प्रत्यक्ष गुणनफल: Difference between revisions
No edit summary |
No edit summary |
||
Line 52: | Line 52: | ||
== टोपोलॉजिकल स्पेस | == टोपोलॉजिकल स्पेस प्रत्यक्ष उत्पाद == | ||
टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद <math>X_i</math> के लिये <math>i</math> में <math>I,</math> कुछ सूचकांक समुच्चय, एक बार फिर कार्तीय उत्पाद का उपयोग करता है | टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद <math>X_i</math> के लिये <math>i</math> में <math>I,</math> कुछ सूचकांक समुच्चय, एक बार फिर कार्तीय उत्पाद का उपयोग करता है | ||
<math display=block>\prod_{i \in I} X_i.</math> | <math display=block>\prod_{i \in I} X_i.</math> | ||
Line 61: | Line 61: | ||
अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और यह सभी प्रक्षेपण मानचित्रों को निरंतर बनाने में सक्षम होने और उत्पाद में सभी कार्यों को निरंतर बनाने के लिए और केवल अगर इसके सभी घटक कार्य निरंतर हैं (अर्थात संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहाँ आकारिकी निरंतर कार्य हैं): हम खुले सेट के आधार के रूप में प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्तीय उत्पादों के संग्रह के रूप में लेते हैं, पहले की तरह, अनंतिम के साथ सभी लेकिन बहुत से खुले उपसमुच्चय संपूर्ण कारक हैं: | अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और यह सभी प्रक्षेपण मानचित्रों को निरंतर बनाने में सक्षम होने और उत्पाद में सभी कार्यों को निरंतर बनाने के लिए और केवल अगर इसके सभी घटक कार्य निरंतर हैं (अर्थात संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहाँ आकारिकी निरंतर कार्य हैं): हम खुले सेट के आधार के रूप में प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्तीय उत्पादों के संग्रह के रूप में लेते हैं, पहले की तरह, अनंतिम के साथ सभी लेकिन बहुत से खुले उपसमुच्चय संपूर्ण कारक हैं: | ||
<math display=block>\mathcal B = \left\{ \prod_{i \in I} U_i\ : \ (\exists j_1,\ldots,j_n)(U_{j_i}\ \mathrm{open\ in}\ X_{j_i})\ \mathrm{and}\ (\forall i \neq j_1,\ldots,j_n)(U_i = X_i) \right\}.</math> | <math display=block>\mathcal B = \left\{ \prod_{i \in I} U_i\ : \ (\exists j_1,\ldots,j_n)(U_{j_i}\ \mathrm{open\ in}\ X_{j_i})\ \mathrm{and}\ (\forall i \neq j_1,\ldots,j_n)(U_i = X_i) \right\}.</math> | ||
अधिक प्राकृतिक लगने वाली टोपोलॉजी, इस | अधिक प्राकृतिक लगने वाली टोपोलॉजी, इस स्थितियों में, पहले की तरह असीम रूप से कई खुले उपसमुच्चय के उत्पादों को लेने के लिए होगी, और यह कुछ हद तक महत्व टोपोलॉजी, [[बॉक्स टोपोलॉजी]] का उत्पादन करती है। हालाँकि निरंतर घटक कार्यों के समूह का एक उदाहरण खोजना बहुत मुश्किल नहीं है जिसका उत्पाद कार्य निरंतर नहीं है (उदाहरण के लिए अलग प्रविष्टि बॉक्स टोपोलॉजी देखें और अधिक)। समस्या जो मोड़ को आवश्यक बनाती है, अंततः इस तथ्य में निहित है कि खुले समुच्चयों का प्रतिच्छेदन केवल टोपोलॉजी की परिभाषा में बहुत से समुच्चयों के लिए खुला होने की गारंटी है। | ||
उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; सम्बद्ध रिक्त स्थान का उत्पाद जुड़ा हुआ है, और सघन स्पेस का उत्पाद सघन है। वह अंतिम वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है। | उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; सम्बद्ध रिक्त स्थान का उत्पाद जुड़ा हुआ है, और सघन स्पेस का उत्पाद सघन है। वह अंतिम वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है। | ||
Line 67: | Line 67: | ||
अधिक गुणों और समतुल्य योगों के लिए, अलग प्रविष्टि उत्पाद टोपोलॉजी देखें। | अधिक गुणों और समतुल्य योगों के लिए, अलग प्रविष्टि उत्पाद टोपोलॉजी देखें। | ||
== [[द्विआधारी संबंध]] | == [[द्विआधारी संबंध|द्विआधारी संबंधों]] का प्रत्यक्ष उत्पाद == | ||
द्विआधारी संबंधों के साथ दो समुच्चयों के कार्तीय उत्पाद पर <math>R \text{ and } S,</math> | द्विआधारी संबंधों के साथ दो समुच्चयों के कार्तीय उत्पाद पर <math>R \text{ and } S,</math> <math>(a, b) T (c, d)</math> परिभाषित करें जैसा <math>a R c \text{ and } b S d.</math> यदि <math>R \text{ and } S</math> [[प्रतिवर्त संबंध]], [[अविचलित संबंध]], [[सकर्मक संबंध]], [[सममित संबंध]] या [[एंटीसिमेट्रिक संबंध]] दोनों हैं, तो <math>T</math> भी होगा।<ref>{{cite web| url = http://cr.yp.to/2005-261/bender1/EO.pdf| title = तुल्यता और व्यवस्था}}</ref> इसी प्रकार, <math>T</math> की [[कुल संबंध]] <math>R \text{ and } S.</math>से विरासत में मिला है गुणों का संयोजन यह इस प्रकार है कि यह एक [[पूर्व आदेश]] होने और समकक्ष संबंध होने के लिए भी लागू होता है। हालांकि, यदि <math>R \text{ and } S</math> जुड़े हुए संबंध हैं, <math>T</math> को जोड़ने की आवश्यकता नहीं है; उदाहरण के लिए; उदाहरण के लिए, <math>\,\leq\,</math> पर <math>\N</math> का प्रत्यक्ष उत्पाद <math>(1, 2) \text{ and } (2, 1).</math>स्वयं से संबंधित नहीं है | ||
== सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद | == सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद | ||
यदि <math>\Sigma</math> एक निश्चित [[हस्ताक्षर (तर्क)]] है, <math>I</math> एक | |||
* | यदि <math>\Sigma</math> एक निश्चित [[हस्ताक्षर (तर्क)]] है, <math>I</math> एक एकतंत्र (संभवतः अनंत) सूचकांक समुच्चय है, और <math>\left(\mathbf{A}_i\right)_{i \in I}</math> का एक [[अनुक्रमित परिवार]] है <math>\Sigma</math> बीजगणित, प्रत्यक्ष उत्पाद <math display="inline">\mathbf{A} = \prod_{i \in I} \mathbf{A}_i</math> एक है <math>\Sigma</math> बीजगणित को इस प्रकार परिभाषित किया गया है: | ||
* <math>A</math> का ब्रह्मांड समुच्चय <math>\mathbf{A}</math> ब्रह्मांड समुच्चय <math>A_i</math> का <math>\mathbf{A}_i</math>का कार्तीय उत्पाद है औपचारिक रूप से: <math display="inline">A = \prod_{i \in I} A_i.</math> | |||
