परिमेय त्रिभुज: Difference between revisions

From Vigyanwiki
(Added Image)
m (Content Modified)
Line 7: Line 7:
<math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2  - \left (\frac{m-n}{2} \right)^2 } </math>
<math>{\displaystyle mn = \left (m- \frac{m-n}{2} \right)^2  - \left (\frac{m-n}{2} \right)^2 } </math>


जहाँ m, n कोई दो मनमानी संख्याएँ हैं। इस प्रकार हम प्राप्त करते हैं
जहाँ m, n कोई दो यादृच्छिक संख्याएँ हैं। इस प्रकार हम प्राप्त करते हैं


<math>{\displaystyle =(\sqrt{mn})^2+\left ( \frac{m-n}{2} \right )^2= \left ( \frac{m+n}{2} \right )^2}</math>
<math>{\displaystyle =(\sqrt{mn})^2+\left ( \frac{m-n}{2} \right )^2= \left ( \frac{m+n}{2} \right )^2}</math>
Line 17: Line 17:
जो (1) का तर्कसंगत समाधान देता है।
जो (1) का तर्कसंगत समाधान देता है।


''कात्यायन''  एक ही आकार के कई अन्य वर्गों के योग के बराबर एक वर्ग खोजने के लिए, एक बहुत ही सरल विधि देता है, जो हमें  परिमेय/तर्कसंगत समकोण त्रिभुज का एक और समाधान देता है।
''कात्यायन,''  एक ही आकार के कई अन्य वर्गों के योग के बराबर एक वर्ग खोजने के लिए, एक बहुत ही सरल विधि देते हैं , जो हमें  परिमेय/तर्कसंगत समकोण त्रिभुज का एक और समाधान देता है।


''कात्यायन''  कहते हैं: "जितने वर्ग (बराबर आकार के) आप एक में जोड़ना चाहते हैं, अनुप्रस्थ रेखा उससे एक कम (बराबर) होगी; दो बार अलग (बराबर) उससे एक अधिक होगा; (इस प्रकार) रूप (एक समद्विबाहु) त्रिभुज। इसका तीर (यानी, ऊंचाई) ऐसा करेगा।"
''कात्यायन''  कहते हैं: "जितने वर्ग (बराबर आकार के) आप एक में जोड़ना चाहते हैं, अनुप्रस्थ रेखा उससे एक कम (बराबर) होगी; एक भुजा का दुगना (बराबर) उससे एक अधिक होगा; (इस प्रकार) रूप (एक समद्विबाहु) त्रिभुज। इसका तीर चिह्न (यानी, ऊंचाई) ऐसा करेगा।"
[[File:Isosceles Triangle.jpg|thumb|समद्विबाहु त्रिकोण]]
[[File:Isosceles Triangle.jpg|thumb|समद्विबाहु त्रिकोण]]




Line 29: Line 30:
<math>{\displaystyle =a^2(\sqrt{n})^2+a^2\left (\frac{n-1}{2} \right )^2= a^2\left ( \frac{n+1}{2} \right )^2}</math>
<math>{\displaystyle =a^2(\sqrt{n})^2+a^2\left (\frac{n-1}{2} \right )^2= a^2\left ( \frac{n+1}{2} \right )^2}</math>


करणी(radicals) के बिना समकोण त्रिभुज की भुजाएँ बनाने के लिए n के लिए m<sup>2</sup> रखें, हमारे पास है
करणी(radicals) के बिना समकोण त्रिभुज की भुजाएँ बनाने के लिए n के लिए m<sup>2</sup> रखें, तब हमारे पास है-


<math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> जो (1) का तर्कसंगत समाधान देता है।
<math>{\displaystyle =m^2a^2+a^2\left (\frac{m^2-1}{2} \right )^2= a^2\left ( \frac{m^2+1}{2} \right )^2}</math> जो (1) का तर्कसंगत समाधान देता है।
Line 42: Line 43:
''इष्ट/Iṣṭa''  संस्कृत शब्द को "दिया" के साथ-साथ "वैकल्पिक" , के रूप में समझा जाता है।
''इष्ट/Iṣṭa''  संस्कृत शब्द को "दिया" के साथ-साथ "वैकल्पिक" , के रूप में समझा जाता है।


