प्रत्यक्ष गुणनफल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Generalization of the Cartesian product}} | {{Short description|Generalization of the Cartesian product}} | ||
गणित में, अधिकांश पहले से ही ज्ञात वस्तुओं के प्रत्यक्ष उत्पाद को परिभाषित कर, एक नया उत्पाद दे सकते हैं। यह उत्पाद | गणित में, अधिकांश पहले से ही ज्ञात वस्तुओं के प्रत्यक्ष उत्पाद को परिभाषित कर, एक नया उत्पाद दे सकते हैं। यह उत्पाद समुच्चय पर उपयुक्त रूप से परिभाषित संरचना के साथ अंतर्निहित [[सेट (गणित)|समुच्चय (गणित)]] के कार्तीय उत्पाद को सामान्यीकृत करता है। अधिक संक्षेप में, कोई [[उत्पाद (श्रेणी सिद्धांत)]] के बारे में बात करता है, जो इन धारणाओं को औपचारिक रूप देता है। | ||
उदाहरण | उदाहरण समुच्चय, [[समूह (गणित)]] (नीचे वर्णित), उत्पाद रिंग और अन्य बीजगणितीय संरचनाओं का उत्पाद हैं। [[टोपोलॉजिकल स्पेस]] का [[उत्पाद टोपोलॉजी]] एक और उदाहरण है।{{dubious|date=December 2020}} | ||
[[प्रत्यक्ष योग]] भी है - कुछ क्षेत्रों में इसका उपयोग परस्पर विनिमय के लिए किया जाता है, जबकि अन्य में यह एक अलग अवधारणा है। | [[प्रत्यक्ष योग]] भी है - कुछ क्षेत्रों में इसका उपयोग परस्पर विनिमय के लिए किया जाता है, जबकि अन्य में यह एक अलग अवधारणा है। | ||
Line 8: | Line 8: | ||
== उदाहरण ASHIF == | == उदाहरण ASHIF == | ||
*यदि हम विचार करें <math>\R</math> वास्तविक संख्या के | *यदि हम विचार करें <math>\R</math> वास्तविक संख्या के समुच्चय के रूप में, फिर प्रत्यक्ष उत्पाद <math>\R \times \R</math> सिर्फ कार्टेशियन उत्पाद है <math>\{(x,y) : x,y \in \R\}.</math> | ||
*यदि हम विचार करें <math>\R</math> जोड़ के तहत वास्तविक संख्याओं के समूह (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद <math>\R\times \R</math> अभी तक है <math>\{(x,y) : x,y \in \R\}</math> इसके अंतर्निहित | *यदि हम विचार करें <math>\R</math> जोड़ के तहत वास्तविक संख्याओं के समूह (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद <math>\R\times \R</math> अभी तक है <math>\{(x,y) : x,y \in \R\}</math> इसके अंतर्निहित समुच्चय के रूप में। इसमें और पिछले उदाहरण में यही अंतर है <math>\R \times \R</math> अब एक समूह है, और इसलिए हमें यह भी कहना होगा कि उनके तत्वों को कैसे जोड़ा जाए। यह परिभाषित करके किया जाता है <math>(a,b) + (c,d) = (a+c, b+d).</math> | ||
*यदि हम विचार करें <math>\R</math> वास्तविक संख्या के रिंग (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद <math>\R\times \R</math> फिर से है <math>\{(x,y) : x,y \in \R\}</math> इसके अंतर्निहित | *यदि हम विचार करें <math>\R</math> वास्तविक संख्या के रिंग (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद <math>\R\times \R</math> फिर से है <math>\{(x,y) : x,y \in \R\}</math> इसके अंतर्निहित समुच्चय के रूप में। रिंग संरचना में इसके द्वारा परिभाषित जोड़ होते हैं <math>(a,b) + (c,d) = (a+c, b+d)</math> और गुणन द्वारा परिभाषित <math>(a,b) (c,d) = (ac, bd).</math> | ||
* हालांकि अंगूठी <math>\R</math> एक क्षेत्र है (गणित), <math>\R \times \R</math> एक नहीं है, क्योंकि तत्व <math>(1,0)</math> गुणनात्मक व्युत्क्रम नहीं है। | * हालांकि अंगूठी <math>\R</math> एक क्षेत्र है (गणित), <math>\R \times \R</math> एक नहीं है, क्योंकि तत्व <math>(1,0)</math> गुणनात्मक व्युत्क्रम नहीं है। | ||
Line 21: | Line 21: | ||
