फेनमैन आरेख: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 16: Line 16:
डायसन श्रृंखला को वैकल्पिक रूप से फेनमैन आरेखों के योग में पुनरावृत्ति की जा सकती है यानि फिर से लिखा जा सकता है जहां प्रत्येक शीर्ष पर [[:hi:ऊर्जा|ऊर्जा]] और [[:hi:संवेग (भौतिकी)|गति]] दोनों [[:hi:संरक्षण नियम|संरक्षित]] होते हैंI लेकिन आप शृंखला पर ध्यान देंगे तो देखेंगे क़ि [[:hi:चार गति|ऊर्जा-गति चार-वेक्टर]] की लंबाई आवश्यक रूप से द्रव्यमान के बराबर नहीं होती हैI फेनमैन आरेख "पुराने तथ्यों तुलना में बहुत आसान हैं, क्योंकि पुराने  तथ्य मध्यवर्ती कण और एंटीपार्टिकल योगदान को अलग मानते हैं। प्रत्येक फेनमैन आरेख कई पुराने तथ्यों का योग है क्योंकि प्रत्येक आंतरिक रेखा अलग-अलग या तो एक कण या एक एंटीपार्टिकल का प्रतिनिधित्व कर सकती है। फेनमेन आरेख में  गैर-सापेक्ष सिद्धांत में कोई एंटीपार्टिकल्स नहीं होते हैं और कोई दोहरीकरण नहीं होता है इसलिए प्रत्येक फेनमैन आरेख में केवल एक शब्द शामिल होता हैI  
डायसन श्रृंखला को वैकल्पिक रूप से फेनमैन आरेखों के योग में पुनरावृत्ति की जा सकती है यानि फिर से लिखा जा सकता है जहां प्रत्येक शीर्ष पर [[:hi:ऊर्जा|ऊर्जा]] और [[:hi:संवेग (भौतिकी)|गति]] दोनों [[:hi:संरक्षण नियम|संरक्षित]] होते हैंI लेकिन आप शृंखला पर ध्यान देंगे तो देखेंगे क़ि [[:hi:चार गति|ऊर्जा-गति चार-वेक्टर]] की लंबाई आवश्यक रूप से द्रव्यमान के बराबर नहीं होती हैI फेनमैन आरेख "पुराने तथ्यों तुलना में बहुत आसान हैं, क्योंकि पुराने  तथ्य मध्यवर्ती कण और एंटीपार्टिकल योगदान को अलग मानते हैं। प्रत्येक फेनमैन आरेख कई पुराने तथ्यों का योग है क्योंकि प्रत्येक आंतरिक रेखा अलग-अलग या तो एक कण या एक एंटीपार्टिकल का प्रतिनिधित्व कर सकती है। फेनमेन आरेख में  गैर-सापेक्ष सिद्धांत में कोई एंटीपार्टिकल्स नहीं होते हैं और कोई दोहरीकरण नहीं होता है इसलिए प्रत्येक फेनमैन आरेख में केवल एक शब्द शामिल होता हैI  


फेनमैन ने [[:hi:लग्रांगियन (क्षेत्र सिद्धांत)|फील्ड थ्योरी लैग्रैंजियन]] से किसी दिए गए आरेख के लिए [[:hi:Feynman_diagram#Feynman_rules|फेनमैन नियम]] की गणना के लिए एक नुस्खा दिया। उनका मानना है प्रत्येक शीर्ष रेखाएं जहां मिलती हैं वहां प्रत्येक आंतरिक रेखा [[:hi:आभासी कण|आभासी कण]] के [[:hi:प्रचारक|प्रसारक]] के एक कारक से मेल खाती हैI  
फेनमैन ने [[:hi:लग्रांगियन (क्षेत्र सिद्धांत)|फील्ड थ्योरी लैग्रैंजियन]] से आरेख के लिए [[:hi:Feynman_diagram#Feynman_rules|फेनमैन नियम]] की गणना के लिए एक नुस्खा दिया। उनका मानना है प्रत्येक शीर्ष रेखाएं जहां मिलती हैं वहां प्रत्येक आंतरिक रेखा [[:hi:आभासी कण|आभासी कण]] के [[:hi:प्रचारक|प्रसारक]] के एक कारक से मेल खाती हैI  


गणितीय उपकरण के रूप में उनके मूल्य फेनमैन आरेख में कण अंतःक्रियाओं की प्रकृति में गहरी अंतर्दृष्टि प्रदान करते हैं। वास्तव में मध्यवर्ती आभासी कणों को प्रकाश की तुलना में तेजी से प्रचारित करने की अनुमति है। प्रत्येक अंतिम स्थिति की संभावना ऐसी सभी संभावनाओं को जोड़कर प्राप्त की जाती है। यह [[:hi:प्रमात्रा यान्त्रिकी|क्वांटम यांत्रिकी]] के [[:hi:कार्यात्मक अभिन्न|कार्यात्मक अभिन्न]] सूत्रीकरण से निकटता से जुड़ा हुआ है जिसे फेनमैन द्वारा भी आविष्कार किया गया थाI
गणितीय उपकरण के तौर पर फेनमैन आरेख को देखा जाये तो कणों का प्रवाह अन्तर्क्रियाओं में गहरा प्रभाव निर्दिष्ट करते हैंI आरेख में मध्यवर्ती कण आभासी कण को प्रकाश की गति से भी तेज प्रवाहित हो सकते हैं I ऐसी सभी कणो की अन्तःक्रियाओं से अंतिम निर्णय की स्थिति ज्ञात होती है I  फेनमैन द्वारा अविष्कृत आरेखण का यह आकलन [[:hi:प्रमात्रा यान्त्रिकी|क्वांटम यांत्रिकी]] के [[:hi:कार्यात्मक अभिन्न|कार्यात्मक अभिन्न]] सूत्रीकरण से बहुत ही निकटता से जुड़ा हुआ हैI  आरेखण के गहन अध्यन के बाद पता चलता है की इस तरह की गणनाओं के अनुप्रयोग अक्सर ऐसे आरेख उत्पन्न करते हैं जिनके आयाम [[:hi:अनंत|अनंत]] होते हैं क्योंकि छोटी दूरी के कण को अंतःक्रियाओं में समायोजित करने के लिए सावधानीपूर्वक सीमित प्रक्रिया की आवश्यकता होती है। [[:hi:अर्न्स्ट स्टुकेलबर्ग|अर्नस्ट स्टुएकेलबर्ग]] और [[:hi:हांस बेथे|हंस बेथे]] द्वारा बताई गई और [[:hi:फ्रीमैन डायसन|डायसन]], फेनमैन, [[:hi:जुलियन श्विंगर|श्विंगर]] और [[:hi:सामान्यीकरण|टोमोनागा]] द्वारा लागू की गई [[:hi:सिन-इतिरो तोमोनागा|पुनर्सामान्यीकरण]] की तकनीक इस प्रभाव को पूर्ण करके कणों की अनावश्यक अन्तः क्रियाओं को समाप्त करती है। पुनर्सामान्यीकरण और फेनमैन आरेखण की गणना के प्रयोगत्मक परिणामों में काफी समानता देखी गयी I