* प्रत्येक के लिए <math>n</math> और प्रत्येक <math>n</math>-और ऑपरेशन प्रतीक <math>f \in \Sigma,</math> इसकी व्याख्या <math>f^{\mathbf{A}}</math> में <math>\mathbf{A}</math> घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए <math>a_1, \dotsc, a_n \in A</math> और प्रत्येक <math>i \in I,</math> <math>i</math>वें घटक <math>f^{\mathbf{A}}\!\left(a_1, \dotsc, a_n\right)</math> की तरह परिभाषित किया गया है <math>f^{\mathbf{A}_i}\!\left(a_1(i), \dotsc, a_n(i)\right).</math> प्रत्येक के लिए <math>i \in I,</math> <math>i</math>वें प्रक्षेपण <math>\pi_i : A \to A_i</math> द्वारा परिभाषित किया गया है <math>\pi_i(a) = a(i).</math> यह के बीच एक [[विशेषण समरूपता]] है <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A} \text{ and } \mathbf{A}_i.</math><ref>Stanley N. Burris and H.P. Sankappanavar, 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}. Here: Def.7.8, p.53 (=p. 67 in pdf file)</ref> | * प्रत्येक के लिए <math>n</math> और प्रत्येक <math>n</math>-और ऑपरेशन प्रतीक <math>f \in \Sigma,</math> इसकी व्याख्या <math>f^{\mathbf{A}}</math> में <math>\mathbf{A}</math> घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए <math>a_1, \dotsc, a_n \in A</math> और प्रत्येक <math>i \in I,</math> <math>i</math>वें घटक <math>f^{\mathbf{A}}\!\left(a_1, \dotsc, a_n\right)</math> की तरह परिभाषित किया गया है <math>f^{\mathbf{A}_i}\!\left(a_1(i), \dotsc, a_n(i)\right).</math> प्रत्येक के लिए <math>i \in I,</math> <math>i</math>वें प्रक्षेपण <math>\pi_i : A \to A_i</math> द्वारा परिभाषित किया गया है <math>\pi_i(a) = a(i).</math> यह के बीच एक [[विशेषण समरूपता]] है <math>\Sigma</math> अल्जेब्रास <math>\mathbf{A} \text{ and } \mathbf{A}_i.</math><ref>Stanley N. Burris and H.P. Sankappanavar, 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}. Here: Def.7.8, p.53 (=p. 67 in pdf file)</ref> | ||
एक विशेष | एक विशेष स्थितियों के रूप में, यदि index <math>I = \{1, 2\},</math> दो का प्रत्यक्ष उत्पाद <math>\Sigma</math> बीजगणित <math>\mathbf{A}_1 \text{ and } \mathbf{A}_2</math> प्राप्त होता है, <math>\mathbf{A} = \mathbf{A}_1 \times \mathbf{A}_2</math> के रूप में लिखा जाता है यदि <math>\Sigma</math> केवल एक बाइनरी ऑपरेशन होता है <math>f,</math> समूह प्रत्यक्ष उत्पाद की परिभाषा, समूहों के प्रत्यक्ष उत्पाद की, संकेतन का उपयोग करके <math>A_1 = G, A_2 = H,</math> <math>f^{A_1} = \circ, \ f^{A_2} = \cdot, \ \text{ औ र } f^A = \times.</math> प्राप्त की जाती है, इसी तरह, अनुखंड के प्रत्यक्ष उत्पाद की परिभाषा यहां सम्मिलित की गई है। | ||
== श्रेणीबद्ध उत्पाद == | == श्रेणीबद्ध उत्पाद == | ||
{{Main| | {{Main|उत्पाद (श्रेणी सिद्धांत)}} | ||
प्रत्यक्ष उत्पाद को एक | |||
