सीमा मान समस्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
[[File:Boundary value problem-en.svg|300px|thumb|right|एक ऐसा क्षेत्र दिखाता है जहां एक [[ अंतर समीकरण ]] मान्य है और संबंधित सीमा मान]]गणित में, अंतर समीकरणों के क्षेत्र में, एक सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक  समूह होता है, जिसे सीमा की स्थिति कहा जाता है। <ref name="Zwillinger2014">{{cite book|author=Daniel Zwillinger|title=विभेदक समीकरणों की पुस्तिका|url=https://books.google.com/books?id=9QLjBQAAQBAJ&q=%22boundary+value%22&pg=PA536|date=12 May 2014|publisher=Elsevier Science|isbn=978-1-4832-2096-3|pages=536–}}</ref> सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।
[[File:Boundary value problem-en.svg|300px|thumb|right|एक ऐसा क्षेत्र दिखाता है जहां एक [[ अंतर समीकरण ]] मान्य है और संबंधित सीमा मान]]गणित में, अंतर समीकरणों के क्षेत्र में, एक सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक  समूह होता है, जिसे सीमा की स्थिति कहा जाता है। <ref name="Zwillinger2014">{{cite book|author=Daniel Zwillinger|title=विभेदक समीकरणों की पुस्तिका|url=https://books.google.com/books?id=9QLjBQAAQBAJ&q=%22boundary+value%22&pg=PA536|date=12 May 2014|publisher=Elsevier Science|isbn=978-1-4832-2096-3|pages=536–}}</ref> सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।


भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि  प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। स्टर्म-लिउविल समस्याएं। इन समस्याओं के विश्लेषण में एक अवकल संकारक के [[ eigenfunction ]]s शामिल हैं।
भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि  प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। इन समस्याओं के विश्लेषण में एक अवकल संकारक के [[ eigenfunction | आईगेन फलन]] सम्मिलित हैं।


अनुप्रयोगों में उपयोगी होने के लिए, एक सीमा मूल्य समस्या [[ अच्छी तरह से उत्पन्न समस्या ]] होनी चाहिए। इसका मतलब यह है कि समस्या के इनपुट दिए जाने पर एक अनूठा हल मौजूद होता है, जो लगातार इनपुट पर निर्भर करता है। आंशिक अंतर समीकरणों के क्षेत्र में बहुत से सैद्धांतिक कार्य यह साबित करने के लिए समर्पित हैं कि वैज्ञानिक और इंजीनियरिंग अनुप्रयोगों से उत्पन्न होने वाली सीमा मूल्य समस्याएं वास्तव में अच्छी तरह से प्रस्तुत हैं।
अनुप्रयोगों में उपयोगी होने के लिए, एक सीमा मूल्य समस्या [[ अच्छी तरह से उत्पन्न समस्या ]] होनी चाहिए। इसका मतलब यह है कि समस्या के निवेश  दिए जाने पर एक विशिष्ट हल उपस्थित होता है, जो लगातार निवेश  पर निर्भर करता है। आंशिक अंतर समीकरणों के क्षेत्र में बहुत से सैद्धांतिक कार्य यह साबित करने के लिए समर्पित हैं कि वैज्ञानिक और इंजीनियरिंग अनुप्रयोगों से उत्पन्न होने वाली सीमा मूल्य समस्याएं वास्तव में अच्छी तरह से प्रस्तुत हैं।


अध्ययन की जाने वाली शुरुआती सीमा मूल्य समस्याओं में हार्मोनिक कार्यों (लाप्लास के समीकरण के हल) को खोजने की [[ डिरिचलेट समस्या ]] है; हल डिरिक्लेट के सिद्धांत द्वारा दिया गया था।
अध्ययन की जाने वाली शुरुआती सीमा मूल्य समस्याओं में हार्मोनिक कार्यों (लाप्लास के समीकरण के हल) को खोजने की [[ डिरिचलेट समस्या ]] है; हल डिरिक्लेट के सिद्धांत द्वारा दिया गया था।


== स्पष्टीकरण ==
== स्पष्टीकरण ==
सीमा मूल्य समस्याएं [[ प्रारंभिक मूल्य समस्या ]]ओं के समान हैं। एक सीमा मूल्य समस्या में समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी शर्तें होती हैं (और वह मान निम्न सीमा पर होता है। डोमेन, इस प्रकार शब्द प्रारंभिक मान)। एक सीमा मूल्य एक डेटा मान है जो किसी सिस्टम या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम इनपुट, आंतरिक या आउटपुट मान से मेल खाता है।<ref>{{Cite book|title=ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग|publisher=ISO/IEC/IEEE 24765:2010(E)|pages=vol., no., pp.1-418}}</ref>
सीमा मूल्य समस्याएं [[ प्रारंभिक मूल्य समस्या ]]ओं के समान हैं। एक सीमा मूल्य समस्या में समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी शर्तें होती हैं (और वह मान निम्न सीमा पर होता है। डोमेन, इस प्रकार शब्द प्रारंभिक मान)। एक सीमा मूल्य एक डेटा मान है जो किसी सिस्टम या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम निवेश , आंतरिक या आउटपुट मान से मेल खाता है।<ref>{{Cite book|title=ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग|publisher=ISO/IEC/IEEE 24765:2010(E)|pages=vol., no., pp.1-418}}</ref>
उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो एक सीमा मूल्य समस्या के लिए मान निर्दिष्ट करेगी <math>y(t)</math> दोनों तरफ <math>t=0</math> और <math>t=1</math>, जबकि प्रारंभिक मूल्य समस्या का मान निर्दिष्ट करेगी <math>y(t)</math> और <math>y'(t)</math> समय पर <math>t=0</math>.
उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो एक सीमा मूल्य समस्या के लिए मान निर्दिष्ट करेगी <math>y(t)</math> दोनों तरफ <math>t=0</math> और <math>t=1</math>, जबकि प्रारंभिक मूल्य समस्या का मान निर्दिष्ट करेगी <math>y(t)</math> और <math>y'(t)</math> समय पर <math>t=0</math>.



