अंकीय संकेत प्रक्रिया: Difference between revisions
(Created page with "{{short description|Mathematical signal manipulation by computers}} {{Redirect|Digital transform|the impact of digital technology on society|Digital transformation}} {{More c...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Mathematical signal manipulation by computers}} | {{short description|Mathematical signal manipulation by computers}} | ||
अंकीय संकेत प्रक्रिया (डीएसपी) अंकीय प्रसंस्करण का उपयोग, संगणक (computer) या अधिक विशिष्ट अंकीय संकेत प्रक्रमक, संकेत प्रसंस्करण संचालन की एक विस्तृत विविधता करने के लिए किया जाता है। इस तरीके से संसाधित अंकीय संकेत संख्याओं का एक अनुक्रम हैं जो समय, स्थान या आवृत्ति जैसे कार्यक्षेत्र में एक लगातार बदलने वाले प्रतिमान का प्रतिनिधित्व करते हैं। डिजिटल इलेक्ट्रॉनिक्स में, एक अंकीय संकेत को स्पंदावली के रूप में दर्शाया जाता है,<ref>{{cite book |author=B. SOMANATHAN NAIR |title=Digital electronics and logic design |date=2002 |isbn=9788120319561 |publisher=PHI Learning Pvt. Ltd. |quote=Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude. |page=289}}</ref><ref>{{cite book |author=Joseph Migga Kizza |isbn=9780387204734 |date=2005 |publisher=Springer Science & Business Media |title=Computer Network Security}}</ref> जो आमतौर पर एक ट्रांजिस्टर के स्विचिंग द्वारा उत्पन्न होता है।<ref>{{cite book |title=2000 Solved Problems in Digital Electronics |date=2005 |publisher=[[Tata McGraw-Hill Education]] |isbn=978-0-07-058831-8 |page=151 |url=https://books.google.com/books?id=N6FDii6_nSEC&pg=PA151}}</ref> डिजिटल सिग्नल प्रोसेसिंग और एनालॉग सिग्नल प्रोसेसिंग सिग्नल प्रोसेसिंग के सबफील्ड हैं।डीएसपी अनुप्रयोगों में ऑडियो और स्पीच प्रोसेसिंग, सोनार, रडार और अन्य सेंसर सरणी प्रसंस्करण, वर्णक्रमीय घनत्व अनुमान, सांख्यिकीय सिग्नल प्रोसेसिंग, डिजिटल छवि प्रसंस्करण, डेटा संपीड़न, वीडियो कोडिंग, ऑडियो कोडिंग, छवि संपीड़न, दूरसंचार, नियंत्रण प्रणाली, बायोमेडिकल के लिए सिग्नल प्रोसेसिंग शामिल हैंइंजीनियरिंग, और सीस्मोलॉजी, दूसरों के बीच। | |||
डिजिटल सिग्नल प्रोसेसिंग और एनालॉग सिग्नल प्रोसेसिंग सिग्नल प्रोसेसिंग के सबफील्ड हैं।डीएसपी अनुप्रयोगों में ऑडियो और स्पीच प्रोसेसिंग, सोनार, रडार और अन्य सेंसर सरणी प्रसंस्करण, वर्णक्रमीय घनत्व अनुमान, सांख्यिकीय सिग्नल प्रोसेसिंग, डिजिटल छवि प्रसंस्करण, डेटा संपीड़न, वीडियो कोडिंग, ऑडियो कोडिंग, छवि संपीड़न, दूरसंचार, नियंत्रण प्रणाली, बायोमेडिकल के लिए सिग्नल प्रोसेसिंग शामिल हैंइंजीनियरिंग, और सीस्मोलॉजी, दूसरों के बीच। | |||
डीएसपी में रैखिक या नॉनलाइनियर ऑपरेशन शामिल हो सकते हैं।Nonlinear सिग्नल प्रोसेसिंग नॉनलाइनियर सिस्टम पहचान से निकटता से संबंधित है<ref>{{cite book |last=Billings |first=Stephen A. |title=Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains |publisher=Wiley |isbn=978-1-119-94359-4 |date=Sep 2013 |location=UK}}</ref> और समय, आवृत्ति और स्पैटो-टेम्पोरल डोमेन में लागू किया जा सकता है।<!--sort of a flip stab at a wikilink for this concept. Readers ''might'' get the idea.