रव (नॉइज़ इलेक्ट्रॉनिक्स): Difference between revisions

From Vigyanwiki
(m,.)
(b nb)
Line 86: Line 86:


;[[ब्रह्मांडीय शोर]]
;[[ब्रह्मांडीय शोर]]
:दूर के सितारे नॉइज़ उत्पन्न करते हैं जिसे कॉस्मिक नॉइज़ कहा जाता है। जबकि ये सितारे व्यक्तिगत रूप से स्थलीय [[संचार प्रणाली]] को प्रभावित करने के लिए बहुत दूर हैं, उनकी बड़ी संख्या सराहनीय सामूहिक प्रभावों की ओर ले जाती है। ब्रह्मांडीय नॉइज़ 8 & nbsp; mHz से 1.43 & nbsp; GHz, 21-सेमी [[हाइड्रोजन लाइन]] के अनुरूप बाद की आवृत्ति में देखा गया है। मानव निर्मित नॉइज़ के अलावा, यह लगभग 20 से 120 & nbsp; मेगाहर्ट्ज की सीमा पर सबसे मजबूत घटक है। 20MHz के नीचे थोड़ा ब्रह्मांडीय \ नॉइज़ आयनोस्फीयर में प्रवेश करता है, जबकि 1.5 गीगाहर्ट्ज से अधिक आवृत्तियों पर इसका अंतिम गायब होना संभवतः इसे उत्पन्न करने वाले तंत्र द्वारा नियंत्रित किया जाता है और इंटरस्टेलर स्पेस में हाइड्रोजन द्वारा इसका अवशोषण{{citation needed|date=September 2018|reason=Detail and speculation not supported in [[Cosmic noise]]}}
:दूर के तारे ब्रह्मांडीय शोर नामक शोर उत्पन्न करते हैं। जबकि ये तारे स्थलीय संचार प्रणालियों को व्यक्तिगत रूप से प्रभावित करने के लिए बहुत दूर हैं , उनकी बड़ी संख्या सराहनीय सामूहिक प्रभाव की ओर ले जाती है। ब्रह्मांडीय शोर 8 मेगाहर्ट्ज से 1.43 गीगाहर्ट्ज़ तक की सीमा में देखा गया है, बाद की आवृत्ति 21-सेमी हाइड्रोजन लाइन के अनुरूप है । मानव निर्मित शोर के अलावा, यह लगभग 20 से 120 मेगाहर्ट्ज की सीमा में सबसे मजबूत घटक है। 20 मेगाहर्ट्ज से कम का ब्रह्मांडीय शोर आयनोस्फीयर में प्रवेश करता है, जबकि 1.5 गीगाहर्ट्ज़ से अधिक की आवृत्तियों पर इसका अंतिम रूप से गायब होना संभवतः इसे उत्पन्न करने वाले तंत्र और इंटरस्टेलर स्पेस में हाइड्रोजन द्वारा इसके अवशोषण द्वारा नियंत्रित होता है। <sup>[ ''उद्धरण वांछित'' ]</sup>


===शमन===
===शमन===

Revision as of 16:04, 6 May 2022

इलेक्ट्रॉनिकी संकेतन प्रक्रियाओं में,कई बिंदु अनभिप्रेत रूप में ,मौलिक संकेतों के साथ साथ प्रकट रहते हैं (या चलायमान रहते हैं),ऐसे संकेतों को, उद् वाचित दोष अथवा अनभिप्रेत संकेत (नॉइज़) माना जाता है । नॉइज़ प्रक्रियाओं के बारे में है। बाहरी स्रोतों से उत्पन्न होने वाले इलेक्ट्रॉनिक नॉइज़ के लिए, विद्युत चुम्बकीय संगतता और विद्युत चुम्बकीय हस्तक्षेप देखें । विद्युत चुम्बकीय क्षेत्रों के कारण ध्वनिक नॉइज़ के लिए, विद्युत चुम्बकीय रूप से प्रेरित ध्वनिक नॉइज़ और कंपन देखें । अन्य उपयोगों के लिए, नॉइज़ (बहुविकल्पी) देखें ।

गुलाबी शोर में वोल्टेज के यादृच्छिक उतार -चढ़ाव।

इलेक्ट्रॉनिक्स में, 'नॉइज़' 'एक विद्युत संकेत में एक अवांछित गड़बड़ी है[1]: 5  इलेक्ट्रॉनिक उपकरणों द्वारा उत्पन्न नॉइज़ बहुत भिन्न होता है क्योंकि यह कई अलग -अलग प्रभावों से उत्पन्न होता है।

