - Early Solutions == | ||
In Śulba solution for the equation <math>x^2+y^2=z^2</math>-------(1) is available. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity. | In Śulba solution for the equation <math>x^2+y^2=z^2</math>-------(1) is available<ref>{{Cite book|last=Datta|first=Bibhutibhusan|title=History of Hindu Mathematics|last2=Narayan Singh|first2=Avadhesh|publisher=Asia Publishing House|year=1962|location=Mumbai}}</ref>. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity. | ||
<math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2 - \left (\frac{m-n}{2} \right)^2 } </math> | <math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2 - \left (\frac{m-n}{2} \right)^2 } </math> | ||
Line 31: | Line 31: | ||
<math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> which gives the rational solution of (1). | <math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> which gives the rational solution of (1). | ||
== References == |
Revision as of 15:22, 31 March 2022
A rational triangle can be defined as one having all sides with rational length.
Rational Right Triangles - Early Solutions
In Śulba solution for the equation -------(1) is available[1]. Baudhāyana (c. 800 B.C.), Āpastamba and Kātyāyana (c. 500 B.C.) gave a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity.
where m, n are any two arbitrary numbers. Thus we get
substituting p2,q2 for m, n respectively in order to eliminate the irrational quantities, we get
which gives the rational solution of (1).
Kātyāyana gives a very simple method for finding a square equal to the sum of a number of other squares of the same size which gives us with another solution of the rational right triangle.
Kātyāyana says: "As many squares (of equal size) as you wish to combine into one, the transverse line will be (equal to) one less than that; twice a side will be (equal to) one more than that; (thus) form (an isosceles) triangle. Its arrow (i.e., altitude) will do that."
<Triangle picture to be added here>
For combining n squares of sides a each we form the isosceles triangle ABC such that and
Then which gives the formula
put m2 for n in order to make the sides of the right angled triangle without the radical, we have
which gives the rational solution of (1).
References
- ↑ Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). History of Hindu Mathematics. Mumbai: Asia Publishing House.