पुनर्योजित: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{About|हीट एक्सचेंजर|तोपखाने की अवधि|ब्रिटिश आयुध शर्तों की शब्दावली रिक्यूपरेटर}} | {{About|हीट एक्सचेंजर|तोपखाने की अवधि|ब्रिटिश आयुध शर्तों की शब्दावली रिक्यूपरेटर}} | ||
[[File:Heat exchanger.svg|thumb|400px|पुनरावर्तक के प्रकार, या क्रॉस प्लेट [[उष्मा का आदान प्रदान करने वाला]]]]एक | [[File:Heat exchanger.svg|thumb|400px|पुनरावर्तक के प्रकार, या क्रॉस प्लेट [[उष्मा का आदान प्रदान करने वाला]]]]एक पुनर्योजित (रिक्यूपरेटर) एक विशेष उद्देश्य वाला [[प्रतिधारा विनिमय|प्रतिधारा विनिमय है]]। काउंटर-फ्लो [[ऊर्जा पुनःप्राप्ति]] ऊष्मा का आदान प्रदान करने वाला है जो एक एयर हैंडलिंग प्रणाली की आपूर्ति और निकास वायु धाराओं के भीतर, या एक औद्योगिक प्रक्रिया की [[निकास गैस]] में, अपशिष्ट ऊष्मा को पुनर्प्राप्त करने के लिए तैनात किया जाता है। साधारणतः वे निकास से ऊष्मा निकालने के लिए उपयोग किए जाते हैं और इसका उपयोग दहन प्रणाली में प्रवेश करने वाली हवा को पहले से गरम करने के लिए करते हैं। इस तरह वे हवा को गर्म करने के लिए अपशिष्ट ऊर्जा का उपयोग करते हैं, कुछ इनसे ईंधन की पूर्ति करते हैं, और इस तरह पूरे प्रणाली के [[परिवहन में ऊर्जा दक्षता]] में सुधार करते हैं। | ||
== विवरण == | == विवरण == | ||
कई प्रकार की प्रक्रियाओं में, [[दहन]] का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या | कई प्रकार की प्रक्रियाओं में, [[दहन]] का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या ऊष्मा को पुनः प्राप्त करने के लिए पुनर्योजित शब्द तरल काउंटरफ्लो ऊष्मा का आदान प्रदान करने वाले को भी संदर्भित करता है जिसका उपयोग रासायनिक और रिफाइनरी उद्योगों में ऊष्मा प्राप्ति के लिए और अमोनिया-पानी या लीथियम ब्रोमीन-जल अवशोषण प्रशीतन चक्र जैसी बंद प्रक्रियाओं में किया जाता है। | ||
समग्र दक्षता बढ़ाने के लिए, | समग्र दक्षता बढ़ाने के लिए, पुनर्योजित का उपयोग प्रायः ऊष्मा इंजन के दहन हिस्से के साथ मिलकर किया जाता है। उदाहरण के लिए [[गैस टर्बाइन]] इंजन में हवा को संपीड़ित किया जाता है, तत्पश्चात इसे ईंधन के साथ मिलाया जाता है, जिसे जलाया जाता है और टर्बाइन चलाने के लिए उपयोग किया जाता है। पुनर्योजित निकास में से कुछ अपशिष्ट ऊष्मा को संपीड़ित हवा में स्थानांतरित करता है, इस प्रकार ईंधन दहन चरण में प्रवेश करने से पहले इसे गरम करता है। चूँकि गैसों को पहले से गरम किया गया है, अतः टरबाइन इनलेट तापमान तक गैसों को गर्म करने के लिए कम ईंधन की आवश्यकता होती है। साधारणतः अपशिष्ट ऊष्मा के रूप में खो जाने वाली कुछ ऊर्जा को पुनर्प्राप्त करके, पुनरावर्तक एक ताप इंजन या गैस टरबाइन को काफी अधिक कुशल बना सकता है। | ||
== ऊर्जा हस्तांतरण प्रक्रिया == | == ऊर्जा हस्तांतरण प्रक्रिया == | ||