संचार प्रणालीयों एस में, नॉइज़ एक उपयोगी सूचन संकेत की एक त्रुटि या अवांछित यादृच्छिक गड़बड़ी है।नॉइज़ प्राकृतिक और कभी-कभी मानव निर्मित स्रोतों से अवांछित या परेशान करने वाली ऊर्जा का योग है।हालांकि, नॉइज़ को आमतौर पर [[हस्तक्षेप (संचार) | हस्तक्षेप] से अलग किया जाता है,[lower-alpha 1] उदाहरण के लिए सिग्नल-टू-नॉइज़ अनुपात (एसएनआर), सिग्नल-टू-इंटरफेरेंस अनुपात (सर) और सिग्नल-टू-नॉइज़ प्लस हस्तक्षेप अनुपात](SNIR) उपाय।नॉइज़ को आमतौर पर विरूपण से भी अलग किया जाता है, जो संचार उपकरणों द्वारा सिग्नल तरंग का एक अवांछित व्यवस्थित परिवर्तन है, उदाहरण के लिए सिग्नल-टू-नॉइज़ और विरूपण अनुपात (SINAD) और कुल हार्मोनिक)विरूपण प्लस नॉइज़ (Thd+n) उपाय।

जबकि नॉइज़ आम तौर पर अवांछित होता है, यह कुछ अनुप्रयोगों में एक उपयोगी उद्देश्य की सेवा कर सकता है, जैसे कि यादृच्छिक संख्या पीढ़ी या अन्य ।

शोर प्रकार

विभिन्न प्रकार के नॉइज़ विभिन्न उपकरणों और विभिन्न प्रक्रियाओं द्वारा उत्पन्न होते हैं।थर्मल नॉइज़ गैर-शून्य तापमान पर अपरिहार्य है ( उतार-चढ़ाव-विघटन प्रमेय देखें), जबकि अन्य प्रकार ज्यादातर डिवाइस प्रकार पर निर्भर करते हैं (जैसे शॉट नॉइज़[1][2] जिसे एक खड़ी संभावित बाधा की आवश्यकता होती है) या विनिर्माण गुणवत्ता और अर्धचालक दोष, पर निर्भर करते हैं। जैसे , 1/एफ नॉइज़ सहित चालन में उतार -चढ़ाव ।

थर्मल शोर

मुख्य लेख: जॉनसन-नाइक्विस्ट नॉइज़

जॉनसन -नेक्विस्ट नॉइज़[1] (अक्सर थर्मल नॉइज़) अपरिहार्य है, और एक विद्युत कंडक्टर के अंदर चार्ज वाहक (आमतौर पर इलेक्ट्रॉनों) ) के यादृच्छिक थर्मल गति द्वारा उत्पन्न होता है, जो कि किसी भी लागू वोल्टेज की परवाह किए बिना होता है।

थर्मल नॉइज़ लगभग सफेद है, जिसका अर्थ है कि इसका पावर वर्णक्रमीय घनत्व लगभग आवृत्ति स्पेक्ट्रम में लगभग बराबर है।सिग्नल के आयाम में लगभग एक गाऊसी संभावना घनत्व समारोह होता है।थर्मल नॉइज़ से प्रभावित एक संचार प्रणाली को अक्सर एक योज्य सफेद गाऊसी नॉइज़(AWGN) चैनल के रूप में तैयार किया जाता है।

शॉट शोर

मुख्य लेख: शॉट नॉइज़

इलेक्ट्रॉनिक उपकरणों में शॉट नॉइज़ विद्युत प्रवाह के अपरिहार्य यादृच्छिक सांख्यिकीय उतार -चढ़ाव के परिणामस्वरुप होता है, जब चार्ज वाहक (जैसे इलेक्ट्रॉनों) एक अंतर को पार करते हैं।यदि इलेक्ट्रॉन एक बाधा के पार प्रवाहित होते हैं, तो उनके पास आगमन का समय असतत होता है।वे असतत आगमन शॉट नॉइज़ प्रदर्शन करते हैं।आमतौर पर, एक डायोड में बाधा का उपयोग किया जाता है[3] शॉट नॉइज़ एक टिन की छत पर गिरने से बारिश से बनाए गए नॉइज़ के समान है। बारिश का प्रवाह अपेक्षाकृत स्थिर हो सकता है, लेकिन अलग-अलग बारिश की बूंदें अलग-अलग आती हैं।