--> | डीएसपी में रैखिक या नॉनलाइनियर ऑपरेशन शामिल हो सकते हैं।Nonlinear सिग्नल प्रोसेसिंग नॉनलाइनियर सिस्टम पहचान से निकटता से संबंधित है<ref>{{cite book |last=Billings |first=Stephen A. |title=Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains |publisher=Wiley |isbn=978-1-119-94359-4 |date=Sep 2013 |location=UK}}</ref> और समय, आवृत्ति और स्पैटो-टेम्पोरल डोमेन में लागू किया जा सकता है।<!--sort of a flip stab at a wikilink for this concept. Readers ''might'' get the idea.--> |
Revision as of 16:37, 30 July 2022
अंकीय संकेत प्रक्रिया (डीएसपी) अंकीय प्रसंस्करण का उपयोग, संगणक (computer) या अधिक विशिष्ट अंकीय संकेत प्रक्रमक, संकेत प्रसंस्करण संचालन की एक विस्तृत विविधता करने के लिए किया जाता है। इस तरीके से संसाधित अंकीय संकेत संख्याओं का एक अनुक्रम हैं जो समय, स्थान या आवृत्ति जैसे कार्यक्षेत्र में एक लगातार बदलने वाले प्रतिमान का प्रतिनिधित्व करते हैं। डिजिटल इलेक्ट्रॉनिक्स में, एक अंकीय संकेत को स्पंदावली के रूप में दर्शाया जाता है,[1][2] जो आमतौर पर एक ट्रांजिस्टर के स्विचिंग द्वारा उत्पन्न होता है।[3] डिजिटल सिग्नल प्रोसेसिंग और एनालॉग सिग्नल प्रोसेसिंग सिग्नल प्रोसेसिंग के सबफील्ड हैं।डीएसपी अनुप्रयोगों में ऑडियो और स्पीच प्रोसेसिंग, सोनार, रडार और अन्य सेंसर सरणी प्रसंस्करण, वर्णक्रमीय घनत्व अनुमान, सांख्यिकीय सिग्नल प्रोसेसिंग, डिजिटल छवि प्रसंस्करण, डेटा संपीड़न, वीडियो कोडिंग, ऑडियो कोडिंग, छवि संपीड़न, दूरसंचार, नियंत्रण प्रणाली, बायोमेडिकल के लिए सिग्नल प्रोसेसिंग शामिल हैंइंजीनियरिंग, और सीस्मोलॉजी, दूसरों के बीच।
डीएसपी में रैखिक या नॉनलाइनियर ऑपरेशन शामिल हो सकते हैं।Nonlinear सिग्नल प्रोसेसिंग नॉनलाइनियर सिस्टम पहचान से निकटता से संबंधित है[4] और समय, आवृत्ति और स्पैटो-टेम्पोरल डोमेन में लागू किया जा सकता है। सिग्नल प्रोसेसिंग के लिए डिजिटल कम्प्यूटेशन का अनुप्रयोग कई अनुप्रयोगों में एनालॉग प्रोसेसिंग पर कई लाभों की अनुमति देता है, जैसे कि ट्रांसमिशन में त्रुटि का पता लगाने और सुधार के साथ -साथ डेटा संपीड़न भी।[5] डिजिटल सिग्नल प्रोसेसिंग डिजिटल टेलीकम्यूनिकेशन और वायरलेस कम्युनिकेशंस जैसे डिजिटल तकनीक के लिए भी मौलिक है।[6] DSP स्ट्रीमिंग डेटा और स्टेटिक (संग्रहीत) डेटा दोनों पर लागू होता है।
सिग्नल सैंपलिंग
डिजिटल रूप से विश्लेषण करने और एक एनालॉग सिग्नल में हेरफेर करने के लिए, इसे एनालॉग-टू-डिजिटल कनवर्टर (एडीसी) के साथ डिजिटाइज़ किया जाना चाहिए।[7] नमूना आमतौर पर दो चरणों में किया जाता है, विवेक और परिमाणीकरण।विवेकाधीन का अर्थ है कि संकेत को समय के समान अंतराल में विभाजित किया गया है, और प्रत्येक अंतराल को आयाम के एकल माप द्वारा दर्शाया गया है।परिमाणीकरण का अर्थ है कि प्रत्येक आयाम माप एक परिमित सेट से एक मान द्वारा अनुमानित किया जाता है।पूर्णांक के लिए वास्तविक संख्याओं को गोल करना एक उदाहरण है।
Nyquist -shannon नमूना प्रमेय का कहना है कि एक संकेत को इसके नमूनों से बिल्कुल फिर से बनाया जा सकता है यदि नमूना आवृत्ति सिग्नल में उच्चतम आवृत्ति घटक से दोगुना से अधिक है।व्यवहार में, नमूना आवृत्ति अक्सर इससे काफी अधिक होती है।[8] सैद्धांतिक डीएसपी विश्लेषण और व्युत्पन्न आमतौर पर असतत-समय सिग्नल मॉडल पर किए जाते हैं, जिसमें कोई आयाम अशुद्धि (परिमाणीकरण त्रुटि) नहीं होता है, जो नमूनाकरण की अमूर्त प्रक्रिया द्वारा बनाया जाता है।संख्यात्मक तरीकों को एक मात्रात्मक संकेत की आवश्यकता होती है, जैसे कि एक एडीसी द्वारा उत्पादित।संसाधित परिणाम एक आवृत्ति स्पेक्ट्रम या आंकड़ों का एक सेट हो सकता है।लेकिन अक्सर यह एक और मात्रात्मक संकेत होता है जिसे डिजिटल-टू-एनालॉग कनवर्टर (डीएसी) द्वारा एनालॉग फॉर्म में वापस परिवर्तित किया जाता है।