साधारणतः उपकरण द्वारा प्रदान की जाने वाली वायुधाराओं के बीच ऊष्मा हस्तांतरण को [[समझदार गर्मी|संवेदी]] ऊष्मा कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है | साधारणतः उपकरण द्वारा प्रदान की जाने वाली वायुधाराओं के बीच ऊष्मा हस्तांतरण को [[समझदार गर्मी|संवेदी]] ऊष्मा कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है या [[तापीय धारिता]], जिसके परिणामस्वरूप माध्यम के तापमान में परिवर्तन होता है (इस प्रकरण में हवा), लेकिन [[नमी]] की मात्रा में कोई बदलाव नहीं होता है। हालांकि, यद्यपि हवा की धारा में नमी या सापेक्ष आर्द्रता का स्तर उपकरण में संघनन की अनुमति देने के लिए पर्याप्त उच्च है, और इससे गुप्त ऊष्मा निकल जाएगी और ऊष्मा हस्तांतरण सामग्री पानी की एक परत से ढकी होगी। [[अव्यक्त गर्मी|अव्यक्त]] ऊष्मा के एक समान अवशोषण के अतिरिक्त, चूंकि पानी की कुछ परत विपरीत हवा की धारा में वाष्पित हो जाती है, पानी ऊष्मा एक्सचेंजर सामग्री की [[सीमा परत]] के ऊष्मीय प्रतिरोध को कम कर देगा और इस प्रकार उपकरण के [[गर्मी हस्तांतरण गुणांक|ऊष्मा हस्तांतरण गुणांक]] में सुधार करेगा, ऐसे उपकरणों के ऊर्जा विनिमय में अब संवेदी और अव्यक्त ताप अंतरण दोनों सम्मिलित हैं; तापमान में बदलाव के अलावा, निकास हवा की धारा की नमी की मात्रा में भी बदलाव होता है। | ||
हालांकि, संक्षेपण की परत भी उपकरण के माध्यम से दबाव बूँद को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और उपकरण की मौसमी दक्षता कम हो जाएगी। | हालांकि, संक्षेपण की परत भी उपकरण के माध्यम से दबाव बूँद को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और उपकरण की मौसमी दक्षता कम हो जाएगी। | ||
== वायु-संचालन प्रणाली में प्रयोग | == वायु-संचालन प्रणाली में प्रयोग == | ||
हीटिंग, वायु-संचालन और एयर-कंडीशनिंग प्रणाली में | हीटिंग, वायु-संचालन और एयर-कंडीशनिंग प्रणाली में [[एचवीएसी]], पुनर्योजित साधारणतः निकास हवा से अपशिष्ट ऊष्मा का पुन: उपयोग करने के लिए इस्तेमाल किया जाता है जो सामान्य रूप में [[वायुमंडल]] से निष्कासित होता है। उपकरणों में साधारणतः [[अल्युमीनियम]], [[प्लास्टिक]], [[स्टेनलेस स्टील]] या [[सिंथेटिक रेशा]] की समानांतर प्लेटों की एक श्रृंखला सम्मिलित होती है, जिनमें से तांबे के वैकल्पिक जोड़े दो तरफ संलग्न होते हैं, जो एक दूसरे से समकोण पर नलिकाओं के जुड़वां सेट बनाते हैं, और जिसमें आपूर्ति और अर्क होता है। वायु धाराएँ, इस तरह निकास वायु प्रवाह से ऊष्मा को अलग करने वाली प्लेटों के माध्यम से और आपूर्ति वायु धारा में स्थानांतरित किया जाता है। यूनिट के विनिर्देश के आधार पर निर्माता 95% तक की सकल दक्षता का दावा करते हैं। | ||
इस उपकरण की विशेषताएं इकाई के भौतिक आकार | इस उपकरण की विशेषताएं इकाई के भौतिक आकार विशेष रूप से वायु पथ की दूरी और प्लेटों की दूरी के बीच संबंध के कारण हैं। उपकरण के माध्यम से एक समान वायु दबाव बूँद के लिए एक छोटी इकाई में एक बड़ी इकाई की तुलना में एक संकीर्ण प्लेट रिक्ति और कम वायु वेग होगा, लेकिन दोनों इकाइयां समान रूप से कुशल हो सकती हैं। इकाई के क्रॉस-फ्लो डिज़ाइन के कारण, इसका भौतिक आकार वायु पथ की लंबाई को निर्धारित करेगा, और जैसे-जैसे यह बढ़ता है, ऊष्मा हस्तांतरण में वृद्धि होगी लेकिन दबाव में गिरावट भी बढ़ेगी, इसलिए दबाव में कमी को कम करने के लिए प्लेट रिक्ति को बढ़ाया जाता है, लेकिन यह बदले में ऊष्मा हस्तांतरण को कम करेगा। | ||