समूह (गणित) में दो समूहों के प्रत्यक्ष उत्पाद को परिभाषित किया जा सकता है <math>(G, \circ)</math> तथा <math>(H, \cdot),</math> द्वारा चिह्नित <math>G \times H.</math> [[एबेलियन समूह]]ों के लिए जो योगात्मक रूप से लिखे गए हैं, इसे [[समूहों का प्रत्यक्ष योग]] भी कहा जा सकता है, जिसे निरूपित किया जाता है <math>G \oplus H.</math> | समूह (गणित) में दो समूहों के प्रत्यक्ष उत्पाद को परिभाषित किया जा सकता है <math>(G, \circ)</math> तथा <math>(H, \cdot),</math> द्वारा चिह्नित <math>G \times H.</math> [[एबेलियन समूह]]ों के लिए जो योगात्मक रूप से लिखे गए हैं, इसे [[समूहों का प्रत्यक्ष योग]] भी कहा जा सकता है, जिसे निरूपित किया जाता है <math>G \oplus H.</math> | ||
इसे इस प्रकार परिभाषित किया गया है: | इसे इस प्रकार परिभाषित किया गया है: | ||
* नए समूह के तत्वों का | * नए समूह के तत्वों का समुच्चय (गणित) तत्वों के समुच्चय का कार्टेशियन उत्पाद है <math>G \text{ and } H,</math> वह है <math>\{(g, h) : g \in G, h \in H\};</math> | ||
* इन तत्वों पर एक ऑपरेशन डालें, परिभाषित तत्व-वार: <math display="block">(g, h) \times \left(g', h'\right) = \left(g \circ g', h \cdot h'\right)</math> | * इन तत्वों पर एक ऑपरेशन डालें, परिभाषित तत्व-वार: <math display="block">(g, h) \times \left(g', h'\right) = \left(g \circ g', h \cdot h'\right)</math> | ||
ध्यान दें कि <math>(G, \circ)</math> के समान हो सकता है <math>(H, \cdot).</math> | ध्यान दें कि <math>(G, \circ)</math> के समान हो सकता है <math>(H, \cdot).</math> | ||
Line 47: | Line 47: | ||
== टोपोलॉजिकल स्पेस डायरेक्ट प्रोडक्ट == | == टोपोलॉजिकल स्पेस डायरेक्ट प्रोडक्ट == | ||
टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद <math>X_i</math> के लिये <math>i</math> में <math>I,</math> कुछ इंडेक्स | टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद <math>X_i</math> के लिये <math>i</math> में <math>I,</math> कुछ इंडेक्स समुच्चय, एक बार फिर कार्टेशियन उत्पाद का उपयोग करता है | ||
<math display=block>\prod_{i \in I} X_i.</math> | <math display=block>\prod_{i \in I} X_i.</math> | ||
[[टोपोलॉजी]] को परिभाषित करना थोड़ा मुश्किल है। सूक्ष्म रूप से कई कारकों के लिए, यह करने के लिए स्पष्ट और स्वाभाविक बात है: प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्टेशियन उत्पादों का संग्रह होने के लिए बस खुले | [[टोपोलॉजी]] को परिभाषित करना थोड़ा मुश्किल है। सूक्ष्म रूप से कई कारकों के लिए, यह करने के लिए स्पष्ट और स्वाभाविक बात है: प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्टेशियन उत्पादों का संग्रह होने के लिए बस खुले समुच्चय के [[आधार (टोपोलॉजी)]] के रूप में लें: | ||
<math display=block>\mathcal B = \left\{U_1 \times \cdots \times U_n\ : \ U_i\ \mathrm{open\ in}\ X_i\right\}.</math> | <math display=block>\mathcal B = \left\{U_1 \times \cdots \times U_n\ : \ U_i\ \mathrm{open\ in}\ X_i\right\}.</math> | ||
इस टोपोलॉजी को उत्पाद टोपोलॉजी कहा जाता है। उदाहरण के लिए, सीधे उत्पाद टोपोलॉजी को परिभाषित करना <math>\R^2</math> के खुले | इस टोपोलॉजी को उत्पाद टोपोलॉजी कहा जाता है। उदाहरण के लिए, सीधे उत्पाद टोपोलॉजी को परिभाषित करना <math>\R^2</math> के खुले समुच्चय द्वारा <math>\R</math> (खुले अंतरालों के संघों को अलग करना), इस टोपोलॉजी के आधार में विमान में खुले आयतों के सभी अलग-अलग संघ शामिल होंगे (जैसा कि यह पता चला है, यह सामान्य मीट्रिक अंतरिक्ष टोपोलॉजी के साथ मेल खाता है)। | ||
अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और इसका संबंध सभी प्रक्षेपण मानचित्रों को निरंतर बनाने और उत्पाद में सभी कार्यों को निरंतर बनाने में सक्षम होना है, यदि और केवल तभी इसके सभी घटक कार्य निरंतर हैं (अर्थात, संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहां आकारिकरण निरंतर कार्य हैं): हम खुले | अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और इसका संबंध सभी प्रक्षेपण मानचित्रों को निरंतर बनाने और उत्पाद में सभी कार्यों को निरंतर बनाने में सक्षम होना है, यदि और केवल तभी इसके सभी घटक कार्य निरंतर हैं (अर्थात, संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहां आकारिकरण निरंतर कार्य हैं): हम खुले समुच्चय के आधार के रूप में प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्टेशियन उत्पादों का संग्रह होने के रूप में लेते हैं, पहले की तरह, अनंतिम रूप से सभी लेकिन बहुत से खुले उपसमुच्चय संपूर्ण कारक हैं: | ||
<math display=block>\mathcal B = \left\{ \prod_{i \in I} U_i\ : \ (\exists j_1,\ldots,j_n)(U_{j_i}\ \mathrm{open\ in}\ X_{j_i})\ \mathrm{and}\ (\forall i \neq j_1,\ldots,j_n)(U_i = X_i) \right\}.</math> | <math display=block>\mathcal B = \left\{ \prod_{i \in I} U_i\ : \ (\exists j_1,\ldots,j_n)(U_{j_i}\ \mathrm{open\ in}\ X_{j_i})\ \mathrm{and}\ (\forall i \neq j_1,\ldots,j_n)(U_i = X_i) \right\}.</math> | ||
अधिक प्राकृतिक लगने वाली टोपोलॉजी, इस मामले में, पहले की तरह असीम रूप से कई खुले उपसमुच्चय के उत्पादों को लेने के लिए होगी, और यह कुछ हद तक दिलचस्प टोपोलॉजी, [[बॉक्स टोपोलॉजी]] का उत्पादन करती है। हालाँकि निरंतर घटक कार्यों के समूह का एक उदाहरण खोजना बहुत मुश्किल नहीं है जिसका उत्पाद कार्य निरंतर नहीं है (उदाहरण के लिए अलग प्रविष्टि बॉक्स टोपोलॉजी देखें और अधिक)। समस्या जो मोड़ को आवश्यक बनाती है, अंततः इस तथ्य में निहित है कि खुले | अधिक प्राकृतिक लगने वाली टोपोलॉजी, इस मामले में, पहले की तरह असीम रूप से कई खुले उपसमुच्चय के उत्पादों को लेने के लिए होगी, और यह कुछ हद तक दिलचस्प टोपोलॉजी, [[बॉक्स टोपोलॉजी]] का उत्पादन करती है। हालाँकि निरंतर घटक कार्यों के समूह का एक उदाहरण खोजना बहुत मुश्किल नहीं है जिसका उत्पाद कार्य निरंतर नहीं है (उदाहरण के लिए अलग प्रविष्टि बॉक्स टोपोलॉजी देखें और अधिक)। समस्या जो मोड़ को आवश्यक बनाती है, अंततः इस तथ्य में निहित है कि खुले समुच्चयों का प्रतिच्छेदन केवल टोपोलॉजी की परिभाषा में बहुत से समुच्चयों के लिए खुला होने की गारंटी है। | ||
उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; कनेक्टेड रिक्त स्थान का उत्पाद जुड़ा हुआ है, और कॉम्पैक्ट स्पेस का उत्पाद कॉम्पैक्ट है। वह आखिरी वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है। | उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; कनेक्टेड रिक्त स्थान का उत्पाद जुड़ा हुआ है, और कॉम्पैक्ट स्पेस का उत्पाद कॉम्पैक्ट है। वह आखिरी वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है। | ||
Line 62: | Line 62: | ||
== [[द्विआधारी संबंध]]ों का प्रत्यक्ष उत्पाद == | == [[द्विआधारी संबंध]]ों का प्रत्यक्ष उत्पाद == | ||