डोमेन
डीएसपी इंजीनियर आमतौर पर निम्नलिखित डोमेन में से एक में डिजिटल संकेतों का अध्ययन करते हैं: समय डोमेन (एक-आयामी संकेत), स्थानिक डोमेन (बहुआयामी संकेत), आवृत्ति डोमेन और वेवलेट डोमेन।वे उस डोमेन का चयन करते हैं जिसमें एक सूचित धारणा (या अलग -अलग संभावनाओं की कोशिश करके) बनाकर एक संकेत को संसाधित करने के लिए, जिसमें डोमेन सबसे अच्छा संकेत की आवश्यक विशेषताओं और उस पर लागू होने वाले प्रसंस्करण का प्रतिनिधित्व करता है।एक मापने वाले उपकरण से नमूनों का एक अनुक्रम एक अस्थायी या स्थानिक डोमेन प्रतिनिधित्व का उत्पादन करता है, जबकि एक असतत फूरियर रूपांतरण आवृत्ति डोमेन प्रतिनिधित्व का उत्पादन करता है।
समय और अंतरिक्ष डोमेन
समय डोमेन समय के संबंध में संकेतों के विश्लेषण को संदर्भित करता है।इसी तरह, स्पेस डोमेन स्थिति के संबंध में संकेतों के विश्लेषण को संदर्भित करता है, जैसे, छवि प्रसंस्करण के मामले के लिए पिक्सेल स्थान।
समय या अंतरिक्ष डोमेन में सबसे आम प्रसंस्करण दृष्टिकोण फ़िल्टरिंग नामक विधि के माध्यम से इनपुट सिग्नल को बढ़ाना है।डिजिटल फ़िल्टरिंग में आम तौर पर इनपुट या आउटपुट सिग्नल के वर्तमान नमूने के आसपास आसपास के कई नमूनों के कुछ रैखिक परिवर्तन होते हैं।आसपास के नमूनों की पहचान समय या स्थान के संबंध में की जा सकती है।किसी भी दिए गए इनपुट के लिए एक रैखिक डिजिटल फ़िल्टर के आउटपुट की गणना एक आवेग प्रतिक्रिया के साथ इनपुट सिग्नल को स्वीकार करके की जा सकती है।
आवृत्ति डोमेन
संकेतों को समय या अंतरिक्ष डोमेन से आवृत्ति डोमेन में आमतौर पर फूरियर ट्रांसफॉर्म के उपयोग के माध्यम से परिवर्तित किया जाता है। फूरियर ट्रांसफ़ॉर्म समय या अंतरिक्ष की जानकारी को प्रत्येक आवृत्ति के एक परिमाण और चरण घटक में परिवर्तित करता है। कुछ अनुप्रयोगों के साथ, आवृत्ति के साथ चरण कैसे भिन्न होता है एक महत्वपूर्ण विचार हो सकता है। जहां चरण महत्वहीन है, अक्सर फूरियर ट्रांसफॉर्म को पावर स्पेक्ट्रम में बदल दिया जाता है, जो प्रत्येक आवृत्ति घटक का परिमाण होता है।
आवृत्ति डोमेन में संकेतों के विश्लेषण के लिए सबसे आम उद्देश्य सिग्नल गुणों का विश्लेषण है। इंजीनियर यह निर्धारित करने के लिए स्पेक्ट्रम का अध्ययन कर सकता है कि कौन से आवृत्तियां इनपुट सिग्नल में मौजूद हैं और कौन से गायब हैं। आवृत्ति डोमेन विश्लेषण को स्पेक्ट्रम- या वर्णक्रमीय विश्लेषण भी कहा जाता है।
फ़िल्टरिंग, विशेष रूप से गैर-रियलटाइम काम में भी आवृत्ति डोमेन में प्राप्त किया जा सकता है, फ़िल्टर को लागू करना और फिर समय डोमेन में वापस परिवर्तित करना। यह एक कुशल कार्यान्वयन हो सकता है और ब्रिकवॉल फिल्टर को उत्कृष्ट अनुमानों सहित अनिवार्य रूप से किसी भी फिल्टर प्रतिक्रिया दे सकता है।
कुछ आमतौर पर उपयोग किए जाने वाले आवृत्ति डोमेन परिवर्तन होते हैं। उदाहरण के लिए, CepStrum फूरियर ट्रांसफॉर्म के माध्यम से फ़्रीक्वेंसी डोमेन में एक सिग्नल को परिवर्तित करता है, लॉगरिदम लेता है, फिर एक और फूरियर ट्रांसफॉर्म लागू करता है। यह मूल स्पेक्ट्रम की हार्मोनिक संरचना पर जोर देता है।