इसी तरह का एक नियम श्रीपति (1039) द्वारा दिया गया है: "कोई भी वैकल्पिक संख्या पक्ष है; उस का वर्ग विभाजित और फिर एक वैकल्पिक संख्या से छोटा और आधा  उर्ध्वाधर है; पिछले भाजक के साथ जोड़ा गया एक समकोण का कर्ण है त्रिकोण। के लिए, इसलिए इसे ज्यामिति के नियमों के मामले में विद्वानों द्वारा समझाया गया है।"
इसी तरह का एक नियम श्रीपति (1039) द्वारा दिया गया है: "कोई भी वैकल्पिक संख्या पक्ष है; उस का वर्ग विभाजित और फिर एक वैकल्पिक संख्या से छोटा और आधा  उर्ध्वाधर है; पिछले भाजक के साथ जोड़ा गया एक समकोण का कर्ण है त्रिकोण। इसलिए, इसे ज्यामिति के नियमों के मामले में विद्वानों द्वारा इसकी व्याख्या की गई है।"


== समाकल/ पूर्णांकीय  समाधान ==
== समाकल/ पूर्णांकीय  समाधान ==
ब्रह्मगुप्त ने सबसे पहले समीकरण का हल दिया था <math>x^2+y^2=z^2</math>  पूर्णांकों में। यह <math>m^2-n^2,2mn, m^2+n^2</math> है।  m और n कोई दो असमान पूर्णांक हैं।
ब्रह्मगुप्त ने सबसे पहले समीकरण का हल दिया था <math>x^2+y^2=z^2</math>  पूर्णांकों में। यह <math>m^2-n^2,2mn, m^2+n^2</math> है।  m और n कोई दो असमान पूर्णांक हैं।


महावीर (850) कहते हैं: "वर्गों (दो तत्वों का) का अंतर उर्ध्वाधर है, उनके उत्पाद का दोगुना आधार है और उनके वर्गों का योग एक उत्पन्न आयत का विकर्ण है।"
महावीर (850) कहते हैं: "वर्गों (दो तत्वों) का अंतर उर्ध्वाधर है, उनके उत्पाद का दोगुना आधार है और उनके वर्गों का योग एक उत्पन्न आयत का विकर्ण है।"


== महावीर की परिभाषाएं ==
== महावीर की परिभाषाएं ==

Revision as of 16:16, 14 October 2022

एक परिमेय त्रिभुज को उस त्रिभुज के रूप में परिभाषित किया जा सकता है जिसकी सभी भुजाएँ परिमेय लंबाई के साथ हों।

परिमेय समकोण त्रिभुज - प्रारंभिक समाधान

समीकरण के लिए शुल्बसूत्र (Śulba) समाधान में -------(1) उपलब्ध है।[1] बौधायन (सी 800 ईसा पूर्व)[2], आपस्तंब [3]और कात्यायन [4](सी 500 ईसा पूर्व) ने एक आयत को एक वर्ग में बदलने की एक विधि दी, जो बीजगणितीय पहचान के बराबर है।

जहाँ m, n कोई दो यादृच्छिक संख्याएँ हैं। इस प्रकार हम प्राप्त करते हैं

अपरिमेय मात्राओं को समाप्त करने के लिए क्रमशः m, n के लिए p2,q2 को प्रतिस्थापित करने पर, हम प्राप्त करते हैं:

जो (1) का तर्कसंगत समाधान देता है।

कात्यायन, एक ही आकार के कई अन्य वर्गों के योग के बराबर एक वर्ग खोजने के लिए, एक बहुत ही सरल विधि देते हैं , जो हमें परिमेय/तर्कसंगत समकोण त्रिभुज का एक और समाधान देता है।