एक सामान्य नियम के रूप में एक | एक सामान्य नियम के रूप में एक पुनर्योजित को बीच के दबाव में गिरावट के लिए चुना जाता है {{convert|150|-|250|Pa}} एक अच्छी दक्षता होगी, जबकि पंखे की बिजली की खपत पर एक छोटा प्रभाव पड़ेगा, लेकिन संरचनात्मक रूप से छोटे, लेकिन उच्च दबाव बूँद पुनर्योजित की तुलना में उच्च मौसमी दक्षता होगी। | ||
जब ऊष्मा वसूली की आवश्यकता नहीं होती है, तो वायु-संचालन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वायु-संचालन प्रणाली में एक निरंतर दबाव बनाए रखने के लिए निर्धारित हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में प्रणाली की मौसमी दक्षता में सुधार होता है। . | जब ऊष्मा वसूली की आवश्यकता नहीं होती है, तो वायु-संचालन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वायु-संचालन प्रणाली में एक निरंतर दबाव बनाए रखने के लिए निर्धारित हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में प्रणाली की मौसमी दक्षता में सुधार होता है। . | ||
== धातुकर्म भट्टियों में प्रयोग | == धातुकर्म भट्टियों में प्रयोग == | ||
ऊर्जा की लागत और ऑपरेशन के [[कार्बन पदचिह्न]] को कम करने के लिए मेटल | ऊर्जा की लागत और ऑपरेशन के [[कार्बन पदचिह्न]] को कम करने के लिए मेटल पुनर्योजित द्वारा कई वर्षों तक दहन हवा और ईंधन को पहले से गरम करने के लिए अपशिष्ट गैसों से ऊष्मा को पुनर्प्राप्त करने के लिए पुनर्संयोजकों का उपयोग किया गया है। पुनर्योजी भट्टियों जैसे विकल्पों की तुलना में, प्रारंभिक लागत कम होती है, जिसमे आगे और पीछे स्विच करने के लिए कोई वाल्व नहीं होता है, कोई प्रेरित-ड्राफ्ट पंखे नहीं होते हैं और इसके लिए भट्टी में फैले गैस नलिकाओं के जाल की आवश्यकता नहीं होती है। | ||
[[पुनर्योजी बर्नर|पुनर्योजी]] | [[पुनर्योजी बर्नर|पुनर्योजी]] दहन की तुलना में ऐतिहासिक रूप से पुनर्योजित का पुनः प्राप्ति अनुपात कम था। हालांकि, प्रौद्योगिकी में हाल के सुधारों ने पुनर्योजित को 70-80% अपशिष्ट ऊष्मा और पूर्व-गर्म हवा को पुनर्प्राप्त करने की अनुमति दी है। {{convert|850|-|900|°C}} अब वर्तमान समय में संभव है। | ||
== गैस टर्बाइन == | == गैस टर्बाइन == | ||
[[Image:GasTurbine.svg|thumb|एक ठीक हो चुके माइक्रोटर्बाइन का | [[Image:GasTurbine.svg|thumb|एक ठीक हो चुके माइक्रोटर्बाइन का कट अवे]]बिजली उत्पादन के लिए [[गैस टरबाइन]] की दक्षता बढ़ाने के लिए पुनर्योजित का उपयोग किया जा सकता है, बशर्ते निकास गैस कंप्रेसर निर्गम मार्ग तापमान से अधिक गर्म हो। टर्बाइन से निकलने वाली ऊष्मा का उपयोग कंबस्टर में आगे गर्म करने से पहले कंप्रेसर से हवा को प्री-ऊष्मा प्राप्त करने के लिए किया जाता है, जिससे आवश्यक ईंधन इनपुट कम हो जाता है। टर्बाइन आउट और कंप्रेसर आउट के बीच तापमान का अंतर जितना बड़ा होगा, पुनर्योजित से उतना ही अधिक लाभ होगा।<ref>Çengel, Yunus A.; Boles, Michael (1994). Thermodynamics: An Engineering Approach</ref> इसलिए, [[माइक्रो टर्बाइन]] (<1 मेगावाट), जिसमें साधारणतः कम दबाव अनुपात होता है, को पुनर्योजित के उपयोग से सबसे अधिक लाभ होता है। व्यवहार में, एक पुनरावर्तक के उपयोग के माध्यम से दक्षता को दोगुना करना संभव है।<ref>{{cite web |url= http://hiflux.co.uk/applications/microturbine-recuperators/ |title= माइक्रोटर्बाइन रिक्यूपरेटर्स|publisher= Hiflux Limited }}</ref> माइक्रोटर्बाइन अनुप्रयोगों में एक पुनर्योजित के लिए प्रमुख व्यावहारिक चुनौती निकास गैस तापमान {{convert|750|°C}}.से प्रतिस्पर्धा करना है, जो अधिक हो सकता है| | ||