जेड-प्लेन विश्लेषण
डिजिटल फिल्टर IIR और FIR प्रकार दोनों में आते हैं।जबकि एफआईआर फिल्टर हमेशा स्थिर होते हैं, आईआईआर फिल्टर में फीडबैक लूप होते हैं जो अस्थिर और दोलन हो सकते हैं।Z- ट्रांसफ़ॉर्म डिजिटल IIR फ़िल्टर की स्थिरता मुद्दों का विश्लेषण करने के लिए एक उपकरण प्रदान करता है।यह लाप्लास ट्रांसफॉर्म के अनुरूप है, जिसका उपयोग एनालॉग IIR फिल्टर को डिजाइन और विश्लेषण करने के लिए किया जाता है।
ऑटोरेग्रेशन विश्लेषण
एक संकेत को इसके पिछले नमूनों के रैखिक संयोजन के रूप में दर्शाया गया है।संयोजन के गुणांक को ऑटोरेग्रेशन गुणांक कहा जाता है।इस विधि में उच्च आवृत्ति संकल्प है और फूरियर ट्रांसफॉर्म की तुलना में कम संकेतों को संसाधित कर सकता है।[9] Prony की विधि का उपयोग चरण, आयाम, प्रारंभिक चरणों और संकेत के घटकों के क्षय का अनुमान लगाने के लिए किया जा सकता है।[10][9]घटकों को जटिल क्षयकारी घातांक माना जाता है।[10][9]
समय-आवृत्ति विश्लेषण
सिग्नल का एक समय-आवृत्ति प्रतिनिधित्व विश्लेषण किए गए सिग्नल के अस्थायी विकास और आवृत्ति संरचना दोनों को कैप्चर कर सकता है।टेम्पोरल और फ्रीक्वेंसी रिज़ॉल्यूशन अनिश्चितता के सिद्धांत द्वारा सीमित हैं और ट्रेडऑफ को विश्लेषण विंडो की चौड़ाई से समायोजित किया जाता है।रैखिक तकनीक जैसे कि शॉर्ट-टाइम फूरियर ट्रांसफॉर्म, वेवलेट ट्रांसफॉर्म, फिल्टर बैंक,[11] गैर-रैखिक (जैसे, विग्नर-विले ट्रांसफॉर्म[10] और ऑटोरेग्रेसिव तरीके (जैसे खंडित प्रोन विधि)[10][12][13] समय-आवृत्ति विमान पर संकेत के प्रतिनिधित्व के लिए उपयोग किया जाता है।गैर-रैखिक और खंडित प्रोन विधियाँ उच्च संकल्प प्रदान कर सकती हैं, लेकिन अवांछनीय कलाकृतियों का उत्पादन कर सकती हैं।समय-आवृत्ति विश्लेषण का उपयोग आमतौर पर गैर-स्थिर संकेतों के विश्लेषण के लिए किया जाता है।उदाहरण के लिए, मौलिक आवृत्ति आकलन के तरीके, जैसे कि RAPT और PEFAC[14] खिड़की वाले वर्णक्रमीय विश्लेषण पर आधारित हैं।
तरंग
संख्यात्मक विश्लेषण और कार्यात्मक विश्लेषण में, एक असतत तरंग रूप से परिवर्तन किसी भी तरंगिका रूपांतरण के लिए है जिसके लिए तरंगों को विवेकपूर्ण रूप से नमूना लिया जाता है।अन्य तरंगिका के रूप में परिवर्तित होने के साथ, फूरियर ट्रांसफॉर्म पर इसका एक महत्वपूर्ण लाभ अस्थायी संकल्प है: यह आवृत्ति और स्थान दोनों की जानकारी को कैप्चर करता है।संयुक्त समय-आवृत्ति संकल्प की सटीकता समय-आवृत्ति के अनिश्चितता सिद्धांत द्वारा सीमित है।
अनुभवजन्य मोड अपघटन
अनुभवजन्य मोड अपघटन आंतरिक मोड फ़ंक्शंस (IMF) में अपघटन संकेत पर आधारित है।आईएमएफ quasiharmonical दोलनों हैं जो संकेत से निकाले जाते हैं।[15]
कार्यान्वयन
डीएसपी एल्गोरिदम को सामान्य-उद्देश्य कंप्यूटर और डिजिटल सिग्नल प्रोसेसर पर चलाया जा सकता है।डीएसपी एल्गोरिदम को उद्देश्य-निर्मित हार्डवेयर जैसे एप्लिकेशन-विशिष्ट एकीकृत सर्किट (एएसआईसी) पर भी लागू किया जाता है।डिजिटल सिग्नल प्रोसेसिंग के लिए अतिरिक्त प्रौद्योगिकियों में अधिक शक्तिशाली सामान्य उद्देश्य माइक्रोप्रोसेसर्स, ग्राफिक्स प्रोसेसिंग यूनिट्स, फील्ड-प्रोग्रामेबल गेट एरेज़ (FPGAs), डिजिटल सिग्नल कंट्रोलर (ज्यादातर औद्योगिक अनुप्रयोगों जैसे कि मोटर कंट्रोल) और स्ट्रीम प्रोसेसर शामिल हैं।