द्विआधारी संबंधों के साथ दो | द्विआधारी संबंधों के साथ दो समुच्चयों के कार्टेशियन उत्पाद पर <math>R \text{ and } S,</math> परिभाषित करना <math>(a, b) T (c, d)</math> जैसा <math>a R c \text{ and } b S d.</math> यदि <math>R \text{ and } S</math> [[प्रतिवर्त संबंध]], [[अविचलित संबंध]], [[सकर्मक संबंध]], [[सममित संबंध]] या [[एंटीसिमेट्रिक संबंध]] दोनों हैं, तो <math>T</math> भी होगा।<ref>{{cite web| url = http://cr.yp.to/2005-261/bender1/EO.pdf| title = तुल्यता और व्यवस्था}}</ref> इसी प्रकार, का [[कुल संबंध]] <math>T</math> से विरासत में मिला है <math>R \text{ and } S.</math> गुणों का संयोजन यह इस प्रकार है कि यह एक [[पूर्व आदेश]] होने और समकक्ष संबंध होने के लिए भी लागू होता है। हालांकि, यदि <math>R \text{ and } S</math> जुड़े हुए रिश्ते हैं, <math>T</math> कनेक्ट होने की आवश्यकता नहीं है; उदाहरण के लिए, का प्रत्यक्ष उत्पाद <math>\,\leq\,</math> पर <math>\N</math> स्वयं से संबंध नहीं रखता <math>(1, 2) \text{ and } (2, 1).</math> | ||
== सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद | == सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद | ||
यदि <math>\Sigma</math> एक निश्चित [[हस्ताक्षर (तर्क)]] है, <math>I</math> एक मनमाना (संभवतः अनंत) इंडेक्स | यदि <math>\Sigma</math> एक निश्चित [[हस्ताक्षर (तर्क)]] है, <math>I</math> एक मनमाना (संभवतः अनंत) इंडेक्स समुच्चय है, और <math>\left(\mathbf{A}_i\right)_{i \in I}</math> का एक [[अनुक्रमित परिवार]] है <math>\Sigma</math> बीजगणित, प्रत्यक्ष उत्पाद <math display="inline">\mathbf{A} = \prod_{i \in I} \mathbf{A}_i</math> एक है <math>\Sigma</math> बीजगणित को इस प्रकार परिभाषित किया गया है: | ||
* ब्रह्मांड | * ब्रह्मांड समुच्चय <math>A</math> का <math>\mathbf{A}</math> ब्रह्मांड समुच्चय का कार्टेशियन उत्पाद है <math>A_i</math> का <math>\mathbf{A}_i,</math> औपचारिक रूप से: <math display="inline">A = \prod_{i \in I} A_i.</math> | ||
* प्रत्येक के लिए <math>n</math> और प्रत्येक <math>n</math>-और ऑपरेशन प्रतीक <math>f \in \Sigma,</math> इसकी व्याख्या <math>f^{\mathbf{A}}</math> में <math>\mathbf{A}</math> घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए <math>a_1, \dotsc, a_n \in A</math> और प्रत्येक <math>i \in I,</math> <math>i</math>वें घटक <math>f^{\mathbf{A}}\!\left(a_1, \dotsc, a_n\right)</math> की तरह परिभाषित किया गया है <math>f^{\mathbf{A}_i}\!\left(a_1(i), \dotsc, a_n(i)\right).</math> प्रत्येक के लिए <math>i \in I,</math> <math>i</math>वें प्रक्षेपण <math>\pi_i : A \to A_i</math> द्वारा परिभाषित किया गया है <math>\pi_i(a) = a(i).</math> यह के बीच एक [[विशेषण समरूपता]] है <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A} \text{ and } \mathbf{A}_i.</math><ref>Stanley N. Burris and H.P. Sankappanavar, 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}. Here: Def.7.8, p.53 (=p. 67 in pdf file)</ref> | * प्रत्येक के लिए <math>n</math> और प्रत्येक <math>n</math>-और ऑपरेशन प्रतीक <math>f \in \Sigma,</math> इसकी व्याख्या <math>f^{\mathbf{A}}</math> में <math>\mathbf{A}</math> घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए <math>a_1, \dotsc, a_n \in A</math> और प्रत्येक <math>i \in I,</math> <math>i</math>वें घटक <math>f^{\mathbf{A}}\!\left(a_1, \dotsc, a_n\right)</math> की तरह परिभाषित किया गया है <math>f^{\mathbf{A}_i}\!\left(a_1(i), \dotsc, a_n(i)\right).</math> प्रत्येक के लिए <math>i \in I,</math> <math>i</math>वें प्रक्षेपण <math>\pi_i : A \to A_i</math> द्वारा परिभाषित किया गया है <math>\pi_i(a) = a(i).</math> यह के बीच एक [[विशेषण समरूपता]] है <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A} \text{ and } \mathbf{A}_i.</math><ref>Stanley N. Burris and H.P. Sankappanavar, 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}. Here: Def.7.8, p.53 (=p. 67 in pdf file)</ref> | ||