Revision as of 20:28, 12 January 2023

एक ऐसा क्षेत्र दिखाता है जहां एक अंतर समीकरण मान्य है और संबंधित सीमा मान

गणित में, अंतर समीकरणों के क्षेत्र में, एक सीमा मूल्य समस्या एक अंतर समीकरण है जिसमें अतिरिक्त बाधाओं का एक समूह होता है, जिसे सीमा की स्थिति कहा जाता है। [1] सीमा मूल्य समस्या का हल अंतर समीकरण का हल है जो सीमा प्रतिबंधों को भी संतुष्ट करता है।

भौतिक विज्ञान की कई शाखाओं में सीमा मूल्य की समस्याएँ उत्पन्न होती हैं क्योंकि किसी भी भौतिक अवकल समीकरण में ये समस्याएँ होंगी। तरंग समीकरण से जुड़ी समस्याएं, जैसे कि प्रसामान्य विधा का निर्धारण, प्रायः सीमा मूल्य समस्याओं के रूप में कहा जाता है। महत्वपूर्ण सीमा मूल्य समस्याओं का एक बड़ा वर्ग स्टर्म-लिउविल सिद्धांत है। इन समस्याओं के विश्लेषण में एक अवकल संकारक के आईगेन फलन सम्मिलित हैं।

अनुप्रयोगों में उपयोगी होने के लिए, एक सीमा मूल्य समस्या अच्छी तरह से उत्पन्न समस्या होनी चाहिए। इसका मतलब यह है कि समस्या के निवेश दिए जाने पर एक विशिष्ट हल उपस्थित होता है, जो लगातार निवेश पर निर्भर करता है। आंशिक अंतर समीकरणों के क्षेत्र में बहुत से सैद्धांतिक कार्य यह साबित करने के लिए समर्पित हैं कि वैज्ञानिक और इंजीनियरिंग अनुप्रयोगों से उत्पन्न होने वाली सीमा मूल्य समस्याएं वास्तव में अच्छी तरह से प्रस्तुत हैं।

अध्ययन की जाने वाली शुरुआती सीमा मूल्य समस्याओं में हार्मोनिक कार्यों (लाप्लास के समीकरण के हल) को खोजने की डिरिचलेट समस्या है; हल डिरिक्लेट के सिद्धांत द्वारा दिया गया था।

स्पष्टीकरण

सीमा मूल्य समस्याएं प्रारंभिक मूल्य समस्या ओं के समान हैं। एक सीमा मूल्य समस्या में समीकरण में स्वतंत्र चर के चरम सीमाओं (सीमाओं) पर निर्दिष्ट स्थितियाँ होती हैं जबकि एक प्रारंभिक मूल्य समस्या में स्वतंत्र चर के समान मूल्य पर निर्दिष्ट सभी शर्तें होती हैं (और वह मान निम्न सीमा पर होता है। डोमेन, इस प्रकार शब्द प्रारंभिक मान)। एक सीमा मूल्य एक डेटा मान है जो किसी सिस्टम या घटक के लिए निर्दिष्ट न्यूनतम या अधिकतम निवेश , आंतरिक या आउटपुट मान से मेल खाता है।[2] उदाहरण के लिए, यदि स्वतंत्र चर डोमेन [0,1] पर समय है, तो एक सीमा मूल्य समस्या के लिए मान निर्दिष्ट करेगी दोनों तरफ और , जबकि प्रारंभिक मूल्य समस्या का मान निर्दिष्ट करेगी और समय पर .