इस तरह की गणनाओं के अनुप्रयोग अक्सर ऐसे आरेख उत्पन्न करते हैं जिनके आयाम [[:hi:अनंत|अनंत]] होते हैं क्योंकि छोटी दूरी के कण को अंतःक्रियाओं में समायोजित करने के लिए सावधानीपूर्वक सीमित प्रक्रिया की आवश्यकता होती है। [[:hi:अर्न्स्ट स्टुकेलबर्ग|अर्नस्ट स्टुएकेलबर्ग]] और [[:hi:हांस बेथे|हंस बेथे]] द्वारा सुझाई गई और [[:hi:फ्रीमैन डायसन|डायसन]], फेनमैन, [[:hi:जुलियन श्विंगर|श्विंगर]] और [[:hi:सामान्यीकरण|टोमोनागा]] द्वारा लागू की गई [[:hi:सिन-इतिरो तोमोनागा|पुनर्सामान्यीकरण]] की तकनीक इस प्रभाव को पूर्ण करती है एवं अनावश्यक अन्तः क्रियाओं को समाप्त करती है। पुनर्सामान्यीकरण के बाद फेनमैन आरेखों का उपयोग करती हुई गणना प्रयोगात्मक परिणामों से बहुत अधिक सटीकता के साथ मेल खाती है।
फेनमैन आरेख और पथ अभिन्न विधियों का उपयोग [[:hi:सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिकी]] और [[:hi:चिरसम्मत यांत्रिकी|शास्त्रीय यांत्रिकी]] पर भी लागू किया जा सकता है। <ref>{{Cite journal|first=R.|last=Penco|first2=D.|last2=Mauro|arxiv=hep-th/0605061|title=Perturbation theory via Feynman diagrams in classical mechanics|journal=European Journal of Physics|volume=27|issue=5|pages=1241–1250|year=2006|doi=10.1088/0143-0807/27/5/023|bibcode=2006EJPh...27.1241P}}</ref>
 
फेनमैन आरेख और पथ अभिन्न विधियों का उपयोग [[:hi:सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिकी]] में भी किया जाता है और इसे [[:hi:चिरसम्मत यांत्रिकी|शास्त्रीय यांत्रिकी]] पर भी लागू किया जा सकता है। <ref>{{Cite journal|first=R.|last=Penco|first2=D.|last2=Mauro|arxiv=hep-th/0605061|title=Perturbation theory via Feynman diagrams in classical mechanics|journal=European Journal of Physics|volume=27|issue=5|pages=1241–1250|year=2006|doi=10.1088/0143-0807/27/5/023|bibcode=2006EJPh...27.1241P}}</ref>


'''<big>वैकल्पिक नाम</big>'''
'''<big>वैकल्पिक नाम</big>'''


[[:hi:मरे गेलमन|मुर्रे गेल-मान]] ने हमेशा स्विस भौतिक विज्ञानी [[:hi:अर्न्स्ट स्टुकेलबर्ग|अर्न्स्ट स्टुएकेलबर्ग]] के बाद फेनमैन आरेखों को '''स्टुकेलबर्ग आरेखों''' के रूप में संदर्भित कियाI जिन्होंने कई साल पहले इसी तरह के संकेतन को तैयार किया था। स्टुकेलबर्ग क्वांटम क्षेत्र सिद्धांत के लिए स्पष्ट रूप से सहसंयोजक औपचारिकता की आवश्यकता से प्रेरित थे लेकिन समरूपता कारकों को संभालने के लिए कोई स्वचालित तरीके नहीं बताएं हालांकि उस समय स्टुकेलबर्ग मध्यवर्ती कण की सही प्रकार से भौतिक व्याख्या खोजने वाले प्रथम व्यक्ति थे.  
[[:hi:मरे गेलमन|मुर्रे गेल-मान]] ने हमेशा स्विस भौतिक विज्ञानी [[:hi:अर्न्स्ट स्टुकेलबर्ग|अर्न्स्ट स्टुएकेलबर्ग]] के बाद फेनमैन आरेखों को '''स्टुकेलबर्ग आरेखों''' के रूप में संदर्भित कियाI जिन्होंने कई साल पहले इसी तरह के संकेतन को तैयार किया था। स्टुकेलबर्ग क्वांटम क्षेत्र सिद्धांत के लिए स्पष्ट रूप से सहसंयोजक औपचारिकता की आवश्यकता से प्रेरित थे परन्तु इस समरूपता को नियंत्रित्र करने के लिए उन्होंने कोई सार्थक फार्मूला निर्धारित नहीं  किया था I  हालांकि ये बात भी सही है की उस समय स्टुकेलबर्ग मध्यवर्ती कण की उचित तरह से भौतिक व्याख्या करने वाले प्रथम वैज्ञानिक थेI  


<ref>{{Cite news|last=George Johnson|title=The Jaguar and the Fox|url=https://www.theatlantic.com/issues/2000/07/johnson.htm|work=The Atlantic|date=July 2000|access-date=February 26, 2013}}</ref>सहसंयोजक प्रक्षोभ सिद्धांन्त की पुस्तक रखने वाले उपकरण और ग्राफ को रेखांकन को '''फेनमैन-डायसन आरेख''' या '''डायसन ग्राफ़''' कहा जाता थाI <ref>{{Cite book|last=Gribbin|first=John|last2=Gribbin|first2=Mary|title=Richard Feynman: A Life in Science|publisher=Penguin-Putnam|year=1997|chapter=5}}</ref> क्योकि जब उन्होंने ये सिद्धांत प्रस्तुत किया था तो वह संपूर्ण कायप्रणाली से अनभिज्ञ थेI  [[:hi:फ्रीमैन डायसन|फ्रीमैन डायसन]] की व्युत्पत्ति प्राचीन तरीकों में हुई गलतियों और गड़बड़ियों का जनक थीI  प्रशिक्षित भौतिकविदों के लिए प्रक्षोभ सिद्धांत का पालन करना आसान था। <ref group="lower-alpha">"It was Dyson's contribution to indicate how Feynman's visual insights could be used [...] He realized that Feynman diagrams [...] can also be viewed as a representation of the logical content of field theories (as stated in their perturbative expansions)". Schweber, op.cit (1994)</ref> फेनमैन को आरेखों के लिए कठोर प्रचार उस समय  कठोर प्रचार करना पड़ा जिसने समीकरणों और रेखांकन में प्रशिक्षित भौतिकविदों को भ्रमित कर दिया था।
<ref>{{Cite news|last=George Johnson|title=The Jaguar and the Fox|url=https://www.theatlantic.com/issues/2000/07/johnson.htm|work=The Atlantic|date=July 2000|access-date=February 26, 2013}}</ref>सहसंयोजक प्रक्षोभ सिद्धांन्त की पुस्तक रखने वाले उपकरण और ग्राफ को '''फेनमैन-डायसन आरेख''' या '''डायसन ग्राफ़''' कहा जाता थाI <ref>{{Cite book|last=Gribbin|first=John|last2=Gribbin|first2=Mary|title=Richard Feynman: A Life in Science|publisher=Penguin-Putnam|year=1997|chapter=5}}</ref> जब उन्होंने ये सिद्धांत प्रस्तुत किया था तो वह संपूर्ण कायप्रणाली से अनभिज्ञ थेI  [[:hi:फ्रीमैन डायसन|फ्रीमैन डायसन]] की व्युत्पत्ति प्राचीन तरीकों में हुई गलतियों से हुई थी I प्रशिक्षित भौतिकविदों के लिए प्रक्षोभ सिद्धांत का पालन करना आसान था। <ref group="lower-alpha">"It was Dyson's contribution to indicate how Feynman's visual insights could be used [...] He realized that Feynman diagrams [...] can also be viewed as a representation of the logical content of field theories (as stated in their perturbative expansions)". Schweber, op.cit (1994)</ref> फेनमैन को आरेखों के लिए काफी कठोर स्तर पर प्रचार करना पड़ा था I फेनमैन के इस प्रचार ने समीकरणों और रेखांकन में प्रशिक्षित भौतिकविदों तक को भ्रमित कर दिया था।


<ref>{{Cite book|first=Leonard|last=Mlodinow|title=Feynman's Rainbow|publisher=Vintage|year=2011|page=29}}</ref>
<ref>{{Cite book|first=Leonard|last=Mlodinow|title=Feynman's Rainbow|publisher=Vintage|year=2011|page=29}}</ref>
Line 34: Line 32:
'''<big>भौतिक वास्तविकता का प्रतिनिधित्व</big>'''
'''<big>भौतिक वास्तविकता का प्रतिनिधित्व</big>'''