== अन्य प्रकार के गैस-टू-गैस ऊष्मा विनिमयक == | == अन्य प्रकार के गैस-टू-गैस ऊष्मा विनिमयक == | ||
Line 55: | Line 55: | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
{{HVAC}} | {{HVAC}} | ||
[[Category:Collapse templates]] | [[Category:Collapse templates]] |
Revision as of 17:22, 4 January 2023
एक पुनर्योजित (रिक्यूपरेटर) एक विशेष उद्देश्य वाला प्रतिधारा विनिमय है। काउंटर-फ्लो ऊर्जा पुनःप्राप्ति ऊष्मा का आदान प्रदान करने वाला है जो एक एयर हैंडलिंग प्रणाली की आपूर्ति और निकास वायु धाराओं के भीतर, या एक औद्योगिक प्रक्रिया की निकास गैस में, अपशिष्ट ऊष्मा को पुनर्प्राप्त करने के लिए तैनात किया जाता है। साधारणतः वे निकास से ऊष्मा निकालने के लिए उपयोग किए जाते हैं और इसका उपयोग दहन प्रणाली में प्रवेश करने वाली हवा को पहले से गरम करने के लिए करते हैं। इस तरह वे हवा को गर्म करने के लिए अपशिष्ट ऊर्जा का उपयोग करते हैं, कुछ इनसे ईंधन की पूर्ति करते हैं, और इस तरह पूरे प्रणाली के परिवहन में ऊर्जा दक्षता में सुधार करते हैं।
विवरण
कई प्रकार की प्रक्रियाओं में, दहन का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या ऊष्मा को पुनः प्राप्त करने के लिए पुनर्योजित शब्द तरल काउंटरफ्लो ऊष्मा का आदान प्रदान करने वाले को भी संदर्भित करता है जिसका उपयोग रासायनिक और रिफाइनरी उद्योगों में ऊष्मा प्राप्ति के लिए और अमोनिया-पानी या लीथियम ब्रोमीन-जल अवशोषण प्रशीतन चक्र जैसी बंद प्रक्रियाओं में किया जाता है।
समग्र दक्षता बढ़ाने के लिए, पुनर्योजित का उपयोग प्रायः ऊष्मा इंजन के दहन हिस्से के साथ मिलकर किया जाता है। उदाहरण के लिए गैस टर्बाइन इंजन में हवा को संपीड़ित किया जाता है, तत्पश्चात इसे ईंधन के साथ मिलाया जाता है, जिसे जलाया जाता है और टर्बाइन चलाने के लिए उपयोग किया जाता है। पुनर्योजित निकास में से कुछ अपशिष्ट ऊष्मा को संपीड़ित हवा में स्थानांतरित करता है, इस प्रकार ईंधन दहन चरण में प्रवेश करने से पहले इसे गरम करता है। चूँकि गैसों को पहले से गरम किया गया है, अतः टरबाइन इनलेट तापमान तक गैसों को गर्म करने के लिए कम ईंधन की आवश्यकता होती है। साधारणतः अपशिष्ट ऊष्मा के रूप में खो जाने वाली कुछ ऊर्जा को पुनर्प्राप्त करके, पुनरावर्तक एक ताप इंजन या गैस टरबाइन को काफी अधिक कुशल बना सकता है।
ऊर्जा हस्तांतरण प्रक्रिया