एक लोहे की पट्टी के सभी बिंदुओं पर तापमान का पता लगाना, जिसके एक सिरे को पूर्ण शून्य पर रखा जाता है और दूसरे सिरे को पानी के हिमांक बिंदु पर रखा जाता है, यह एक सीमा मूल्य समस्या होगी।

यदि समस्या स्थान और समय दोनों पर निर्भर है, तो समस्या का मान सभी समय के लिए दिए गए बिंदु पर या सभी स्थान के लिए दिए गए समय पर निर्दिष्ट किया जा सकता है।

ठोस रूप से, सीमा मूल्य समस्या (एक स्थानिक आयाम में) का एक उदाहरण है

अज्ञात समारोह के लिए हल करने के लिए सीमा प्रतिबंधों के साथ

सीमा प्रतिबंधों के बिना, इस समीकरण का सामान्य हल है

सीमा की स्थिति से एक प्राप्त करता है

जिसका तात्पर्य है सीमा की स्थिति से एक पाता है

इसलिए कोई यह देखता है कि सीमा प्रतिबंधों को लागू करने से एक अद्वितीय हल निर्धारित करने की अनुमति मिलती है, जो इस मामले में है


सीमा मूल्य समस्याओं के प्रकार

सीमा मूल्य की स्थिति

इस आदर्श 2डी रॉड के तापमान का वर्णन करने के लिए एक फ़ंक्शन ढूँढना डिरिचलेट सीमा प्रतिबंधों के साथ एक सीमा मूल्य समस्या है। कोई भी हल फ़ंक्शन गर्मी समीकरण को हल करेगा, और बाईं सीमा पर 0 K के तापमान की सीमा प्रतिबंधों को पूरा करेगा और दाहिनी सीमा पर 273.15 K का तापमान होगा।

एक सीमा स्थिति जो फ़ंक्शन के मूल्य को ही निर्दिष्ट करती है, एक डिरिचलेट सीमा स्थिति या प्रथम प्रकार की सीमा शर्त है। उदाहरण के लिए, यदि किसी लोहे की छड़ का एक सिरा पूर्ण शून्य पर रखा जाता है, तो समस्या का मूल्य अंतरिक्ष में उस बिंदु पर ज्ञात होगा।

एक सीमा की स्थिति जो फ़ंक्शन के सामान्य व्युत्पन्न के मूल्य को निर्दिष्ट करती है, एक न्यूमैन सीमा की स्थिति या दूसरी प्रकार की सीमा की स्थिति है। उदाहरण के लिए, यदि लोहे की छड़ के एक सिरे पर हीटर लगा हो, तो ऊर्जा एक स्थिर दर से बढ़ेगी लेकिन वास्तविक तापमान ज्ञात नहीं होगा।

यदि सीमा में एक वक्र या सतह का रूप है जो सामान्य व्युत्पन्न और चर को ही मान देता है तो यह एक कॉची सीमा स्थिति है।

उदाहरण

अज्ञात फ़ंक्शन के लिए सीमा प्रतिबंधों का सारांश, , स्थिरांक और सीमा स्थितियों और ज्ञात स्केलर कार्यों द्वारा निर्दिष्ट और सीमा प्रतिबंधों द्वारा निर्दिष्ट।

Name Form on 1st part of boundary Form on 2nd part of boundary
Dirichlet
Neumann
Robin
Mixed
Cauchy both and


विभेदक ऑपरेटर

सीमा की स्थिति के अलावा, सीमा मूल्य की समस्याओं को भी अंतर ऑपरेटर के प्रकार के अनुसार वर्गीकृत किया जाता है। एक अण्डाकार ऑपरेटर के लिए, एक अण्डाकार सीमा मूल्य समस्याओं पर चर्चा करता है। एक अतिशयोक्तिपूर्ण ऑपरेटर के लिए, एक अतिशयोक्तिपूर्ण सीमा मूल्य समस्याओं पर चर्चा करता है। इन श्रेणियों को आगे रेखीय अवकल समीकरण और विभिन्न अरैखिक प्रकारों में विभाजित किया गया है।

अनुप्रयोग

विद्युत चुम्बकीय क्षमता

इलेक्ट्रोस्टाटिक्स में, एक सामान्य समस्या एक ऐसे फ़ंक्शन को ढूंढना है जो किसी दिए गए क्षेत्र की विद्युत क्षमता का वर्णन करता है। यदि क्षेत्र में आवेश नहीं है, तो संभावित रूप से लाप्लास के समीकरण (एक तथाकथित हार्मोनिक फ़ंक्शन) का हल होना चाहिए। इस मामले में सीमा की स्थिति विद्युत चुम्बकीय क्षेत्रों के लिए इंटरफ़ेस की स्थिति है। यदि क्षेत्र में कोई वर्तमान घनत्व नहीं है, तो इसी तरह की प्रक्रिया का उपयोग करके चुंबकीय स्केलर क्षमता को परिभाषित करना भी संभव है।

यह भी देखें


टिप्पणियाँ

  1. Daniel Zwillinger (12 May 2014). विभेदक समीकरणों की पुस्तिका. Elsevier Science. pp. 536–. ISBN 978-1-4832-2096-3.
  2. ISO/IEC/IEEE अंतर्राष्ट्रीय मानक - सिस्टम और सॉफ़्टवेयर इंजीनियरिंग. ISO/IEC/IEEE 24765:2010(E). pp. vol., no., pp.1-418.


संदर्भ

  • A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2.
  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9.


बाहरी कड़ियाँ

श्रेणी:साधारण अवकल समीकरण श्रेणी:गणितीय समस्याएं