वर्तमान परिप्रेक्ष्य में जेरार्ड टी होफ्ट और मार्टिनस वेल्टमैन ने परस्पर भौतिक प्रभावों के अंतर्गत अपनी प्रस्तुतियों में गैर-नियमित फेनमैन आरेखों को संक्षिप्त प्रस्तुतीकरण करने के लिए अर्थपूर्ण तर्क प्रस्तुत किये हैं। इन दोनों भौतिकविदों की प्रेरणाएँ [[:hi:जेम्स डेनियल ब्योर्केन|जेम्स डेनियल ब्योर्केन]] और [[:hi:सिडनी ड्रेल|सिडनी ड्रेल]] के विश्वासों के अनुरूप हैंI <ref>{{Cite book|first=J. D.|last=Bjorken|first2=S. D.|last2=Drell|title=Relativistic Quantum Fields|publisher=McGraw-Hill|location=New York|year=1965|page=viii|isbn=978-0-07-005494-3}}</ref>
वर्तमान परिप्रेक्ष्य में जेरार्ड टी होफ्ट और मार्टिनस वेल्टमैन ने परस्पर भौतिक प्रभावों के अंतर्गत अपनी प्रस्तुतियों में गैर-नियमित फेनमैन आरेखों को संक्षिप्त प्रस्तुतीकरण किया जिसमे उन्होंने  अर्थपूर्ण तर्क प्रस्तुत किये हैं। इन दोनों भौतिकविदों की प्रेरणाएँ [[:hi:जेम्स डेनियल ब्योर्केन|जेम्स डेनियल ब्योर्केन]] और [[:hi:सिडनी ड्रेल|सिडनी ड्रेल]] के विश्वासों केअनुरूप हैंI <ref>{{Cite book|first=J. D.|last=Bjorken|first2=S. D.|last2=Drell|title=Relativistic Quantum Fields|publisher=McGraw-Hill|location=New York|year=1965|page=viii|isbn=978-0-07-005494-3}}</ref>


फेनमैन रेखांकन और गणना के नियम [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांत]] को एक ऐसे रूप में सारांशित करते हैं जो प्रयोगात्मक संख्याओं के निकट संपर्क में है जिसे कोई समझना चाहता है। यद्यपि रेखांकन के संदर्भ में सिद्धांत के कथन का अर्थ [[:hi:गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी)|गड़बड़ी सिद्धांत]] हो सकता है, [[:hi:कई-शरीर की समस्या|कई-शरीर की समस्या]] में चित्रमय विधियों के उपयोग से पता चलता है कि यह औपचारिकता गैर-परेशान वर्णों की घटनाओं से निपटने के लिए पर्याप्त लचीली है। . . गणना के [[:hi:फेनमैन नियम|फेनमैन नियमों]] के कुछ संशोधन स्थानीय विहित क्वांटम क्षेत्र सिद्धांत की विस्तृत गणितीय संरचना को अच्छी तरह से रेखांकित कर सकते हैं। . .
फेनमैन रेखांकन और गणना के नियम [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांत]] को योगात्मक संसे सम्बंधित हो सकता है ख्याओं की निकटता के आधार पर सारांशित करते हैं I यद्यपि रेखांकन के संदर्भ में सिद्धांत के कथन का अर्थ प्रक्षोभ सिद्धांत हो सकता हैI  शारीरिक सम्बन्धी समस्यों के लिए किये गए इन्ही चित्रात्मक विधियों का उपयोग किया गया जिससे ये ज्ञात हुआ की यह विधि चिंताजनक या गड़बड़ी पैदा करने वाली स्थितियों को जानने का एक आसान तरीका हैI  [[:hi:फेनमैन नियम|फेनमैन नियमों]] के कुछ संशोधन क्वांटम क्षेत्र सिद्धांत की विस्तृत गणितीय संरचना को अच्छी तरह से रेखांकित कर सकते हैं। . .


वर्तमान में, कोई विरोधी राय नहीं है। [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांतों]] में फेनमैन आरेखों को फेनमैन नियमों द्वारा [[:hi:लग्रांगियन (क्षेत्र सिद्धांत)|लैग्रैंजियन]] से प्राप्त किया जाता है।
फेनमैन आरेखण को लेकर वर्तमान में किसी तरह की कोई विरोधात्मक प्रक्रिया नहीं देखी गयी हैI  [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांतों]] में फेनमैन आरेखों को [[:hi:लग्रांगियन (क्षेत्र सिद्धांत)|लैग्रैंजियन]] से प्राप्त किया जाता है।


फेनमैन आरेखों के मूल्यांकन में [[:hi:आयामी नियमितीकरण|आयामी नियमितीकरणकण-पथ व्याख्या]] [[:hi:समाकलन|इंटीग्रल]] को [[:hi:नियमितीकरण (भौतिकी)|नियमित]] करने की एक विधि हैI  यह विधि आरेखों के पैरामीटर d के [[:hi:मेरोमॉर्फिक फ़ंक्शन|मेरोमॉर्फिक कार्य]]  के तौर पर जटिल सहायक हैं जिन्हें आयाम कहा जाता हैI डायमेंशनल रेगुलराइजेशन [[:hi:फेनमैन इंटीग्रल|फेनमैन इंटीग्रल]] को स्पेसटाइम डायमेंशन d और स्पेसटाइम पॉइंट्स के आधार पर इंटीग्रल के रूप में लिखता है।
फेनमैन आरेखों के मूल्यांकन में [[:hi:आयामी नियमितीकरण|आयामी नियमितीकरण कण-पथ व्याख्या]] सिद्धांत के [[:hi:समाकलन|आंतरिक मानक]] को [[:hi:नियमितीकरण (भौतिकी)|नियमित]] करने की एक विधि हैI  यह विधि आरेखों के पैरामीटर d के [[:hi:मेरोमॉर्फिक फ़ंक्शन|मेरोमॉर्फिक कार्य]]  में जटिल रूप से सहायक होती हैं I इन विधि आरेखों को आयाम कहा जाता हैI आरेखण में डायमेंशनल रेगुलराइजेशन [[:hi:फेनमैन इंटीग्रल|फेनमैन के आतंरिक मापन]] स्पेसटाइम डायमेंशन d और स्पेसटाइम पॉइंट्स के आधार पर लिखित आतंरिक मापन हैं। 


'''<big>कण-पथ व्याख्या</big>'''
'''<big>कण-पथ व्याख्या</big>'''


एक फेनमैन आरेख [[:hi:मूलकण|कण]] अंतःक्रियाओं के संदर्भ में क्वांटम क्षेत्र सिद्धांत प्रक्रियाओं का प्रतिनिधित्व है। कणों को आरेख की रेखाओं द्वारा दर्शाया जाता है, जो कण के प्रकार के आधार पर, एक तीर के साथ या बिना घुमावदार या सीधे हो सकते हैं। एक बिंदु जहां रेखाएं अन्य रेखाओं से जुड़ती हैं, एक ''शीर्ष'' है, और यह वह जगह है जहां कण मिलते हैं और बातचीत करते हैं: नए कणों को उत्सर्जित या अवशोषित करके, एक दूसरे को विक्षेपित करते हुए, या बदलते प्रकार।
फेनमैन आरेख [[:hi:मूलकण|कण]] प्रवाह की अंतःक्रियाओं के संदर्भ में क्वांटम क्षेत्र सिद्धांत प्रक्रियाओं का प्रतिनिधित्व करती हैं। कणों को आरेख की रेखाओं द्वारा दर्शाया जाता है जो कण के प्रकार के आधार पर बिना घुमावदार या सीधे हो सकते हैं। आरेख के अनुसार एक बिंदु पर जहां रेखाएं अन्य रेखाओं से जुड़ती हैं वह एक शीर्ष कहलाता हैI शीर्ष वह जगह है जहाँ कण नए कणों को उत्सर्जित या अवशोषित करके एक दूसरे को विक्षेपित करते हुए परस्पर वार्ता करते हैं I 