कात्यायन कहते हैं: "जितने वर्ग (बराबर आकार के) आप एक में जोड़ना चाहते हैं, अनुप्रस्थ रेखा उससे एक कम (बराबर) होगी; एक भुजा का दुगना (बराबर) उससे एक अधिक होगा; (इस प्रकार) रूप (एक समद्विबाहु) त्रिभुज। इसका तीर चिह्न (यानी, ऊंचाई) ऐसा करेगा।"

समद्विबाहु त्रिकोण


पक्षों के n वर्गों के संयोजन के लिए प्रत्येक हम समद्विबाहु त्रिभुज ABC इस प्रकार बनाते हैं कि और

फिर जो सूत्र देता है

करणी(radicals) के बिना समकोण त्रिभुज की भुजाएँ बनाने के लिए n के लिए m2 रखें, तब हमारे पास है-

जो (1) का तर्कसंगत समाधान देता है।

पश्चातवर्ती परिमेय/तर्कसंगत समाधान

ब्रह्मगुप्त (628) कहते हैं: "वैकल्पिक (इष्ट/iṣṭa) पक्ष के वर्ग को विभाजित किया जाता है और फिर एक वैकल्पिक संख्या से कम किया जाता है; आधा परिणाम उर्ध्वाधर होता है, और वैकल्पिक संख्या से बढ़ने पर एक आयत का कर्ण मिलता है।"

यदि m, n कोई परिमेय संख्या हो तो एक समकोण त्रिभुज की भुजाएँ होंगी

इष्ट/Iṣṭa संस्कृत शब्द को "दिया" के साथ-साथ "वैकल्पिक" , के रूप में समझा जाता है।

इसी तरह का एक नियम श्रीपति (1039) द्वारा दिया गया है: "कोई भी वैकल्पिक संख्या पक्ष है; उस का वर्ग विभाजित और फिर एक वैकल्पिक संख्या से छोटा और आधा उर्ध्वाधर है; पिछले भाजक के साथ जोड़ा गया एक समकोण का कर्ण है त्रिकोण। इसलिए, इसे ज्यामिति के नियमों के मामले में विद्वानों द्वारा इसकी व्याख्या की गई है।"

समाकल/ पूर्णांकीय समाधान

ब्रह्मगुप्त ने सबसे पहले समीकरण का हल दिया था पूर्णांकों में। यह है। m और n कोई दो असमान पूर्णांक हैं।

महावीर (850) कहते हैं: "वर्गों (दो तत्वों) का अंतर उर्ध्वाधर है, उनके उत्पाद का दोगुना आधार है और उनके वर्गों का योग एक उत्पन्न आयत का विकर्ण है।"

महावीर की परिभाषाएं

महावीर [5]कहते हैं कि जिस त्रिभुज या चतुर्भुज की भुजाओं, ऊँचाइयों और अन्य आयामों को परिमेय संख्याओं के रूप में व्यक्त किया जा सकता है, उसे जना /जनित कहा जाता है, जिसका अर्थ है उत्पन्न, निर्मित या वह जो उत्पन्न या निर्मित होता है। वे संख्याएँ जो किसी विशेष आकृति को बनाने में शामिल होती हैं, उसकी बीज-सांख्य (तत्व-संख्याएँ) या मात्र बीज (तत्व या बीज) कहलाती हैं।

बाहरी संपर्क

यह भी देखें

Rational Triangles

संदर्भ

  1. दत्ता, विभूतिभूषण; नारायण सिंह, अवधेश (1962)। हिंदू गणित का इतिहास। मुंबई: एशिया पब्लिशिंग हाउस (Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). History of Hindu Mathematics. Mumbai: Asia Publishing House.)
  2. "बौधायन"("Baudhayana")
  3. "आपस्तम्बा"("Apastamba")
  4. "कात्यायन"("Katyayana")
  5. "महावीर"("Mahavira")