एक विशेष मामले के रूप में, यदि index <math>I = \{1, 2\},</math> दो का प्रत्यक्ष उत्पाद <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A}_1 \text{ and } \mathbf{A}_2</math> प्राप्त होता है, के रूप में लिखा जाता है <math>\mathbf{A} = \mathbf{A}_1 \times \mathbf{A}_2.</math> यदि <math>\Sigma</math> केवल एक बाइनरी ऑपरेशन होता है <math>f,</math> #समूह प्रत्यक्ष उत्पाद की परिभाषा, समूहों के प्रत्यक्ष उत्पाद की, संकेतन का उपयोग करके प्राप्त की जाती है <math>A_1 = G, A_2 = H,</math> <math>f^{A_1} = \circ, \ f^{A_2} = \cdot, \ \text{ and } f^A = \times.</math> इसी तरह, मॉड्यूल के प्रत्यक्ष उत्पाद की परिभाषा यहां सम्मिलित की गई है। | एक विशेष मामले के रूप में, यदि index <math>I = \{1, 2\},</math> दो का प्रत्यक्ष उत्पाद <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A}_1 \text{ and } \mathbf{A}_2</math> प्राप्त होता है, के रूप में लिखा जाता है <math>\mathbf{A} = \mathbf{A}_1 \times \mathbf{A}_2.</math> यदि <math>\Sigma</math> केवल एक बाइनरी ऑपरेशन होता है <math>f,</math> #समूह प्रत्यक्ष उत्पाद की परिभाषा, समूहों के प्रत्यक्ष उत्पाद की, संकेतन का उपयोग करके प्राप्त की जाती है <math>A_1 = G, A_2 = H,</math> <math>f^{A_1} = \circ, \ f^{A_2} = \cdot, \ \text{ and } f^A = \times.</math> इसी तरह, मॉड्यूल के प्रत्यक्ष उत्पाद की परिभाषा यहां सम्मिलित की गई है। | ||
Line 73: | Line 73: | ||
== श्रेणीबद्ध उत्पाद == | == श्रेणीबद्ध उत्पाद == | ||
{{Main|Product (category theory)}} | {{Main|Product (category theory)}} | ||
प्रत्यक्ष उत्पाद को एक मनमाना श्रेणी सिद्धांत के रूप में समझा जा सकता है। किसी श्रेणी में, वस्तुओं का संग्रह दिया गया है <math>(A_i)_{i \in I}</math> एक | प्रत्यक्ष उत्पाद को एक मनमाना श्रेणी सिद्धांत के रूप में समझा जा सकता है। किसी श्रेणी में, वस्तुओं का संग्रह दिया गया है <math>(A_i)_{i \in I}</math> एक समुच्चय द्वारा अनुक्रमित <math>I</math>, इन वस्तुओं का एक उत्पाद एक वस्तु है <math>A</math> एक साथ [[morphism]]s के साथ <math>p_i \colon A \to A_i</math> सभी के लिए <math>i \in I</math>, ऐसा है कि अगर <math>B</math> morphisms के साथ कोई अन्य वस्तु है <math>f_i \colon B \to A_i</math> सभी के लिए <math>i \in I</math>, एक अद्वितीय रूपवाद मौजूद है <math>B \to A</math> जिसकी रचना के साथ <math>p_i</math> बराबरी <math>f_i</math> हरएक के लिए <math>i</math>. | ||
<!-- this is easier to visualize as a [[commutative diagram]]; eventually somebody should insert a relevant diagram for the categorical product here! --> | <!-- this is easier to visualize as a [[commutative diagram]]; eventually somebody should insert a relevant diagram for the categorical product here! --> | ||
ऐसा <math>A</math> तथा <math>(p_i)_{i \in I}</math> हमेशा मौजूद नहीं है। यदि वे मौजूद हैं, तो <math>(A,(p_i)_{i \in I})</math> समरूपता तक अद्वितीय है, और <math>A</math> निरूपित किया जाता है <math>\prod_{i \in I} A_i</math>. | ऐसा <math>A</math> तथा <math>(p_i)_{i \in I}</math> हमेशा मौजूद नहीं है। यदि वे मौजूद हैं, तो <math>(A,(p_i)_{i \in I})</math> समरूपता तक अद्वितीय है, और <math>A</math> निरूपित किया जाता है <math>\prod_{i \in I} A_i</math>. | ||