तीन अलग-अलग प्रकार की रेखाएँ हैं: ''आंतरिक रेखाएँ'' दो शीर्षों को जोड़ती हैं, ''आने वाली रेखाएँ'' "अतीत" से एक शीर्ष तक फैली हुई हैं और एक प्रारंभिक स्थिति का प्रतिनिधित्व करती हैं, और ''बाहर जाने वाली रेखाएँ'' एक शीर्ष से "भविष्य" तक फैली हुई हैं और अंतिम स्थिति का प्रतिनिधित्व करती हैं। बाद के दो को ''बाह्य रेखाओं'' के रूप में भी जाना जाता है)। परंपरागत रूप से, आरेख का निचला भाग भूतकाल और ऊपर वाला भविष्य होता है; दूसरी बार, अतीत बाईं ओर है और भविष्य दाईं ओर है। [[:hi:प्रकीर्णन आयाम|आयामों को बिखेरने]] के बजाय [[:hi:सहसंबंध कार्य|सहसंबंध कार्यों]] की गणना करते समय, कोई अतीत और भविष्य नहीं होता है और सभी रेखाएं आंतरिक होती हैं। कण तब छोटे x पर शुरू और समाप्त होते हैं, जो उन ऑपरेटरों की स्थिति का प्रतिनिधित्व करते हैं जिनके सहसंबंध की गणना की जा रही है।
आरेखण में तीन अलग-अलग प्रकार की रेखाएँ हैंI ''आंतरिक रेखाएँ'' दो शीर्षों को जोड़ती हैंI ''आने वाली रेखाएँ'' पीछे से एक शीर्ष तक फैली हुई हैं और एक प्रारंभिक स्थिति का प्रतिनिधित्व करती हैंI ''बाहर जाने वाली रेखाएँ'' एक शीर्ष से "भविष्य" तक फैली हुई हैं और अंतिम स्थिति का प्रतिनिधित्व करती हैं। बाद की दो रेखाओं को ''बाह्य रेखाओं'' के रूप में भी जाना जाता है। परंपरागत रूप से का निचला भाग भूतकाल और ऊपर वाला भविष्य होता हैI  आरेखों के [[:hi:सहसंबंध कार्य|सहसंबंध कार्यों]] की गणना करते समय कोई अतीत और भविष्य नहीं होता है और सभी रेखाएं आंतरिक होती हैं।  


फेनमैन आरेख एक प्रक्रिया के लिए कुल आयाम में योगदान का एक सचित्र प्रतिनिधित्व है जो कई अलग-अलग तरीकों से हो सकता है। जब आने वाले कणों के एक समूह को एक-दूसरे को बिखेरना होता है, तो इस प्रक्रिया को एक ऐसा माना जा सकता है, जहां कण सभी संभावित रास्तों पर यात्रा करते हैं, जिसमें समय में पीछे जाने वाले रास्ते भी शामिल हैं।
फेनमैन आरेख आयाम में योगदान का एक सचित्र प्रतिनिधित्व है जो कई अलग-अलग तरीकों से हो सकता है। जब आने वाले कणों के एक समूह को एक-दूसरे को बिखेरना होता है तो कण सभी संभावित रास्तों पर यात्रा करते हैं जिसमें समय में पीछे जाने वाले रास्ते भी शामिल हैं।


फेनमैन आरेख अक्सर [[:hi:स्पेसटाइम आरेख|स्पेसटाइम आरेख]] और [[:hi:बुलबुला कक्ष|बुलबुला कक्ष]] छवियों के साथ भ्रमित होते हैं क्योंकि वे सभी कण बिखरने का वर्णन करते हैं। फेनमैन आरेख ऐसे [[:hi:ग्राफ (असतत गणित)|रेखांकन]] हैं जो एक बिखरने की प्रक्रिया के दौरान कण की भौतिक स्थिति के बजाय कणों की बातचीत का प्रतिनिधित्व करते हैं। बबल चैम्बर चित्र के विपरीत, केवल सभी फेनमैन आरेखों का योग किसी दिए गए कण अंतःक्रिया का प्रतिनिधित्व करता है; कण हर बार जब वे परस्पर क्रिया करते हैं तो एक विशेष आरेख का चयन नहीं करते हैं। योग का [[:hi:क्वांटम सुपरपोजिशन|नियम सुपरपोजिशन के सिद्धांत के]] अनुरूप है - प्रत्येक आरेख प्रक्रिया के कुल आयाम में योगदान देता है।
फेनमैन आरेख अक्सर [[:hi:स्पेसटाइम आरेख|स्पेसटाइम आरेख]] और [[:hi:बुलबुला कक्ष|बुलबुला कक्ष]] छवियों के साथ भ्रमित होते हैं क्योंकि वे सभी कण बिखरने का वर्णन करते हैं। फेनमैन आरेख ऐसे [[:hi:ग्राफ (असतत गणित)|रेखांकन]] हैं जो एक बिखरने की प्रक्रिया के दौरान कण की भौतिक स्थिति के बजाय कणों की बातचीत का प्रतिनिधित्व करते हैं। बबल चैम्बर चित्र के विपरीत, केवल सभी फेनमैन आरेखों का योग किसी दिए गए कण अंतःक्रिया का प्रतिनिधित्व करता है; कण हर बार जब वे परस्पर क्रिया करते हैं तो एक विशेष आरेख का चयन नहीं करते हैं। योग का [[:hi:क्वांटम सुपरपोजिशन|नियम सुपरपोजिशन के सिद्धांत के]] अनुरूप है - प्रत्येक आरेख प्रक्रिया के कुल आयाम में योगदान देता है।

Revision as of 16:47, 7 August 2022

[1]

सैद्धांतिक भौतिकी में फेनमैन आरेख उप-परमाणु कणों के व्यवहार एवं बातचीत का वर्णन करने वाले गणितीय अभिव्यक्तियों का चित्रमय वर्णन करता है । इस योजना का नाम अमेरिकी भौतिक विज्ञानी रिचर्ड फेनमैन के नाम पर रखा गया हैI जिन्होंने 1948 में आरेखों को पेश किया था। उप-परमाणु कणों की परस्पर क्रिया जटिल और समझने में कठिन हो सकती हैI फेनमैन आरेख की थ्योरी बताती है की गणितीय अभिव्यक्तों का रहस्यात्मक और अमूर्त सूत्र क्या है । डेविड कैसर के अनुसार 20वीं शताब्दी के मध्य से सैद्धांतिक भौतिकविदों ने महत्वपूर्ण गणना करने में मदद करने के लिए इस उपकरण की ओर तेजी से रुख किया था । फेनमैन आरेखों ने उस समय सैद्धांतिक भौतिकी के लगभग हर पहलू में क्रांति ला दी थी। [2] जबकि आरेख थ्योरी मुख्य रूप से क्वांटम सिद्धांत पर लागू होती हैI इस आरेख सिद्धांतों का उपयोग अन्य क्षेत्रों जैसे कि ठोस-राज्य सिद्धांत में भी किया जा सकता है । फ्रैंक विल्ज़ेक ने लिखा है कि जिन गणनाओं ने उन्हें 2004 का भौतिकी का नोबेल पुरस्कार प्रदान करने में महत्वपूर्ण योगदान  दिया था वे फेनमैन आरेखों के बिना सचमुच अकल्पनीय थीI विल्ज़ेक की गणनाएं काफी अनोखी थीं जिन्होनें हिग्स कण के उत्पादन और अवलोकन के लिए एक मार्ग स्थापित करने में अहम भूमिका निभाईI