शॉट नॉइज़ करंट i n का मूल-माध्य-वर्ग मान Schottky सूत्र द्वारा दिया गया है।

:

जहां I डीसी करंट है, q एक इलेक्ट्रॉन का प्रभार है, और'B हर्ट्ज में बैंडविड्थ है। Schottky सूत्र स्वतंत्र आगमन मानता है।

वैक्यूम ट्यूब शॉट नॉइज़ प्रदर्शित करते हैं क्योंकि इलेक्ट्रॉन कैथोड को बेतरतीब ढंग से छोड़ देते हैं और एनोड (प्लेट) पर पहुंच जाते हैं। एक ट्यूब पूर्ण शॉट

नॉइज़ प्रभाव प्रदर्शित नहीं कर सकती है: एक स्पेस चार्ज की उपस्थिति आगमन के समय को सुचारू करती है (और इस प्रकार वर्तमान की यादृच्छिकता को कम करती है)। पेंटोड और स्क्रीन-ग्रिड टेट्रोड ट्रायोड की तुलना में अधिक \नॉइज़ प्रदर्शित करते हैं क्योंकि कैथोड करंट स्क्रीन ग्रिड और एनोड के बीच बेतरतीब ढंग से विभाजित होता है।

कंडक्टर और प्रतिरोध आमतौर पर शॉट

नॉइज़ का प्रदर्शन नहीं करते हैं क्योंकि इलेक्ट्रॉनों थर्मललाइज़ और सामग्री के भीतर भिन्न रूप से चलते हैं; इलेक्ट्रॉनों में असतत आगमन का समय नहीं होता है। शॉट

नॉइज़ का प्रदर्शन मेसोस्कोपिक प्रतिरोधों में किया गया है जब प्रतिरोधक तत्व का आकार इलेक्ट्रॉन -फॉनन बिखरने की लंबाई से कम हो जाता है[4]

विभाजन शोर

जहां वर्तमान दो (या अधिक) रास्तों के बीच विभाजित होता है[5]

नॉइज़ इस विभाजन के दौरान होने वाले यादृच्छिक उतार -चढ़ाव के परिणामस्वरूप होता है।

इस कारण से, एक ट्रांजिस्टर को अपने दो पीएन जंक्शनों से संयुक्त शॉट नॉइज़ की तुलना में अधिक नॉइज़ होगा।

झिलमिलाहट शोर

झिलमिलाहट नॉइज़, जिसे 1/ f नॉइज़ के रूप में भी जाना जाता है, एक आवृत्ति स्पेक्ट्रम के साथ एक संकेत या प्रक्रिया है जो गुलाबी स्पेक्ट्रम के साथ उच्च आवृत्तियों में लगातार गिरती है।यह लगभग सभी इलेक्ट्रॉनिक उपकरणों में होता है और विभिन्न प्रकार के प्रभावों से परिणामस्वरुप होता है।

फट शोर

फट नॉइज़ में दो या दो से अधिक असतत वोल्टेज या वर्तमान स्तरों के बीच अचानक चरण-जैसे संक्रमण होते हैं, जो यादृच्छिक और अप्रत्याशित समय पर कई सौ माइक्रोवोल्ट एस के रूप में उच्च होते हैं।ऑफसेट वोल्टेज या करंट में प्रत्येक बदलाव कई मिलीसेकंड सेकंड तक रहता है।इसे ऑडियो सर्किट में उत्पन्न होने वाली पॉपिंग या क्रैकिंग ध्वनियों के लिए पॉपकॉर्न नॉइज़ के रूप में भी जाना जाता है ।

ट्रांजिट-टाइम शोर

यदि इलेक्ट्रॉनों द्वारा एक ट्रांजिस्टर में एमिटर से कलेक्टर तक यात्रा करने के लिए लिया गया समय सिग्नल की अवधि को बढ़ाया जा रहा है, अर्थात्, ऊपर की आवृत्तियों पर वीएचएफ और उससे आगे, पारगमन-समय प्रभावजगह लेता है और ट्रांजिस्टर का नॉइज़ इनपुट प्रतिबाधा कम हो जाता है।आवृत्ति से जिस पर यह प्रभाव महत्वपूर्ण हो जाता है, वह आवृत्ति के साथ बढ़ता है और नॉइज़ के अन्य स्रोतों पर जल्दी से हावी हो जाता है[6]