साधारणतः उपकरण द्वारा प्रदान की जाने वाली वायुधाराओं के बीच ऊष्मा हस्तांतरण को संवेदी ऊष्मा कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है या तापीय धारिता, जिसके परिणामस्वरूप माध्यम के तापमान में परिवर्तन होता है (इस प्रकरण में हवा), लेकिन नमी की मात्रा में कोई बदलाव नहीं होता है। हालांकि, यद्यपि हवा की धारा में नमी या सापेक्ष आर्द्रता का स्तर उपकरण में संघनन की अनुमति देने के लिए पर्याप्त उच्च है, और इससे गुप्त ऊष्मा निकल जाएगी और ऊष्मा हस्तांतरण सामग्री पानी की एक परत से ढकी होगी। अव्यक्त ऊष्मा के एक समान अवशोषण के अतिरिक्त, चूंकि पानी की कुछ परत विपरीत हवा की धारा में वाष्पित हो जाती है, पानी ऊष्मा एक्सचेंजर सामग्री की सीमा परत के ऊष्मीय प्रतिरोध को कम कर देगा और इस प्रकार उपकरण के ऊष्मा हस्तांतरण गुणांक में सुधार करेगा, ऐसे उपकरणों के ऊर्जा विनिमय में अब संवेदी और अव्यक्त ताप अंतरण दोनों सम्मिलित हैं; तापमान में बदलाव के अलावा, निकास हवा की धारा की नमी की मात्रा में भी बदलाव होता है।
हालांकि, संक्षेपण की परत भी उपकरण के माध्यम से दबाव बूँद को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और उपकरण की मौसमी दक्षता कम हो जाएगी।
वायु-संचालन प्रणाली में प्रयोग
हीटिंग, वायु-संचालन और एयर-कंडीशनिंग प्रणाली में एचवीएसी, पुनर्योजित साधारणतः निकास हवा से अपशिष्ट ऊष्मा का पुन: उपयोग करने के लिए इस्तेमाल किया जाता है जो सामान्य रूप में वायुमंडल से निष्कासित होता है। उपकरणों में साधारणतः अल्युमीनियम, प्लास्टिक, स्टेनलेस स्टील या सिंथेटिक रेशा की समानांतर प्लेटों की एक श्रृंखला सम्मिलित होती है, जिनमें से तांबे के वैकल्पिक जोड़े दो तरफ संलग्न होते हैं, जो एक दूसरे से समकोण पर नलिकाओं के जुड़वां सेट बनाते हैं, और जिसमें आपूर्ति और अर्क होता है। वायु धाराएँ, इस तरह निकास वायु प्रवाह से ऊष्मा को अलग करने वाली प्लेटों के माध्यम से और आपूर्ति वायु धारा में स्थानांतरित किया जाता है। यूनिट के विनिर्देश के आधार पर निर्माता 95% तक की सकल दक्षता का दावा करते हैं।
इस उपकरण की विशेषताएं इकाई के भौतिक आकार विशेष रूप से वायु पथ की दूरी और प्लेटों की दूरी के बीच संबंध के कारण हैं। उपकरण के माध्यम से एक समान वायु दबाव बूँद के लिए एक छोटी इकाई में एक बड़ी इकाई की तुलना में एक संकीर्ण प्लेट रिक्ति और कम वायु वेग होगा, लेकिन दोनों इकाइयां समान रूप से कुशल हो सकती हैं। इकाई के क्रॉस-फ्लो डिज़ाइन के कारण, इसका भौतिक आकार वायु पथ की लंबाई को निर्धारित करेगा, और जैसे-जैसे यह बढ़ता है, ऊष्मा हस्तांतरण में वृद्धि होगी लेकिन दबाव में गिरावट भी बढ़ेगी, इसलिए दबाव में कमी को कम करने के लिए प्लेट रिक्ति को बढ़ाया जाता है, लेकिन यह बदले में ऊष्मा हस्तांतरण को कम करेगा।
एक सामान्य नियम के रूप में एक पुनर्योजित को बीच के दबाव में गिरावट के लिए चुना जाता है 150–250 pascals (0.022–0.036 psi) एक अच्छी दक्षता होगी, जबकि पंखे की बिजली की खपत पर एक छोटा प्रभाव पड़ेगा, लेकिन संरचनात्मक रूप से छोटे, लेकिन उच्च दबाव बूँद पुनर्योजित की तुलना में उच्च मौसमी दक्षता होगी।
जब ऊष्मा वसूली की आवश्यकता नहीं होती है, तो वायु-संचालन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वायु-संचालन प्रणाली में एक निरंतर दबाव बनाए रखने के लिए निर्धारित हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में प्रणाली की मौसमी दक्षता में सुधार होता है। .