फेनमैन ने थ्योरी में अर्नस्ट स्टुएकेलबर्ग की पॉज़िट्रॉन व्याख्या का इस्तेमाल समय से पीछे जाने वाले इलेक्ट्रान की तरह कियाI [3] इस प्रकार फेनमैन आरेखों में एंटीपार्टिकल्स को समय के साथ पीछे की ओर जाने के रूप में दर्शाया गया है।

Feynmann Diagram Gluon Radiation
Feynmann Diagram Gluon Radiation

फेनमैन ने आरेखन में बताया सैद्धांतिक कण भौतिकी में संभाव्यता आयामों की गणना के लिए बड़ी संख्या में अस्थिर के बजाय बड़े और जटिल समाकलन की आवश्यकता होती है। फेनमैन आरेख इन समाकलनों को आलेखीय रूप से निरूपित कर सकते हैं।

फेनमैन आरेख क्वांटम यांत्रिक या सांख्यिकीय क्षेत्र सिद्धांत के परिवर्तन एवं योगदान काग्राफिकल प्रतिनिधित्व करता है। फेनमैन आरेख क्वांटम सिद्धांत के कैननिकल फॉर्मूलेशन के अंतर्गत विक के S -मैट्रिक्स के विस्तार को प्रस्तुत करता है। वैकल्पिक रूप से क्वांटम सिद्धांत का अभिन्न सूत्रीकरण कणों के संदर्भ में प्रारंभिक से अंतिम स्थिति तक प्रणाली के सभी संभावित योग के रूप में परिवर्तन रुपी आयाम का प्रतिनिधित्व करता है। क्वांटम प्रणाली में S -मैट्रिक्स के मैट्रिक्स प्रारंभिक और अंतिम स्तर के मध्य परिवर्तन को प्रस्तुत किया गया हैI

प्रेरणा और इतिहास

फेनमेन के आरेख की तरफ जब ध्यान देंगे तो पाएंगे एंटीक्वार्क से बना काओन तीन पायनों में विघटित होते दिखाया गया हैI जिसमें मध्यवर्ती चरणों में डब्ल्यू बोसॉन और ग्लूऑन शामिल है जिसे क्रमशः ब्लू साइन वेव और ग्रीन स्पाइरल द्वारा दर्शाया गया है। कण भौतिकी में बिखरने वाले क्रॉस-सेक्शन की गणना करते समय कणों के बीच तथ्य को मुक्त क्षेत्र से शुरू करते हुए वर्णित किया गया हैI जो अंदर आने वाले और बाहर जाने वाले कणों का वर्णन करता हैI हैमिल्टनियन पेटरबसन एक्सपेंशन क्रम को व्यक्त करता है है, वहीं दूसरी तरफ समय पर निर्भर सिद्धांत को डायसन श्रृंखला के रूप में जाना जाता है।

डायसन श्रृंखला को वैकल्पिक रूप से फेनमैन आरेखों के योग में पुनरावृत्ति की जा सकती है यानि फिर से लिखा जा सकता है जहां प्रत्येक शीर्ष पर ऊर्जा और गति दोनों संरक्षित होते हैंI लेकिन आप शृंखला पर ध्यान देंगे तो देखेंगे क़ि ऊर्जा-गति चार-वेक्टर की लंबाई आवश्यक रूप से द्रव्यमान के बराबर नहीं होती हैI फेनमैन आरेख "पुराने तथ्यों तुलना में बहुत आसान हैं, क्योंकि पुराने तथ्य मध्यवर्ती कण और एंटीपार्टिकल योगदान को अलग मानते हैं। प्रत्येक फेनमैन आरेख कई पुराने तथ्यों का योग है क्योंकि प्रत्येक आंतरिक रेखा अलग-अलग या तो एक कण या एक एंटीपार्टिकल का प्रतिनिधित्व कर सकती है। फेनमेन आरेख में गैर-सापेक्ष सिद्धांत में कोई एंटीपार्टिकल्स नहीं होते हैं और कोई दोहरीकरण नहीं होता है इसलिए प्रत्येक फेनमैन आरेख में केवल एक शब्द शामिल होता हैI

फेनमैन ने फील्ड थ्योरी लैग्रैंजियन से आरेख के लिए फेनमैन नियम की गणना के लिए एक नुस्खा दिया। उनका मानना है प्रत्येक शीर्ष रेखाएं जहां मिलती हैं वहां प्रत्येक आंतरिक रेखा आभासी कण के प्रसारक के एक कारक से मेल खाती हैI

गणितीय उपकरण के तौर पर फेनमैन आरेख को देखा जाये तो कणों का प्रवाह अन्तर्क्रियाओं में गहरा प्रभाव निर्दिष्ट करते हैंI आरेख में मध्यवर्ती कण आभासी कण को प्रकाश की गति से भी तेज प्रवाहित हो सकते हैं I ऐसी सभी कणो की अन्तःक्रियाओं से अंतिम निर्णय की स्थिति ज्ञात होती है I फेनमैन द्वारा अविष्कृत आरेखण का यह आकलन क्वांटम यांत्रिकी के कार्यात्मक अभिन्न सूत्रीकरण से बहुत ही निकटता से जुड़ा हुआ हैI आरेखण के गहन अध्यन के बाद पता चलता है की इस तरह की गणनाओं के अनुप्रयोग अक्सर ऐसे आरेख उत्पन्न करते हैं जिनके आयाम अनंत होते हैं क्योंकि छोटी दूरी के कण को अंतःक्रियाओं में समायोजित करने के लिए सावधानीपूर्वक सीमित प्रक्रिया की आवश्यकता होती है। अर्नस्ट स्टुएकेलबर्ग और हंस बेथे द्वारा बताई गई और डायसन, फेनमैन, श्विंगर और टोमोनागा द्वारा लागू की गई पुनर्सामान्यीकरण की तकनीक इस प्रभाव को पूर्ण करके कणों की अनावश्यक अन्तः क्रियाओं को समाप्त करती है। पुनर्सामान्यीकरण और फेनमैन आरेखण की गणना के प्रयोगत्मक परिणामों में काफी समानता देखी गयी I

फेनमैन आरेख और पथ अभिन्न विधियों का उपयोग सांख्यिकीय यांत्रिकी और शास्त्रीय यांत्रिकी पर भी लागू किया जा सकता है। [4]

वैकल्पिक नाम

मुर्रे गेल-मान ने हमेशा स्विस भौतिक विज्ञानी अर्न्स्ट स्टुएकेलबर्ग के बाद फेनमैन आरेखों को स्टुकेलबर्ग आरेखों के रूप में संदर्भित कियाI जिन्होंने कई साल पहले इसी तरह के संकेतन को तैयार किया था। स्टुकेलबर्ग क्वांटम क्षेत्र सिद्धांत के लिए स्पष्ट रूप से सहसंयोजक औपचारिकता की आवश्यकता से प्रेरित थे परन्तु इस समरूपता को नियंत्रित्र करने के लिए उन्होंने कोई सार्थक फार्मूला निर्धारित नहीं  किया था I हालांकि ये बात भी सही है की उस समय स्टुकेलबर्ग मध्यवर्ती कण की उचित तरह से भौतिक व्याख्या करने वाले प्रथम वैज्ञानिक थेI