युग्मित शोर

जबकि नॉइज़ इलेक्ट्रॉनिक सर्किट में ही उत्पन्न हो सकता है, अतिरिक्त शोर ऊर्जा को बाहरी वातावरण से, आगमनात्मक युग्मन या कैपेसिटिव कपलिंग द्वारा या रेडियो रिसीवर के एंटीना के माध्यम से एक सर्किट में जोड़ा जा सकता है ।

स्रोत

इंटरमॉड्यूलेशन नॉइज़

यह तब होता है जब विभिन्न आवृत्तियों के संकेत एक ही गैर-रैखिक माध्यम साझा करते हैं।

क्रॉसस्टॉक

घटना जिसमें एक सर्किट या ट्रांसमिशन सिस्टम के चैनल में प्रेषित एक सिग्नल दूसरे चैनल में सिग्नल पर अवांछित हस्तक्षेप बनाता है।

हस्तक्षेप

एक माध्यम के साथ यात्रा करने वाले सिग्नल का संशोधन या विघटन

वायुमंडलीय शोर

इसे स्थैतिक नॉइज़ भी कहा जाता है, यह बिजली के कारण होता है, गरज के साथ डिस्चार्ज और प्रकृति में होने वाली अन्य विद्युत गड़बड़ी, जैसे कोरोना डिस्चार्ज

औद्योगिक नॉइज़

ऑटोमोबाइल, विमान, इग्निशन इलेक्ट्रिक मोटर्स और स्विचिंग गियर, उच्च वोल्टेज तारों और [[[फ्लोरोसेंट लैंप]] के स्रोत औद्योगिक नॉइज़ का कारण बनते हैं। ये नॉइज़ इन सभी कार्यों में मौजूद डिस्चार्ज द्वारा निर्मित होते हैं।

ब्रह्मांडीय शोर
दूर के तारे ब्रह्मांडीय शोर नामक शोर उत्पन्न करते हैं। जबकि ये तारे स्थलीय संचार प्रणालियों को व्यक्तिगत रूप से प्रभावित करने के लिए बहुत दूर हैं , उनकी बड़ी संख्या सराहनीय सामूहिक प्रभाव की ओर ले जाती है। ब्रह्मांडीय शोर 8 मेगाहर्ट्ज से 1.43 गीगाहर्ट्ज़ तक की सीमा में देखा गया है, बाद की आवृत्ति 21-सेमी हाइड्रोजन लाइन के अनुरूप है । मानव निर्मित शोर के अलावा, यह लगभग 20 से 120 मेगाहर्ट्ज की सीमा में सबसे मजबूत घटक है। 20 मेगाहर्ट्ज से कम का ब्रह्मांडीय शोर आयनोस्फीयर में प्रवेश करता है, जबकि 1.5 गीगाहर्ट्ज़ से अधिक की आवृत्तियों पर इसका अंतिम रूप से गायब होना संभवतः इसे उत्पन्न करने वाले तंत्र और इंटरस्टेलर स्पेस में हाइड्रोजन द्वारा इसके अवशोषण द्वारा नियंत्रित होता है। [ उद्धरण वांछित ]

शमन

कई मामलों में एक सर्किट में एक संकेत पर पाया जाने वाला नॉइज़ अवांछित है। कई अलग -अलग शोर में कमी की तकनीकें हैं जो एक सर्किट द्वारा उठाए गए शोर को कम कर सकती हैं।