समूहों की श्रेणी के विशेष मामले में, एक उत्पाद हमेशा मौजूद होता है: का अंतर्निहित | समूहों की श्रेणी के विशेष मामले में, एक उत्पाद हमेशा मौजूद होता है: का अंतर्निहित समुच्चय <math>\prod_{i \in I} A_i</math> के अंतर्निहित समुच्चयों का कार्टेशियन उत्पाद है <math>A_i</math>, समूह संचालन घटकवार गुणन है, और (होमो) रूपवाद <math>p_i \colon A \to A_i</math> प्रक्षेपण प्रत्येक टपल को इसके पास भेज रहा है <math>i</math>वें समन्वय। | ||
== आंतरिक और बाह्य प्रत्यक्ष उत्पाद == | == आंतरिक और बाह्य प्रत्यक्ष उत्पाद == |
Revision as of 09:42, 14 December 2022
गणित में, अधिकांश पहले से ही ज्ञात वस्तुओं के प्रत्यक्ष उत्पाद को परिभाषित कर, एक नया उत्पाद दे सकते हैं। यह उत्पाद समुच्चय पर उपयुक्त रूप से परिभाषित संरचना के साथ अंतर्निहित समुच्चय (गणित) के कार्तीय उत्पाद को सामान्यीकृत करता है। अधिक संक्षेप में, कोई उत्पाद (श्रेणी सिद्धांत) के बारे में बात करता है, जो इन धारणाओं को औपचारिक रूप देता है।
उदाहरण समुच्चय, समूह (गणित) (नीचे वर्णित), उत्पाद रिंग और अन्य बीजगणितीय संरचनाओं का उत्पाद हैं। टोपोलॉजिकल स्पेस का उत्पाद टोपोलॉजी एक और उदाहरण है।[dubious ]
प्रत्यक्ष योग भी है - कुछ क्षेत्रों में इसका उपयोग परस्पर विनिमय के लिए किया जाता है, जबकि अन्य में यह एक अलग अवधारणा है।
उदाहरण ASHIF
- यदि हम विचार करें वास्तविक संख्या के समुच्चय के रूप में, फिर प्रत्यक्ष उत्पाद सिर्फ कार्टेशियन उत्पाद है
- यदि हम विचार करें जोड़ के तहत वास्तविक संख्याओं के समूह (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद अभी तक है इसके अंतर्निहित समुच्चय के रूप में। इसमें और पिछले उदाहरण में यही अंतर है अब एक समूह है, और इसलिए हमें यह भी कहना होगा कि उनके तत्वों को कैसे जोड़ा जाए। यह परिभाषित करके किया जाता है
- यदि हम विचार करें वास्तविक संख्या के रिंग (गणित) के रूप में, फिर प्रत्यक्ष उत्पाद फिर से है इसके अंतर्निहित समुच्चय के रूप में। रिंग संरचना में इसके द्वारा परिभाषित जोड़ होते हैं और गुणन द्वारा परिभाषित
- हालांकि अंगूठी एक क्षेत्र है (गणित), एक नहीं है, क्योंकि तत्व गुणनात्मक व्युत्क्रम नहीं है।
इसी तरह, हम बहुत सी बीजगणितीय संरचनाओं के प्रत्यक्ष उत्पाद के बारे में बात कर सकते हैं, उदाहरण के लिए, यह इस तथ्य पर निर्भर करता है कि प्रत्यक्ष उत्पाद समरूपता तक साहचर्य है। वह है, किसी भी बीजगणितीय संरचना के लिए तथा उसी तरह का। प्रत्यक्ष उत्पाद भी तुल्याकारिता तक क्रमविनिमेय है, अर्थात, किसी भी बीजगणितीय संरचना के लिए तथा उसी तरह का। हम अपरिमित रूप से अनेक बीजगणितीय संरचनाओं के प्रत्यक्ष गुणनफल के बारे में भी बात कर सकते हैं; उदाहरण के लिए हम अनगिनत अनंत प्रतियों का प्रत्यक्ष उत्पाद ले सकते हैं जिसे हम लिखते हैं
समूह प्रत्यक्ष उत्पाद
समूह (गणित) में दो समूहों के प्रत्यक्ष उत्पाद को परिभाषित किया जा सकता है तथा द्वारा चिह्नित एबेलियन समूहों के लिए जो योगात्मक रूप से लिखे गए हैं, इसे समूहों का प्रत्यक्ष योग भी कहा जा सकता है, जिसे निरूपित किया जाता है इसे इस प्रकार परिभाषित किया गया है:
- नए समूह के तत्वों का समुच्चय (गणित) तत्वों के समुच्चय का कार्टेशियन उत्पाद है वह है
- इन तत्वों पर एक ऑपरेशन डालें, परिभाषित तत्व-वार:
ध्यान दें कि के समान हो सकता है यह निर्माण एक नया समूह देता है। इसका एक सामान्य उपसमूह आइसोमॉर्फिक है (फॉर्म के तत्वों द्वारा दिया गया ), और एक आइसोमॉर्फिक टू (तत्व शामिल हैं ).