[5]सहसंयोजक प्रक्षोभ सिद्धांन्त की पुस्तक रखने वाले उपकरण और ग्राफ को फेनमैन-डायसन आरेख या डायसन ग्राफ़ कहा जाता थाI [6] जब उन्होंने ये सिद्धांत प्रस्तुत किया था तो वह संपूर्ण कायप्रणाली से अनभिज्ञ थेI फ्रीमैन डायसन की व्युत्पत्ति प्राचीन तरीकों में हुई गलतियों से हुई थी I प्रशिक्षित भौतिकविदों के लिए प्रक्षोभ सिद्धांत का पालन करना आसान था। [lower-alpha 1] फेनमैन को आरेखों के लिए काफी कठोर स्तर पर प्रचार करना पड़ा था I फेनमैन के इस प्रचार ने समीकरणों और रेखांकन में प्रशिक्षित भौतिकविदों तक को भ्रमित कर दिया था।

[7]

भौतिक वास्तविकता का प्रतिनिधित्व

वर्तमान परिप्रेक्ष्य में जेरार्ड टी होफ्ट और मार्टिनस वेल्टमैन ने परस्पर भौतिक प्रभावों के अंतर्गत अपनी प्रस्तुतियों में गैर-नियमित फेनमैन आरेखों को संक्षिप्त प्रस्तुतीकरण किया जिसमे उन्होंने अर्थपूर्ण तर्क प्रस्तुत किये हैं। इन दोनों भौतिकविदों की प्रेरणाएँ जेम्स डेनियल ब्योर्केन और सिडनी ड्रेल के विश्वासों केअनुरूप हैंI [8]

फेनमैन रेखांकन और गणना के नियम क्वांटम क्षेत्र सिद्धांत को योगात्मक संसे सम्बंधित हो सकता है ख्याओं की निकटता के आधार पर सारांशित करते हैं I यद्यपि रेखांकन के संदर्भ में सिद्धांत के कथन का अर्थ प्रक्षोभ सिद्धांत हो सकता हैI शारीरिक सम्बन्धी समस्यों के लिए किये गए इन्ही चित्रात्मक विधियों का उपयोग किया गया जिससे ये ज्ञात हुआ की यह विधि चिंताजनक या गड़बड़ी पैदा करने वाली स्थितियों को जानने का एक आसान तरीका हैI फेनमैन नियमों के कुछ संशोधन क्वांटम क्षेत्र सिद्धांत की विस्तृत गणितीय संरचना को अच्छी तरह से रेखांकित कर सकते हैं। . .

फेनमैन आरेखण को लेकर वर्तमान में किसी तरह की कोई विरोधात्मक प्रक्रिया नहीं देखी गयी हैI क्वांटम क्षेत्र सिद्धांतों में फेनमैन आरेखों को लैग्रैंजियन से प्राप्त किया जाता है।

फेनमैन आरेखों के मूल्यांकन में आयामी नियमितीकरण कण-पथ व्याख्या सिद्धांत के आंतरिक मानक को नियमित करने की एक विधि हैI यह विधि आरेखों के पैरामीटर d के मेरोमॉर्फिक कार्य में जटिल रूप से सहायक होती हैं I इन विधि आरेखों को आयाम कहा जाता हैI आरेखण में डायमेंशनल रेगुलराइजेशन फेनमैन के आतंरिक मापन स्पेसटाइम डायमेंशन d और स्पेसटाइम पॉइंट्स के आधार पर लिखित आतंरिक मापन हैं।

कण-पथ व्याख्या

फेनमैन आरेख कण प्रवाह की अंतःक्रियाओं के संदर्भ में क्वांटम क्षेत्र सिद्धांत प्रक्रियाओं का प्रतिनिधित्व करती हैं। कणों को आरेख की रेखाओं द्वारा दर्शाया जाता है जो कण के प्रकार के आधार पर बिना घुमावदार या सीधे हो सकते हैं। आरेख के अनुसार एक बिंदु पर जहां रेखाएं अन्य रेखाओं से जुड़ती हैं वह एक शीर्ष कहलाता हैI शीर्ष वह जगह है जहाँ कण नए कणों को उत्सर्जित या अवशोषित करके एक दूसरे को विक्षेपित करते हुए परस्पर वार्ता करते हैं I

आरेखण में तीन अलग-अलग प्रकार की रेखाएँ हैंI आंतरिक रेखाएँ दो शीर्षों को जोड़ती हैंI आने वाली रेखाएँ पीछे से एक शीर्ष तक फैली हुई हैं और एक प्रारंभिक स्थिति का प्रतिनिधित्व करती हैंI बाहर जाने वाली रेखाएँ एक शीर्ष से "भविष्य" तक फैली हुई हैं और अंतिम स्थिति का प्रतिनिधित्व करती हैं। बाद की दो रेखाओं को बाह्य रेखाओं के रूप में भी जाना जाता है। परंपरागत रूप से का निचला भाग भूतकाल और ऊपर वाला भविष्य होता हैI आरेखों के सहसंबंध कार्यों की गणना करते समय कोई अतीत और भविष्य नहीं होता है और सभी रेखाएं आंतरिक होती हैं।

फेनमैन आरेख आयाम में योगदान का एक सचित्र प्रतिनिधित्व है जो कई अलग-अलग तरीकों से हो सकता है। जब आने वाले कणों के एक समूह को एक-दूसरे को बिखेरना होता है तो कण सभी संभावित रास्तों पर यात्रा करते हैं जिसमें समय में पीछे जाने वाले रास्ते भी शामिल हैं।

फेनमैन आरेख अक्सर स्पेसटाइम आरेख और बुलबुला कक्ष छवियों के साथ भ्रमित होते हैं क्योंकि वे सभी कण बिखरने का वर्णन करते हैं। फेनमैन आरेख ऐसे रेखांकन हैं जो एक बिखरने की प्रक्रिया के दौरान कण की भौतिक स्थिति के बजाय कणों की बातचीत का प्रतिनिधित्व करते हैं। बबल चैम्बर चित्र के विपरीत, केवल सभी फेनमैन आरेखों का योग किसी दिए गए कण अंतःक्रिया का प्रतिनिधित्व करता है; कण हर बार जब वे परस्पर क्रिया करते हैं तो एक विशेष आरेख का चयन नहीं करते हैं। योग का नियम सुपरपोजिशन के सिद्धांत के अनुरूप है - प्रत्येक आरेख प्रक्रिया के कुल आयाम में योगदान देता है।

विवरण

एक फेनमैन आरेख कुछ प्रारंभिक क्वांटम राज्य से कुछ अंतिम क्वांटम राज्य में क्वांटम संक्रमण के आयाम में एक परेशान योगदान का प्रतिनिधित्व करता है।


उदाहरण के लिए, इलेक्ट्रॉन-पॉज़िट्रॉन के विनाश की प्रक्रिया में प्रारंभिक अवस्था एक इलेक्ट्रॉन और एक पॉज़िट्रॉन है, अंतिम अवस्था: दो फोटॉन।

प्रारंभिक अवस्था को अक्सर आरेख के बाईं ओर और अंतिम स्थिति को दाईं ओर माना जाता है (हालाँकि अन्य सम्मेलनों का भी अक्सर उपयोग किया जाता है)।

एक फेनमैन आरेख में बिंदु होते हैं, जिन्हें कोने कहा जाता है, और कोने से जुड़ी रेखाएं होती हैं।

प्रारंभिक अवस्था में कणों को प्रारंभिक अवस्था (उदाहरण के लिए, बाईं ओर) की दिशा में चिपकी हुई रेखाओं द्वारा दर्शाया जाता है, अंतिम अवस्था में कणों को अंतिम अवस्था की दिशा में चिपकी हुई रेखाओं द्वारा दर्शाया जाता है (जैसे, करने के लिए) सही)।

QED में दो प्रकार के कण होते हैं: पदार्थ कण जैसे इलेक्ट्रॉन या पॉज़िट्रॉन (जिसे फ़र्मियन कहा जाता है) और विनिमय कण ( गेज बोसॉन कहा जाता है)। उन्हें फेनमैन आरेखों में निम्नानुसार दर्शाया गया है:

  1. प्रारंभिक अवस्था में इलेक्ट्रॉन को एक ठोस रेखा द्वारा दर्शाया जाता है, जिसमें एक तीर कण के स्पिन को इंगित करता है जैसे कि शीर्ष (→•) की ओर इशारा करता है।
  2. अंतिम अवस्था में इलेक्ट्रॉन को एक रेखा द्वारा दर्शाया जाता है, जिसमें एक तीर कण के स्पिन को इंगित करता है जैसे शीर्ष से दूर इंगित करना: (•→)।
  3. प्रारंभिक अवस्था में पॉज़िट्रॉन को एक ठोस रेखा द्वारा दर्शाया जाता है, जिसमें एक तीर कण के स्पिन को इंगित करता है जैसे शीर्ष से दूर इंगित करना: (←•)।
  4. अंतिम अवस्था में पॉज़िट्रॉन को एक रेखा द्वारा दर्शाया जाता है, जिसमें एक तीर कण के स्पिन को इंगित करता है जैसे कि शीर्ष की ओर इशारा करते हुए: (•←)।
  5. प्रारंभिक और अंतिम अवस्था में आभासी फोटॉन को एक लहरदार रेखा ( ~• और •~ ) द्वारा दर्शाया जाता है।

QED में एक शीर्ष में हमेशा तीन रेखाएँ जुड़ी होती हैं: एक बोसोनिक रेखा, शीर्ष की ओर तीर के साथ एक फर्मोनिक रेखा, और शीर्ष से दूर तीर के साथ एक फर्मोनिक रेखा।

कोने को बोसोनिक या फर्मोनिक प्रोपेगेटर द्वारा जोड़ा जा सकता है। एक बोसोनिक प्रोपेगेटर को दो शीर्षों (•~•) को जोड़ने वाली एक लहरदार रेखा द्वारा दर्शाया जाता है। एक फर्मोनिक प्रोपेगेटर को दो शीर्षों को जोड़ने वाली एक ठोस रेखा (एक या दूसरी दिशा में एक तीर के साथ) द्वारा दर्शाया जाता है, (•←•)।

शीर्षों की संख्या संक्रमण आयाम के क्षोभ श्रृंखला के विस्तार में पद का क्रम देती है।

इलेक्ट्रॉन-पॉज़िट्रॉन विनाश उदाहरण

+ + ई - → 2γ

दूसरे क्रम से एक योगदान है फेनमैन आरेख आसन्न दिखाया गया है:

प्रारंभिक अवस्था में (सबसे नीचे; प्रारंभिक समय में) एक इलेक्ट्रॉन (ई - ) और एक पॉज़िट्रॉन (ई + ) होता है और अंतिम अवस्था में (शीर्ष पर; देर से) दो फोटॉन (γ) होते हैं।

विहित परिमाणीकरण सूत्रीकरण

प्रारंभिक अवस्था से एक क्वांटम प्रणाली के संक्रमण के लिए संभाव्यता आयाम (एसिम्प्टोटिक रूप से मुक्त राज्यों के बीच) अंतिम अवस्था में मैट्रिक्स तत्व द्वारा दिया गया है

जहां S S -मैट्रिक्स है। समय-विकास ऑपरेटर U के संदर्भ में, यह बस है

जहां Hवी इंटरैक्शन हैमिल्टनियन है और T ऑपरेटरों के समय-आदेशित उत्पाद को दर्शाता है। डायसन का सूत्र समय-आदेशित मैट्रिक्स घातांक को अंतःक्रियात्मक हैमिल्टनियन घनत्व की शक्तियों में एक गड़बड़ी श्रृंखला में विस्तारित करता है,

समान रूप से, लैग्रेंजियन Lवी की बातचीत के साथ, यह है

एक फेनमैन आरेख S -मैट्रिक्स की डायसन श्रृंखला के n वें-ऑर्डर टर्म S(n) में समय-आदेशित उत्पाद के विक के विस्तार में एकल सारांश का एक ग्राफिकल प्रतिनिधित्व है,

जहां N ऑपरेटरों के सामान्य-आदेशित उत्पाद को दर्शाता है और (±) संभावित संकेत परिवर्तन का ख्याल रखता है जब फर्मोनिक ऑपरेटरों को एक संकुचन (एक प्रचारक ) के लिए एक साथ लाने के लिए और A सभी संभावित संकुचन का प्रतिनिधित्व करता है।

आरेख फेनमैन नियमों के अनुसार तैयार किए गए हैं, जो कि लैग्रेंजियन की बातचीत पर निर्भर करते हैं। QED इंटरैक्शन के लिए Lagrangian

एक बोसोनिक गेज क्षेत्र Aμ के साथ एक फर्मोनिक क्षेत्र ψ की बातचीत का वर्णन करते हुए, फेनमैन नियम निम्नानुसार समन्वय अंतरिक्ष में तैयार किए जा सकते हैं:

  1. प्रत्येक एकीकरण निर्देशांक xj को एक बिंदु (कभी-कभी एक शीर्ष कहा जाता है) द्वारा दर्शाया जाता है;
  2. एक बोसोनिक प्रोपेगेटर को दो बिंदुओं को जोड़ने वाली एक विगली लाइन द्वारा दर्शाया जाता है;
  3. एक फर्मोनिक प्रोपेगेटर को दो बिंदुओं को जोड़ने वाली एक ठोस रेखा द्वारा दर्शाया जाता है;
  4. एक बोसोनिक क्षेत्र बिंदु xi से जुड़ी एक आकर्षक रेखा द्वारा दर्शाया गया है;
  5. एक फर्मोनिक क्षेत्र ψ(xi) को बिंदु xi से जुड़ी एक ठोस रेखा द्वारा बिंदु की ओर एक तीर के साथ दर्शाया जाता है;
  6. एक फर्मी-विरोधी क्षेत्र को बिंदु से दूर एक तीर के साथ बिंदु xi से जुड़ी एक ठोस रेखा द्वारा दर्शाया जाता है;

उदाहरण: QED में दूसरे क्रम की प्रक्रिया

S -मैट्रिक्स में दूसरा क्रम गड़बड़ी शब्द है

फर्मियनों का प्रकीर्णन

एकीकृत के विक का विस्तार (दूसरों के बीच) निम्नलिखित शब्द देता है:

कहाँ पे

फेनमैन गेज में विद्युत चुम्बकीय संकुचन (प्रचारक) है। यह शब्द दाईं ओर फेनमैन आरेख द्वारा दर्शाया गया है। यह आरेख निम्नलिखित प्रक्रियाओं में योगदान देता है:

  1. -- स्कैटरिंग (दाईं ओर प्रारंभिक स्थिति, आरेख के बाईं ओर अंतिम स्थिति);
  2. ++ स्कैटरिंग (बाईं ओर प्रारंभिक स्थिति, आरेख के दाईं ओर अंतिम स्थिति);
  3. -+ स्कैटरिंग (नीचे/शीर्ष पर प्रारंभिक स्थिति, आरेख के शीर्ष/नीचे पर अंतिम स्थिति)।

कॉम्पटन प्रकीर्णन और विनाश/ई -+ जोड़े की पीढ़ी

विस्तार में एक और दिलचस्प शब्द है


कहाँ पे

फर्मोनिक संकुचन (प्रचारक) है

पथ अभिन्न सूत्रीकरण

एक पथ अभिन्न में, सभी संभावित क्षेत्र इतिहास पर एकीकृत क्षेत्र लैग्रैंगियन, एक क्षेत्र विन्यास से दूसरे क्षेत्र में जाने के लिए संभाव्यता आयाम को परिभाषित करता है। समझ में आने के लिए, क्षेत्र सिद्धांत में एक अच्छी तरह से परिभाषित जमीनी स्थिति होनी चाहिए, और इंटीग्रल को थोड़ा सा काल्पनिक समय, यानी विक रोटेशन में घुमाया जाना चाहिए। पथ अभिन्न औपचारिकता पूरी तरह से उपरोक्त विहित संचालिका औपचारिकता के बराबर है।