  1. फैराडे केज - एक फैराडे केज एक सर्किट को संलग्न करने का उपयोग बाहरी नॉइज़ स्रोतों से सर्किट को अलग करने के लिए किया जा सकता है। एक फैराडे पिंजरे नॉइज़ स्रोतों को संबोधित नहीं कर सकते हैं जो सर्किट में ही उत्पन्न होते हैं या जो बिजली की आपूर्ति सहित इसके इनपुट पर किए जाते हैं।
  2. कैपेसिटिव कपलिंग - कैपेसिटिव कपलिंग सर्किट के एक हिस्से से एक एसी सिग्नल को इलेक्ट्रिक फ़ील्ड की बातचीत के माध्यम से दूसरे भाग में उठाने की अनुमति देता है। जहां युग्मन अनपेक्षित है, प्रभाव को बेहतर सर्किट लेआउट और ग्राउंडिंग के माध्यम से संबोधित किया जा सकता है।
  3. ग्राउंड लूप - जब सर्किट को ग्राउंड करते हुए, [ग्राउंड लूप (बिजली) | ग्राउंड लूप] से बचना महत्वपूर्ण है। ग्राउंड लूप तब होता है जब दो ग्राउंड कनेक्शन के बीच वोल्टेज अंतर होता है। इसे ठीक करने का एक अच्छा तरीका एक ग्राउंड बस में सभी जमीन के तारों को एक ही क्षमता में लाना है।
  4. परिरक्षण केबल - एक शील्ड केबल को वायरिंग के लिए एक फैराडे पिंजरे के रूप में सोचा जा सकता है और एक संवेदनशील सर्किट में अवांछित नॉइज़ से तारों की रक्षा कर सकता है। ढाल को प्रभावी होने के लिए तैयार किया जाना चाहिए। केवल एक छोर पर ढाल को ग्राउंड करने से ढाल पर एक ग्राउंड लूप से बच सकते हैं।
  5. ट्विस्टेड पेयर वायरिंग - ट्विस्टिंग वायर एक सर्किट में विद्युत चुम्बकीय नॉइज़ को कम करेगा। तारों को घुमाने से लूप का आकार कम हो जाता है जिसमें एक चुंबकीय क्षेत्र तारों के बीच एक वर्तमान का उत्पादन करने के लिए चल सकता है। छोटे छोरों को एक साथ घुमाए गए तारों के बीच मौजूद हो सकता है, लेकिन इन छोरों से गुजरने वाला चुंबकीय क्षेत्र प्रत्येक तार पर वैकल्पिक लूप में विपरीत दिशाओं में बहने वाली एक वर्तमान को प्रेरित करता है और इसलिए कोई शुद्ध नॉइज़ करंट नहीं होता है।
  6. नॉट फिल्टर-पायदान फ़िल्टर या बैंड-रिजेक्शन फिल्टर एक विशिष्ट शोर आवृत्ति को समाप्त करने के लिए उपयोगी हैं। उदाहरण के लिए, एक इमारत के भीतर बिजली लाइनें 50 या 60 & nbsp; Hz लाइन आवृत्ति पर चलती हैं। एक संवेदनशील सर्किट नॉइज़ के रूप में इस आवृत्ति को उठाएगा। लाइन आवृत्ति के लिए ट्यून किए गए एक पायदान फ़िल्टर शोर को हटा सकता है।

सर्किट के शीतलन से थर्मल नॉइज़ को कम किया जा सकता है - यह आमतौर पर केवल रेडियो टेलीस्कोप जैसे उच्च सटीकता उच्च मूल्य अनुप्रयोगों में नियोजित होता है।

परिमाणीकरण

एक इलेक्ट्रॉनिक सिस्टम में 'नॉइज़ स्तर' को आमतौर पर एक विद्युत शक्ति] 'n' 'के रूप में मापा जाता है वाट या [[[decibel | dbm]], वोल्ट में एक रूट मीन स्क्वायर (आरएमएस) वोल्टेज (नॉइज़ के समान मानक विचलन]), [[[decibel | dbμv]] या वोल्ट चुकता में एक मीन स्क्वैड एरर (एमएसई)। विद्युत नॉइज़-स्तर के माप इकाइयों के उदाहरण हैं DBU, DBM0, DBRN, DBRNC, और DBRN (f1f2), dBrn(144- लाइन)(। नॉइज़ को इसके संभावना वितरण और नॉइज़ वर्णक्रमीय घनत्व N0(f) में प्रति हर्ट्ज में चित्रित किया जा सकता है।