[16] उन प्रणालियों के लिए जिनके पास वास्तविक समय कंप्यूटिंग आवश्यकता नहीं है और सिग्नल डेटा (या तो इनपुट या आउटपुट) डेटा फ़ाइलों में मौजूद हैं, प्रसंस्करण सामान्य-उद्देश्य वाले कंप्यूटर के साथ आर्थिक रूप से किया जा सकता है।यह अनिवार्य रूप से किसी भी अन्य डेटा प्रोसेसिंग से अलग नहीं है, डीएसपी गणितीय तकनीकों (जैसे डीसीटी और एफएफटी) को छोड़कर, और नमूना किए गए डेटा को आमतौर पर समय या स्थान में समान रूप से नमूना माना जाता है।इस तरह के एप्लिकेशन का एक उदाहरण फ़ोटोशॉप जैसे सॉफ़्टवेयर के साथ डिजिटल तस्वीरों को संसाधित कर रहा है।
जब एप्लिकेशन की आवश्यकता वास्तविक समय होती है, तो डीएसपी को अक्सर विशेष या समर्पित प्रोसेसर या माइक्रोप्रोसेसरों का उपयोग करके लागू किया जाता है, कभी-कभी कई प्रोसेसर या कई प्रोसेसिंग कोर का उपयोग करते हुए।ये फिक्स्ड-पॉइंट अंकगणित या फ्लोटिंग पॉइंट का उपयोग करके डेटा को संसाधित कर सकते हैं।अधिक मांग वाले अनुप्रयोगों के लिए FPGA का उपयोग किया जा सकता है।[17] सबसे अधिक मांग वाले अनुप्रयोगों या उच्च-मात्रा वाले उत्पादों के लिए, अनुप्रयोग-विशिष्ट एकीकृत सर्किट | ASICS को विशेष रूप से एप्लिकेशन के लिए डिज़ाइन किया जा सकता है।Native processingडीएसपी या आउटबोर्ड प्रोसेसिंग के बजाय कंप्यूटर के सीपीयू द्वारा किया जाता है, जो एक्सटेंशन कार्ड या बाहरी हार्डवेयर बॉक्स या रैक पर स्थित अतिरिक्त तृतीय-पक्ष डीएसपी चिप्स द्वारा किया जाता है।कई डिजिटल ऑडियो वर्कस्टेशन जैसे लॉजिक प्रो, क्यूबेस, डिजिटल परफॉर्मर और प्रो टूल्स ले मूल प्रोसेसिंग का उपयोग करते हैं।अन्य, जैसे कि प्रो टूल्स एचडी, यूनिवर्सल ऑडियो के यूएडी -1 और टीसी इलेक्ट्रॉनिक के पॉवरकोर डीएसपी प्रसंस्करण का उपयोग करते हैं।
अनुप्रयोग
डीएसपी के लिए सामान्य आवेदन क्षेत्रों में शामिल हैं
- ऑडियो सिग्नल प्रोसेसिंग
- ऑडियो डेटा संपीड़न उदा।एमपी 3
- वीडियो डेटा संपीड़न
- कंप्यूटर ग्राफिक्स
- डिजिटल इमेज प्रोसेसिंग
- फ़ोटो में जोड़तोड़
- भाषण प्रसंस्करण
- वाक् पहचान
- डेटा ट्रांसमिशन
- रडार
- सोनार
- वित्तीय संकेत प्रसंस्करण
- आर्थिक पूर्वानुमान
- भूकंप विज्ञान
- बायोमेडिसिन
- मौसम की भविष्यवाणी
विशिष्ट उदाहरणों में डिजिटल मोबाइल फोन में स्पीच कोडिंग और ट्रांसमिशन, हाई-फाई में ध्वनि के कमरे में सुधार और ध्वनि सुदृढीकरण अनुप्रयोगों, औद्योगिक प्रक्रियाओं का विश्लेषण और नियंत्रण, मेडिकल इमेजिंग जैसे कैट स्कैन और एमआरआई, ऑडियो क्रॉसओवर और बराबरी, डिजिटल सिंथेसाइज़र, और डिजिटल सिंथेसाइज़र, और डिजिटल सिंथेसाइज़र शामिल हैं।ऑडियो प्रभाव इकाइयाँ।[18]
तकनीक
- बिलिनियर ट्रांसफॉर्म
- असतत फूरियर रूपांतरण
- असतत-समय फूरियर रूपांतरण
- फ़िल्टर डिजाइन
- गोएर्टज़ेल एल्गोरिथ्म
- कम से कम-वर्ग वर्णक्रमीय विश्लेषण
- LTI सिस्टम थ्योरी
- न्यूनतम चरण
- एस-प्लेन
- स्थानांतरण प्रकार्य
- Z- ट्रांसफ़ॉर्म
संबंधित क्षेत्र
- एनालॉग सिग्नल प्रोसेसिंग
- स्वत: नियंत्रण
- कंप्यूटर इंजीनियरिंग
- कंप्यूटर विज्ञान
- आधार - सामग्री संकोचन
- डेटाफ्लो प्रोग्रामिंग
- असतत कोसाइन ट्रांसफॉर्म
- विद्युत अभियन्त्रण
- फूरियर विश्लेषण
- सूचना सिद्धांत
- मशीन लर्निंग
- वास्तविक समय कंप्यूटिंग
- धारा प्रसंस्करण
- दूरसंचार
- समय श्रृंखला
- तरंगिका
अग्रिम पठन
- Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). Orthogonal Transforms for Digital Signal Processing. New York: Springer-Verlag. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
- Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
- James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
- Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
- Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
- Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
- P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
- Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
- Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
- Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
- Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
- Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
- James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
- Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
- Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
- John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
- John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
- Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
- Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
- Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
- Stein, Jonathan Yaakov (2000-10-09). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
- Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
- Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
- Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
- Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)
संदर्भ
- ↑ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561.
Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
- ↑ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
- ↑ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
- ↑ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
- ↑ Broesch, James D.; Stranneby, Dag; Walker, William (2008-10-20). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
- ↑ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
- ↑ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
- ↑ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
- ↑ 9.0 9.1 9.2 Marple, S. Lawrence (1987-01-01). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
- ↑ 10.0 10.1 10.2 10.3 Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2003-05-01). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2019-02-17.
- ↑ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
- ↑ Mitrofanov, Georgy; Priimenko, Viatcheslav (2015-06-01). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
- ↑ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2020-09-08.
- ↑ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2017-12-03.
- ↑ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (1998-03-08). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2018-06-05.
- ↑ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
- ↑ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2008-05-10.
- ↑ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
]