धातुकर्म भट्टियों में प्रयोग
ऊर्जा की लागत और ऑपरेशन के कार्बन पदचिह्न को कम करने के लिए मेटल पुनर्योजित द्वारा कई वर्षों तक दहन हवा और ईंधन को पहले से गरम करने के लिए अपशिष्ट गैसों से ऊष्मा को पुनर्प्राप्त करने के लिए पुनर्संयोजकों का उपयोग किया गया है। पुनर्योजी भट्टियों जैसे विकल्पों की तुलना में, प्रारंभिक लागत कम होती है, जिसमे आगे और पीछे स्विच करने के लिए कोई वाल्व नहीं होता है, कोई प्रेरित-ड्राफ्ट पंखे नहीं होते हैं और इसके लिए भट्टी में फैले गैस नलिकाओं के जाल की आवश्यकता नहीं होती है।
पुनर्योजी दहन की तुलना में ऐतिहासिक रूप से पुनर्योजित का पुनः प्राप्ति अनुपात कम था। हालांकि, प्रौद्योगिकी में हाल के सुधारों ने पुनर्योजित को 70-80% अपशिष्ट ऊष्मा और पूर्व-गर्म हवा को पुनर्प्राप्त करने की अनुमति दी है। 850–900 °C (1,560–1,650 °F) अब वर्तमान समय में संभव है।
गैस टर्बाइन
बिजली उत्पादन के लिए गैस टरबाइन की दक्षता बढ़ाने के लिए पुनर्योजित का उपयोग किया जा सकता है, बशर्ते निकास गैस कंप्रेसर निर्गम मार्ग तापमान से अधिक गर्म हो। टर्बाइन से निकलने वाली ऊष्मा का उपयोग कंबस्टर में आगे गर्म करने से पहले कंप्रेसर से हवा को प्री-ऊष्मा प्राप्त करने के लिए किया जाता है, जिससे आवश्यक ईंधन इनपुट कम हो जाता है। टर्बाइन आउट और कंप्रेसर आउट के बीच तापमान का अंतर जितना बड़ा होगा, पुनर्योजित से उतना ही अधिक लाभ होगा।[1] इसलिए, माइक्रो टर्बाइन (<1 मेगावाट), जिसमें साधारणतः कम दबाव अनुपात होता है, को पुनर्योजित के उपयोग से सबसे अधिक लाभ होता है। व्यवहार में, एक पुनरावर्तक के उपयोग के माध्यम से दक्षता को दोगुना करना संभव है।[2] माइक्रोटर्बाइन अनुप्रयोगों में एक पुनर्योजित के लिए प्रमुख व्यावहारिक चुनौती निकास गैस तापमान 750 °C (1,380 °F).से प्रतिस्पर्धा करना है, जो अधिक हो सकता है|
अन्य प्रकार के गैस-टू-गैस ऊष्मा विनिमयक
- गरम पाइप
- रन-अराउंड कॉइल
- ऊष्मीय व्हील, या रोटरी ऊष्मा एक्सचेंजर (एन्थैल्पी व्हील और डेसिकेंट व्हील सहित)
- संवहन आरोग्यलाभ करनेवाला
- पुनरोद्धार विकिरण
यह भी देखें
- हवा का संचालक
- ऊर्जा वसूली वेंटिलेशन
- हीट रिकवरी वेंटिलेशन
- एचवीएसी (हीटिंग, वेंटिलेशन और एयर कंडीशनिंग)
- घर के अंदर हवा की गुणवत्ता
- पुनर्योजी हीट एक्सचेंजर
- उष्ण आराम
संदर्भ
- ↑ Çengel, Yunus A.; Boles, Michael (1994). Thermodynamics: An Engineering Approach
- ↑ "माइक्रोटर्बाइन रिक्यूपरेटर्स". Hiflux Limited.