प्रत्यक्ष उत्पाद को एक एकतंत्र श्रेणी सिद्धांत के रूप में समझा जा सकता है। किसी श्रेणी में, <math>(A_i)_{i \in I}</math> द्वारा अनुक्रमित वस्तुओं का एक संग्रह दिया गया है, जिसका एक उत्पाद ये वस्तुओं सभी के लिए एक वस्तुओं <math>I</math>, इन वस्तुओं का एक उत्पाद एक वस्तु है <math>A</math> एक साथ [[morphism|आकारिता]] के साथ <math>p_i \colon A \to A_i</math> सभी के लिए <math>i \in I</math>, ऐसा है कि यदि <math>B</math> आकारिता के साथ कोई <math>f_i \colon B \to A_i</math>अन्य वस्तु है सभी के लिए <math>i \in I</math>, एक अद्वितीय रूपवाद <math>B \to A</math> उपस्थित है जिसकी रचना के साथ <math>p_i</math> बराबरी <math>f_i</math> हरएक के लिए <math>i</math>. | |||
ऐसा <math>A</math> तथा <math>(p_i)_{i \in I}</math> हमेशा | |||
<!-- this is easier to visualize as a [[commutative diagram]]; eventually somebody should insert a relevant diagram for the categorical product here! -->ऐसा <math>A</math> तथा <math>(p_i)_{i \in I}</math> हमेशा उपस्थित नहीं है। यदि वे उपस्थित हैं, तो <math>(A,(p_i)_{i \in I})</math> समरूपता तक अद्वितीय है, और <math>A</math> निरूपित किया जाता है <math>\prod_{i \in I} A_i</math>. | |||
समूहों की श्रेणी के विशेष | समूहों की श्रेणी के विशेष स्थितियों में, एक उत्पाद हमेशा उपस्थित होता है: का अंतर्निहित समुच्चय <math>\prod_{i \in I} A_i</math> के अंतर्निहित समुच्चयों का कार्तीय उत्पाद है <math>A_i</math>, समूह संचालन घटकवार गुणन है, और (होमो) रूपवाद <math>p_i \colon A \to A_i</math> प्रक्षेपण प्रत्येक टपल को उसके <math>i</math>वें समन्वय के पास भेज रहा है। | ||
== आंतरिक और बाह्य प्रत्यक्ष उत्पाद == | == आंतरिक और बाह्य प्रत्यक्ष उत्पाद == |
Revision as of 07:40, 15 December 2022
गणित में, अधिकांश पहले से ही ज्ञात वस्तुओं के प्रत्यक्ष उत्पाद को परिभाषित कर, एक नया उत्पाद दे सकते हैं। यह उत्पाद समुच्चय पर उपयुक्त रूप से परिभाषित संरचना के साथ अंतर्निहित समुच्चय (गणित) के कार्तीय उत्पाद को सामान्यीकृत करता है। अधिक संक्षेप में, कोई उत्पाद (श्रेणी सिद्धांत) के बारे में बात करता है, जो इन धारणाओं को औपचारिक रूप देता है।
उदाहरण समुच्चय, समूह (गणित) (नीचे वर्णित), उत्पाद रिंग और अन्य बीजगणितीय संरचनाओं का उत्पाद हैं। टोपोलॉजिकल स्पेस का उत्पाद टोपोलॉजी एक और उदाहरण है।[dubious ]
प्रत्यक्ष योग भी है - कुछ क्षेत्रों में इसका उपयोग परस्पर विनिमय के लिए किया जाता है, जबकि अन्य में यह एक अलग अवधारणा है।
उदाहरण
- यदि हम को वास्तविक संख्या के समुच्चय के रूप में विचार करें, तो प्रत्यक्ष उत्पाद सिर्फ कार्तीय उत्पाद है.
- यदि हम को जोड़ के अंतर्गत वास्तविक संख्याओं के समूह के रूप में विचार करें, तो प्रत्यक्ष उत्पाद में अभी भी इसके अंतर्निहित समुच्चय के रूप में है। इसमें और पिछले उदाहरण में यही अंतर है कि अब एक समूह है, और इसलिए हमें यह भी कहना होगा कि उनके तत्वों को कैसे जोड़ा जाए। यह परिभाषित करके किया जाता है
- यदि हम को वास्तविक संख्याओं का वलय मानते हैं, तो प्रत्यक्ष उत्पाद में फिर से इसके अंतर्निहित समुच्चय के रूप में है। रिंग संरचना में और गुणन द्वारा परिभाषित होता है.