एक नॉइज़ सिग्नल को आमतौर पर एक उपयोगी सूचना संकेत के लिए एक रैखिक जोड़ के रूप में माना जाता है। नॉइज़ से जुड़े विशिष्ट सिग्नल गुणवत्ता के उपाय सिग्नल-टू-नॉइज़ अनुपात (एसएनआर या एस एन ), सिग्नल-टू-क्वांटाइज़ेशन नॉइज़ अनुपात (SQNR) [[[SQNR) हैं [[[SQNR) एनालॉग-टू-डिजिटल रूपांतरण]] और संपीड़न, पीक सिग्नल-टू-नॉइज़ अनुपात (PSNR) छवि और वीडियो कोडिंग में और नॉइज़ आंकड़ा कैस्केड एम्पलीफायरों में। एक वाहक-संशोधित पासबैंड एनालॉग कम्युनिकेशन सिस्टम में, रेडियो रिसीवर इनपुट पर एक निश्चित [वाहक-से-नॉइज़ अनुपात]] (CNR) का परिणाम पता चला संदेश सिग्नल में एक निश्चित सिग्नल-टू-नॉइज़ अनुपात होगा। एक डिजिटल संचार प्रणाली में, एक निश्चित <सब> बी / n '<सब> 0 (सामान्यीकृत सिग्नल-टू-नॉइज़ अनुपात) एक निश्चित रूप से परिणाम होगा [ [बिट त्रुटि दर]]। दूरसंचार प्रणाली प्रभावी रूप से डेटा को स्थानांतरित करने के लिए सिग्नल स्तर के अनुपात को नॉइज़ स्तर तक बढ़ाने का प्रयास करती है। दूरसंचार प्रणालियों में शोर सिस्टम के आंतरिक और बाहरी दोनों स्रोतों का एक उत्पाद है।

नॉइज़ एक यादृच्छिक प्रक्रिया है, जिसकी विशेषता स्टोकेस्टिक गुणों जैसे कि इसके विचरण, संभावना वितरण। वितरण, और वर्णक्रमीय घनत्व। नॉइज़ का वर्णक्रमीय वितरण आवृत्ति के साथ भिन्न हो सकता है, इसलिए इसकी शक्ति घनत्व प्रति हर्ट्ज (डब्ल्यू/एचजेड) में वाट्स में मापा जाता है। चूंकि एक प्रतिरोधक तत्व में शक्ति इसके पार वोल्टेज के वर्ग के लिए आनुपातिक है, नॉइज़ वोल्टेज (घनत्व) का वर्णन शोर शक्ति घनत्व के वर्गमूल को ले जाकर किया जा सकता है, जिसके परिणामस्वरूप वोल्ट प्रति रूट हर्ट्ज़ होता है ()। एकीकृत सर्किट उपकरण, जैसे परिचालन एम्पलीफायरों आमतौर पर बोली समतुल्य इनपुट नॉइज़ इन शब्दों में स्तर (कमरे के तापमान पर)।

dore

यदि नॉइज़ स्रोत को सिग्नल के साथ सहसंबद्ध किया जाता है, जैसे कि क्वांटिसेशन एरर के मामले में, अतिरिक्त नॉइज़ का जानबूझकर परिचय, जिसे डियर कहा जाता है, तो ब्याज की बैंडविड्थ में समग्र नॉइज़ को कम कर सकता है।यह तकनीक एक उपकरण के नाममात्र का पता लगाने की सीमा के नीचे संकेतों की पुनर्प्राप्ति की अनुमति देती है।यह स्टोकेस्टिक रेजोनेंस का एक उदाहरण है।

See also

Notes

  1. E.g. crosstalk, deliberate jamming or other unwanted electromagnetic interference from specific transmitters

References

  1. 1.0 1.1 1.2 Motchenbacher, C. D.; Connelly, J. A. (1993). Low-noise electronic system design. Wiley Interscience. ISBN 0-471-57742-1.
  2. Kish, L. B.; Granqvist, C. G. (November 2000). "Noise in nanotechnology". Microelectronics Reliability. Elsevier. 40 (11): 1833–1837. doi:10.1016/S0026-2714(00)00063-9.
  3. Ott, Henry W. (1976), Noise Reduction Techniques in Electronic Systems, John Wiley, pp. 208, 218, ISBN 0-471-65726-3
  4. Steinbach, Andrew; Martinis, John; Devoret, Michel (1996-05-13). "Observation of Hot-Electron Shot Noise in a Metallic Resistor". Phys. Rev. Lett. 76 (20): 38.6–38.9. Bibcode:1996PhRvL..76...38M. doi:10.1103/PhysRevLett.76.38. PMID 10060428.
  5. "Partition noise". Retrieved 2021-11-05.
  6. Communication Theory. Technical Publications. 1991. pp. 3–6. ISBN 9788184314472.

Further reading

  • Sh. Kogan (1996). Electronic Noise and Fluctuations in Solids. Cambridge University Press. ISBN 0-521-46034-4.
  • Scherz, Paul. (2006, Nov 14) Practical Electronics for Inventors. ed. McGraw-Hill.

External links