उल्टा भी रहता है। निम्नलिखित मान्यता प्रमेय है: यदि एक समूह दो सामान्य उपसमूह शामिल हैं ऐसा है कि और का चौराहा तब केवल पहचान शामिल है के लिए आइसोमोर्फिक है इन स्थितियों में छूट, सामान्य होने के लिए केवल एक उपसमूह की आवश्यकता होती है, अर्ध-प्रत्यक्ष उत्पाद देता है।
उदाहरण के रूप में लें क्रम 2 के अद्वितीय (समरूपता तक) समूह की दो प्रतियाँ, कहो फिर ऑपरेशन तत्व के साथ तत्व द्वारा। उदाहरण के लिए, तथा एक प्रत्यक्ष उत्पाद के साथ, हमें कुछ प्राकृतिक समूह समरूपता मुफ्त में मिलती है: द्वारा परिभाषित प्रक्षेपण मानचित्र
इसके अलावा, हर समरूपता प्रत्यक्ष उत्पाद के लिए पूरी तरह से इसके घटक कार्यों द्वारा निर्धारित किया जाता है किसी भी समूह के लिए और कोई पूर्णांक प्रत्यक्ष उत्पाद का बार-बार उपयोग सभी के समूह को देता है -टुपल्स (के लिये यह तुच्छ समूह है), उदाहरण के लिए तथा
मॉड्यूल का प्रत्यक्ष उत्पाद
मॉड्यूल (गणित) के लिए प्रत्यक्ष उत्पाद (मॉड्यूल के टेन्सर उत्पाद के साथ भ्रमित नहीं होना) ऊपर दिए गए समूहों के लिए परिभाषित एक के समान है, कार्टेशियन उत्पाद का उपयोग घटक के अतिरिक्त होने के संचालन के साथ होता है, और स्केलर गुणा बस वितरण करता है सभी घटक। से शुरू हमें यूक्लिडियन अंतरिक्ष मिलता है एक वास्तविक का प्रोटोटाइपिकल उदाहरण -आयामी वेक्टर अंतरिक्ष। का प्रत्यक्ष उत्पाद तथा है ध्यान दें कि परिमित सूचकांक के लिए प्रत्यक्ष उत्पाद मॉड्यूल के प्रत्यक्ष योग के लिए कैनोनिक रूप से आइसोमोर्फिक है प्रत्यक्ष योग और प्रत्यक्ष उत्पाद अनंत सूचकांकों के लिए समरूप नहीं हैं, जहां प्रत्यक्ष योग के तत्व सभी के लिए शून्य हैं, लेकिन प्रविष्टियों की एक सीमित संख्या के लिए। वे श्रेणी सिद्धांत के अर्थ में दोहरे हैं: प्रत्यक्ष योग प्रतिफल है, जबकि प्रत्यक्ष उत्पाद उत्पाद है।
उदाहरण के लिए विचार करें तथा अनंत प्रत्यक्ष उत्पाद और वास्तविक संख्याओं का प्रत्यक्ष योग। केवल गैर-शून्य तत्वों की परिमित संख्या वाले अनुक्रम ही अंदर हैं उदाहरण के लिए, में है लेकिन नहीं है। ये दोनों क्रम प्रत्यक्ष उत्पाद में हैं असल में, का उचित उपसमुच्चय है (वह है, ).[1][2]
टोपोलॉजिकल स्पेस डायरेक्ट प्रोडक्ट
टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद के लिये में कुछ इंडेक्स समुच्चय, एक बार फिर कार्टेशियन उत्पाद का उपयोग करता है
अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और इसका संबंध सभी प्रक्षेपण मानचित्रों को निरंतर बनाने और उत्पाद में सभी कार्यों को निरंतर बनाने में सक्षम होना है, यदि और केवल तभी इसके सभी घटक कार्य निरंतर हैं (अर्थात, संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहां आकारिकरण निरंतर कार्य हैं): हम खुले समुच्चय के आधार के रूप में प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्टेशियन उत्पादों का संग्रह होने के रूप में लेते हैं, पहले की तरह, अनंतिम रूप से सभी लेकिन बहुत से खुले उपसमुच्चय संपूर्ण कारक हैं:
उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; कनेक्टेड रिक्त स्थान का उत्पाद जुड़ा हुआ है, और कॉम्पैक्ट स्पेस का उत्पाद कॉम्पैक्ट है। वह आखिरी वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है।
अधिक गुणों और समतुल्य योगों के लिए, अलग प्रविष्टि उत्पाद टोपोलॉजी देखें।
द्विआधारी संबंधों का प्रत्यक्ष उत्पाद
द्विआधारी संबंधों के साथ दो समुच्चयों के कार्टेशियन उत्पाद पर परिभाषित करना जैसा यदि प्रतिवर्त संबंध, अविचलित संबंध, सकर्मक संबंध, सममित संबंध या एंटीसिमेट्रिक संबंध दोनों हैं, तो भी होगा।[3] इसी प्रकार, का कुल संबंध से विरासत में मिला है गुणों का संयोजन यह इस प्रकार है कि यह एक पूर्व आदेश होने और समकक्ष संबंध होने के लिए भी लागू होता है। हालांकि, यदि जुड़े हुए रिश्ते हैं, कनेक्ट होने की आवश्यकता नहीं है; उदाहरण के लिए, का प्रत्यक्ष उत्पाद पर स्वयं से संबंध नहीं रखता
== सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद
यदि एक निश्चित हस्ताक्षर (तर्क) है, एक मनमाना (संभवतः अनंत) इंडेक्स समुच्चय है, और का एक अनुक्रमित परिवार है बीजगणित, प्रत्यक्ष उत्पाद एक है बीजगणित को इस प्रकार परिभाषित किया गया है:
- ब्रह्मांड समुच्चय का ब्रह्मांड समुच्चय का कार्टेशियन उत्पाद है का औपचारिक रूप से:
- प्रत्येक के लिए और प्रत्येक -और ऑपरेशन प्रतीक इसकी व्याख्या में घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए और प्रत्येक वें घटक की तरह परिभाषित किया गया है प्रत्येक के लिए वें प्रक्षेपण द्वारा परिभाषित किया गया है यह के बीच एक विशेषण समरूपता है अल्जेब्रास [4]
एक विशेष मामले के रूप में, यदि index दो का प्रत्यक्ष उत्पाद अल्जेब्रास प्राप्त होता है, के रूप में लिखा जाता है यदि केवल एक बाइनरी ऑपरेशन होता है #समूह प्रत्यक्ष उत्पाद की परिभाषा, समूहों के प्रत्यक्ष उत्पाद की, संकेतन का उपयोग करके प्राप्त की जाती है इसी तरह, मॉड्यूल के प्रत्यक्ष उत्पाद की परिभाषा यहां सम्मिलित की गई है।
श्रेणीबद्ध उत्पाद
प्रत्यक्ष उत्पाद को एक मनमाना श्रेणी सिद्धांत के रूप में समझा जा सकता है। किसी श्रेणी में, वस्तुओं का संग्रह दिया गया है एक समुच्चय द्वारा अनुक्रमित , इन वस्तुओं का एक उत्पाद एक वस्तु है एक साथ morphisms के साथ सभी के लिए , ऐसा है कि अगर morphisms के साथ कोई अन्य वस्तु है सभी के लिए , एक अद्वितीय रूपवाद मौजूद है जिसकी रचना के साथ बराबरी हरएक के लिए . ऐसा तथा हमेशा मौजूद नहीं है। यदि वे मौजूद हैं, तो समरूपता तक अद्वितीय है, और निरूपित किया जाता है .
समूहों की श्रेणी के विशेष मामले में, एक उत्पाद हमेशा मौजूद होता है: का अंतर्निहित समुच्चय के अंतर्निहित समुच्चयों का कार्टेशियन उत्पाद है , समूह संचालन घटकवार गुणन है, और (होमो) रूपवाद प्रक्षेपण प्रत्येक टपल को इसके पास भेज रहा है वें समन्वय।
आंतरिक और बाह्य प्रत्यक्ष उत्पाद
कुछ लेखक आंतरिक प्रत्यक्ष उत्पाद और बाह्य प्रत्यक्ष उत्पाद के बीच अंतर करते हैं। यदि तथा तब हम कहते हैं का आंतरिक प्रत्यक्ष उत्पाद है जबकि अगर सबऑब्जेक्ट नहीं हैं तो हम कहते हैं कि यह एक बाहरी प्रत्यक्ष उत्पाद है।
यह भी देखें
- Direct sum
- Cartesian product
- Coproduct
- Free product
- Semidirect product
- Zappa–Szep product
- Tensor product of graphs
- Orders on the Cartesian product of totally ordered sets – Order whose elements are all comparable
टिप्पणियाँ
- ↑ Weisstein, Eric W. "प्रत्यक्ष उत्पाद". mathworld.wolfram.com (in English). Retrieved 2018-02-10.
- ↑ Weisstein, Eric W. "समूह प्रत्यक्ष उत्पाद". mathworld.wolfram.com (in English). Retrieved 2018-02-10.
- ↑ "तुल्यता और व्यवस्था" (PDF).
- ↑ Stanley N. Burris and H.P. Sankappanavar, 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2. Here: Def.7.8, p.53 (=p. 67 in pdf file)
इस पेज में लापता आंतरिक लिंक की सूची
- कार्तीय गुणन
- उत्पाद की अंगूठी
- बीजगणितीय संरचनाएं
- अंक शास्त्र
- अंगूठी (गणित)
- क्षेत्र (गणित)
- गुणात्मक प्रतिलोम
- जोड़नेवाला
- समाकृतिकता
- गणनीय रूप से अनंत
- टपल
- मॉड्यूल का टेंसर उत्पाद
- मॉड्यूल का प्रत्यक्ष योग
- सहउत्पाद
- मीट्रिक स्थान
- पसंद का स्वयंसिद्ध
- तुल्यता संबंध
- जुड़ा हुआ संबंध
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556