- हालांकि वलय एक क्षेत्र है (गणित), एक नहीं है, क्योंकि तत्व गुणनात्मक व्युत्क्रम नहीं है।
इसी तरह, हम बहुत सी बीजगणितीय संरचनाओं के प्रत्यक्ष उत्पाद के बारे में बात कर सकते हैं, उदाहरण के लिए, यह इस तथ्य पर निर्भर करता है कि प्रत्यक्ष उत्पाद समरूपता तक साहचर्य है। वह है, किसी भी बीजगणितीय संरचना तथा के लिए समरूपता तक प्रत्यक्ष उत्पाद भी है, क्रमविनिमेय है, अर्थात, किसी भी बीजगणितीय संरचना के लिए तथा उसी समान है। हम अपरिमित रूप से अनेक बीजगणितीय संरचनाओं के प्रत्यक्ष उत्पाद के बारे में भी बात कर सकते हैं; उदाहरण के लिए की गिनती की कई प्रतियों का प्रत्यक्ष उत्पाद ले सकते हैं, जिसे हम के रूप में लिखते है।
समूह प्रत्यक्ष उत्पाद
समूह सिद्धांत में दो समूहों तथा द्वारा चिह्नित के प्रत्यक्ष उत्पाद को परिभाषित किया जा सकता है विनिमेय समूहों के लिए जो योगात्मक रूप से लिखे गए हैं, इसे समूहों का प्रत्यक्ष योग भी कहा जा सकता है, जिसे द्वारा निरूपित किया जाता है
इसे इस प्रकार परिभाषित किया गया है:
- नए समूह के तत्वों का समुच्चय (गणित) तत्वों के समुच्चय का, जो कि कार्तीय उत्पाद है
- इन तत्वों पर एक ऑपरेशन डालें, परिभाषित के अनुसार तत्व:
ध्यान दें कि के समान हो सकता है
यह निर्माण एक नया समूह देता है। इसमें (फॉर्म के तत्वों द्वारा दिया गया ) एक सामान्य उपसमूह समरूप है, और (तत्व शामिल हैं ) के लिये समरूप है।
व्युत्क्रम भी रहता है। निम्नलिखित मान्यता प्रमेय है: यदि एक समूह दो सामान्य उपसमूह शामिल हैं, जैसे कि और के प्रतिच्छेदन में केवल पहचान होती है, तब के लिए समरूप है। इन स्थितियों में छूट, सामान्य होने के लिए केवल एक उपसमूह की आवश्यकता होती है,जो अर्ध-प्रत्यक्ष उत्पाद देता है।
उदाहरण के रूप में क्रम 2 के अद्वितीय (समरूपता तक) समूह की दो प्रतियाँ लें, जिसे कहते है। फिर ऑपरेशन तत्व के साथ तत्व द्वारा । उदाहरण के लिए, तथा एक प्रत्यक्ष उत्पाद के साथ, हमें कुछ प्राकृतिक समूह समरूपता मुफ्त में मिलती है: द्वारा परिभाषित प्रक्षेपण मानचित्र
इसके अतिरिक्त, हर समरूपता प्रत्यक्ष उत्पाद के लिए पूरी तरह से इसके घटक फलनों द्वारा निर्धारित किया जाता है
किसी भी समूह के लिए और कोई पूर्णांक प्रत्यक्ष उत्पाद का बार-बार उपयोग -टुपल्स सभी के समूह को देता है ( के लिये यह तुच्छ समूह है), उदाहरण के लिए तथा
अनुखंड का प्रत्यक्ष उत्पाद
अनुखंड (गणित) के लिए प्रत्यक्ष उत्पाद (टेंसर उत्पाद के साथ भ्रमित नहीं होना) ऊपर दिए गए समूहों के लिए परिभाषित एक के समान है, कार्तीय उत्पाद का उपयोग घटक के रूप में जोड़ने के संचालन के साथ होता है, और स्केलर गुणा सिर्फ सभी घटकों पर वितरित होता है। से शुरू होकर हमें यूक्लिडियन अंतरिक्ष मिलता है प्रोटोटाइपिकल एक वास्तविक -आयामी सदिश अंतरिक्ष का उदाहरण है। तथा का प्रत्यक्ष उत्पाद है