अदिश क्षेत्र Lagrangian

एक सरल उदाहरण d आयामों में मुक्त सापेक्षतावादी अदिश क्षेत्र है, जिसका क्रिया अभिन्न है:

एक प्रक्रिया के लिए प्रायिकता आयाम है


जहां A और B अंतरिक्ष जैसी हाइपरसर्फेस हैं जो सीमा की स्थिति को परिभाषित करते हैं। प्रारंभिक हाइपरसर्फेस पर सभी φ(A) का संग्रह क्षेत्र का प्रारंभिक मान देता है, एक बिंदु कण के लिए प्रारंभिक स्थिति के अनुरूप, और फ़ील्ड मान φ(B) अंतिम हाइपरसर्फ़ के प्रत्येक बिंदु पर अंतिम फ़ील्ड को परिभाषित करता है मूल्य, जिसे अलग-अलग मूल्यों पर समाप्त होने के लिए एक अलग आयाम देते हुए, अलग-अलग होने की अनुमति है। यह क्षेत्र-से-क्षेत्र संक्रमण आयाम है।

पथ अभिन्न प्रारंभिक और अंतिम स्थिति के बीच ऑपरेटरों की अपेक्षा मूल्य देता है


और उस सीमा में कि ए और बी अनंत अतीत और अनंत भविष्य में घटते हैं, एकमात्र योगदान जो मायने रखता है वह जमीनी स्थिति से है (यह केवल तभी सच है जब पथ-अभिन्न को काल्पनिक समय में थोड़ा घुमाया जाता है)। पथ अभिन्न को संभाव्यता वितरण के समान माना जा सकता है, और इसे परिभाषित करना सुविधाजनक है ताकि स्थिरांक से गुणा करने से कुछ भी नहीं बदलता है:


तल पर सामान्यीकरण कारक को क्षेत्र के लिए विभाजन फ़ंक्शन कहा जाता है, और यह काल्पनिक समय में घुमाए जाने पर शून्य तापमान पर सांख्यिकीय यांत्रिक विभाजन फ़ंक्शन के साथ मेल खाता है।


यदि कोई शुरू से ही सातत्य सीमा के बारे में सोचता है तो प्रारंभिक से अंतिम आयाम अपरिभाषित हैं, क्योंकि क्षेत्र में उतार-चढ़ाव असीमित हो सकते हैं। तो पथ-अभिन्न को एक असतत वर्ग जाली के रूप में माना जा सकता है, जिसमें जाली रिक्ति a और सीमा a → 0 सावधानी से ली जानी चाहिए  । यदि अंतिम परिणाम जाली के आकार या a के मान पर निर्भर नहीं करते हैं, तो सातत्य सीमा मौजूद है।

एक जाली पर

जाली पर, (i), फूरियर मोड में क्षेत्र का विस्तार किया जा सकता है:

यहाँ एकीकरण डोमेन k से अधिक है जो पार्श्व लंबाई के घन तक सीमित है

समय-समय पर स्पेस-टाइम वॉल्यूम को परिमित मानने के लिए भी सुविधाजनक है, ताकि k मोड भी एक जाली हो। यह अंतरिक्ष-जाली सीमा के रूप में कड़ाई से जरूरी नहीं है, क्योंकि के में बातचीत k नहीं है, लेकिन के- k के सामने कारकों का ट्रैक रखने और गति-संरक्षण डेल्टा फ़ंक्शंस उत्पन्न होने के लिए सुविधाजनक है।

एक जाली पर, (ii), कार्रवाई को विवेकपूर्ण बनाने की आवश्यकता है:


जहाँ निकटतम जालक पड़ोसियों x और y का युग्म है। μφ का क्या अर्थ है

जाली फूरियर मोड के संदर्भ में, क्रिया लिखी जा सकती है:


k के लिए शून्य के पास यह है:



अब हमारे पास मूल क्रिया का सातत्य फूरियर रूपांतरण है। परिमित आयतन में, मात्रा dd k अपरिमित नहीं है, लेकिन

पड़ोसी फूरियर मोड द्वारा बनाए गए बॉक्स का आयतन बन जाता है, या (/V)d
 


क्षेत्र φ वास्तविक-मूल्यवान है, इसलिए फूरियर रूपांतरण का पालन करता है:


वास्तविक और काल्पनिक भागों के संदर्भ में, φ(k) का वास्तविक भाग k का एक सम फलन है, जबकि काल्पनिक भाग विषम है। फूरियर रूपांतरण डबल-काउंटिंग से बचा जाता है, ताकि इसे लिखा जा सके:

एक एकीकरण डोमेन पर जो प्रत्येक जोड़ी (k,−k) पर ठीक एक बार एकीकृत होता है।

कार्रवाई के साथ एक जटिल अदिश क्षेत्र के लिए

लोकप्रिय संस्कृति में

  • क्वार्क - एंटीक्वार्क जोड़ी का निर्माण करने वाले आभासी कण के उपरोक्त आरेख का उपयोग टेलीविजन सिट-कॉम ' द बिग बैंग थ्योरी ’ में, द बैट जार अनुमान में दिखाया गया था।
  • पीएचडी कॉमिक्स 11 जनवरी 2012, फेनमैन आरेख दिखाता है कि क्वांटम अकादमिक इंटरैक्शन की कल्पना और वर्णन करें, यानी पीएच.डी. छात्र अपने सलाहकारों के साथ बातचीत करते समय[9]
  • वैक्यूम डायग्राम द्वारा एक विज्ञान कथा कहानी स्टीफन बैक्सटर में टाइटैनिक वैक्यूम आरेख, एक विशिष्ट प्रकार का फेनमैन आरेख है।

See also

Notes

  1. "It was Dyson's contribution to indicate how Feynman's visual insights could be used [...] He realized that Feynman diagrams [...] can also be viewed as a representation of the logical content of field theories (as stated in their perturbative expansions)". Schweber, op.cit (1994)

References

  1. "Why Feynman Diagrams Are So Important". Quanta Magazine (in English). 5 July 2016. Retrieved 2020-06-16.
  2. Kaiser, David (2005). "Physics and Feynman's Diagrams" (PDF). American Scientist. 93 (2): 156. doi:10.1511/2005.52.957.
  3. Feynman, Richard (1949). "The Theory of Positrons". Physical Review. 76 (6): 749–759. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. In this solution, the 'negative energy states' appear in a form which may be pictured (as by Stückelberg) in space-time as waves traveling away from the external potential backwards in time. Experimentally, such a wave corresponds to a positron approaching the potential and annihilating the electron.
  4. Penco, R.; Mauro, D. (2006). "Perturbation theory via Feynman diagrams in classical mechanics". European Journal of Physics. 27 (5): 1241–1250. arXiv:hep-th/0605061. Bibcode:2006EJPh...27.1241P. doi:10.1088/0143-0807/27/5/023.
  5. George Johnson (July 2000). "The Jaguar and the Fox". The Atlantic. Retrieved February 26, 2013.
  6. Gribbin, John; Gribbin, Mary (1997). "5". Richard Feynman: A Life in Science. Penguin-Putnam.
  7. Mlodinow, Leonard (2011). Feynman's Rainbow. Vintage. p. 29.
  8. Bjorken, J. D.; Drell, S. D. (1965). Relativistic Quantum Fields. New York: McGraw-Hill. p. viii. ISBN 978-0-07-005494-3.
  9. जॉर्ज चाम , एकेडमिक इंटरेक्शन - फेनमैन डायग्राम्स, 11 जनवरी, 2012

स्रोत

External links