ध्यान दें कि परिमित सूचकांक के लिए प्रत्यक्ष उत्पाद अनुखंड के प्रत्यक्ष योग के लिए कैनोनिक रूप से समरूप है, प्रत्यक्ष योग और प्रत्यक्ष उत्पाद अनंत सूचकांकों के लिए समरूप नहीं हैं, जहां प्रत्यक्ष योग के तत्व सभी के लिए शून्य हैं, लेकिन प्रविष्टियों की एक सीमित संख्या के लिए। वे श्रेणी सिद्धांत के अर्थ में दोहरे हैं: प्रत्यक्ष योग प्रतिफल है, जबकि प्रत्यक्ष उत्पाद उत्पाद है।
उदाहरण के लिए तथा अनंत प्रत्यक्ष उत्पाद और वास्तविक संख्याओं का प्रत्यक्ष योग पर विचार करें। केवल गैर-शून्य तत्वों की परिमित संख्या वाले अनुक्रम में हैं, उदाहरण के लिए, में है लेकिन नहीं है। ये दोनों क्रम प्रत्यक्ष उत्पाद में हैं वास्तविक में, का उचित उपसमुच्चय है (वह है, ).[1][2]
टोपोलॉजिकल स्पेस प्रत्यक्ष उत्पाद
टोपोलॉजिकल रिक्त स्थान के संग्रह के लिए प्रत्यक्ष उत्पाद के लिये में कुछ सूचकांक समुच्चय, एक बार फिर कार्तीय उत्पाद का उपयोग करता है
अनंत उत्पादों के लिए उत्पाद टोपोलॉजी में एक मोड़ है, और यह सभी प्रक्षेपण मानचित्रों को निरंतर बनाने में सक्षम होने और उत्पाद में सभी कार्यों को निरंतर बनाने के लिए और केवल अगर इसके सभी घटक कार्य निरंतर हैं (अर्थात संतुष्ट करने के लिए) उत्पाद की श्रेणीबद्ध परिभाषा: यहाँ आकारिकी निरंतर कार्य हैं): हम खुले सेट के आधार के रूप में प्रत्येक कारक से खुले उपसमुच्चय के सभी कार्तीय उत्पादों के संग्रह के रूप में लेते हैं, पहले की तरह, अनंतिम के साथ सभी लेकिन बहुत से खुले उपसमुच्चय संपूर्ण कारक हैं:
उत्पाद (उत्पाद टोपोलॉजी के साथ) अपने कारकों के गुणों को संरक्षित करने के संबंध में अच्छे हैं; उदाहरण के लिए, हॉसडॉर्फ स्पेस का उत्पाद हॉसडॉर्फ है; सम्बद्ध रिक्त स्थान का उत्पाद जुड़ा हुआ है, और सघन स्पेस का उत्पाद सघन है। वह अंतिम वाला, जिसे टाइकोनॉफ प्रमेय कहा जाता है, अभी तक पसंद के स्वयंसिद्ध के लिए एक और समानता है।
अधिक गुणों और समतुल्य योगों के लिए, अलग प्रविष्टि उत्पाद टोपोलॉजी देखें।
द्विआधारी संबंधों का प्रत्यक्ष उत्पाद
द्विआधारी संबंधों के साथ दो समुच्चयों के कार्तीय उत्पाद पर परिभाषित करें जैसा यदि प्रतिवर्त संबंध, अविचलित संबंध, सकर्मक संबंध, सममित संबंध या एंटीसिमेट्रिक संबंध दोनों हैं, तो भी होगा।[3] इसी प्रकार, की कुल संबंध से विरासत में मिला है गुणों का संयोजन यह इस प्रकार है कि यह एक पूर्व आदेश होने और समकक्ष संबंध होने के लिए भी लागू होता है। हालांकि, यदि जुड़े हुए संबंध हैं, को जोड़ने की आवश्यकता नहीं है; उदाहरण के लिए; उदाहरण के लिए, पर का प्रत्यक्ष उत्पाद स्वयं से संबंधित नहीं है
== सार्वभौमिक बीजगणित == में प्रत्यक्ष उत्पाद
यदि एक निश्चित हस्ताक्षर (तर्क) है, एक एकतंत्र (संभवतः अनंत) सूचकांक समुच्चय है, और का एक अनुक्रमित परिवार है बीजगणित, प्रत्यक्ष उत्पाद एक है बीजगणित को इस प्रकार परिभाषित किया गया है:
- का ब्रह्मांड समुच्चय ब्रह्मांड समुच्चय का का कार्तीय उत्पाद है औपचारिक रूप से:
- प्रत्येक के लिए और प्रत्येक -और ऑपरेशन प्रतीक इसकी व्याख्या में घटकवार, औपचारिक रूप से परिभाषित किया गया है: सभी के लिए और प्रत्येक वें घटक की तरह परिभाषित किया गया है प्रत्येक के लिए वें प्रक्षेपण द्वारा परिभाषित किया गया है यह के बीच एक विशेषण समरूपता है अल्जेब्रास [4]
एक विशेष स्थितियों के रूप में, यदि index दो का प्रत्यक्ष उत्पाद बीजगणित प्राप्त होता है, के रूप में लिखा जाता है यदि केवल एक बाइनरी ऑपरेशन होता है समूह प्रत्यक्ष उत्पाद की परिभाषा, समूहों के प्रत्यक्ष उत्पाद की, संकेतन का उपयोग करके प्राप्त की जाती है, इसी तरह, अनुखंड के प्रत्यक्ष उत्पाद की परिभाषा यहां सम्मिलित की गई है।
श्रेणीबद्ध उत्पाद
प्रत्यक्ष उत्पाद को एक एकतंत्र श्रेणी सिद्धांत के रूप में समझा जा सकता है। किसी श्रेणी में, द्वारा अनुक्रमित वस्तुओं का एक संग्रह दिया गया है, जिसका एक उत्पाद ये वस्तुओं सभी के लिए एक वस्तुओं , इन वस्तुओं का एक उत्पाद एक वस्तु है एक साथ आकारिता के साथ सभी के लिए , ऐसा है कि यदि आकारिता के साथ कोई अन्य वस्तु है सभी के लिए , एक अद्वितीय रूपवाद उपस्थित है जिसकी रचना के साथ बराबरी हरएक के लिए .
ऐसा तथा हमेशा उपस्थित नहीं है। यदि वे उपस्थित हैं, तो समरूपता तक अद्वितीय है, और निरूपित किया जाता है .
समूहों की श्रेणी के विशेष स्थितियों में, एक उत्पाद हमेशा उपस्थित होता है: का अंतर्निहित समुच्चय के अंतर्निहित समुच्चयों का कार्तीय उत्पाद है , समूह संचालन घटकवार गुणन है, और (होमो) रूपवाद प्रक्षेपण प्रत्येक टपल को उसके वें समन्वय के पास भेज रहा है।
आंतरिक और बाह्य प्रत्यक्ष उत्पाद
कुछ लेखक आंतरिक प्रत्यक्ष उत्पाद और बाह्य प्रत्यक्ष उत्पाद के बीच अंतर करते हैं। यदि तथा तब हम कहते हैं का आंतरिक प्रत्यक्ष उत्पाद है जबकि अगर सबऑब्जेक्ट नहीं हैं तो हम कहते हैं कि यह एक बाहरी प्रत्यक्ष उत्पाद है।
यह भी देखें
- Direct sum
- Cartesian product
- Coproduct
- Free product
- Semidirect product
- Zappa–Szep product
- Tensor product of graphs
- Orders on the Cartesian product of totally ordered sets – Order whose elements are all comparable
टिप्पणियाँ
- ↑ Weisstein, Eric W. "प्रत्यक्ष उत्पाद". mathworld.wolfram.com (in English). Retrieved 2018-02-10.
- ↑ Weisstein, Eric W. "समूह प्रत्यक्ष उत्पाद". mathworld.wolfram.com (in English). Retrieved 2018-02-10.
- ↑ "तुल्यता और व्यवस्था" (PDF).
- ↑ Stanley N. Burris and H.P. Sankappanavar, 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2. Here: Def.7.8, p.53 (=p. 67 in pdf file)
इस पेज में लापता आंतरिक लिंक की सूची
- कार्तीय गुणन
- उत्पाद की अंगूठी
- बीजगणितीय संरचनाएं
- अंक शास्त्र
- अंगूठी (गणित)
- क्षेत्र (गणित)
- गुणात्मक प्रतिलोम
- जोड़नेवाला
- समाकृतिकता
- गणनीय रूप से अनंत
- टपल
- अनुखंड का टेंसर उत्पाद
- अनुखंड का प्रत्यक्ष योग
- सहउत्पाद
- मीट्रिक स्थान
- पसंद का स्वयंसिद्ध
- तुल्यता संबंध
- जुड़ा हुआ संबंध
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556