समूह प्रतिनिधित्व: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Group homomorphism into the general linear group over a vector space}} {{Distinguish|Presentation of a group}} File:Hexagon_Reflections.png|thumb|right|...")
 
Line 164: Line 164:




==इस पेज में लापता आंतरिक लिंक की सूची==
*
 
*लीनियर अलजेब्रा
*द्विभाजित
*उलटा मैट्रिक्स
*अंक शास्त्र
*सदिश स्थल
*भौतिक विज्ञान
*पी-यानी संख्या
*मैके सिद्धांत
*वास्तविक संख्याये
*बनच स्थान
*झूठ बोलने वाले समूह
*झूठ बीजगणित का प्रतिनिधित्व
*झूठ बोलने वाले समूहों का प्रतिनिधित्व
*उसका नाप
*स्थानीय कॉम्पैक्ट समूह
*विश्वसनीय प्रस्तुति
*समाकृतिकता
*प्रस्तुतीकरण
*जटिल आंकड़े
*समूहों का प्रत्यक्ष योग
*संयुक्त संख्या
*समारोह (गणित)
*परिवर्तन
*द्विभाजन
*affine अंतरिक्ष
*अनुमानित प्रतिनिधित्व
*प्रक्षेपण स्थान
*अर्धसरल प्रतिनिधित्व
==संदर्भ==
==संदर्भ==
* {{Fulton-Harris}}. Introduction to representation theory with emphasis on [[Lie groups]].
* {{Fulton-Harris}}. Introduction to representation theory with emphasis on [[Lie groups]].

Revision as of 15:33, 5 January 2023

एक समूह (गणित) का प्रतिनिधित्व एक वस्तु पर कार्य करता है। एक सरल उदाहरण यह है कि डायहेड्रल समूह , जिसमें प्रतिबिंब और घुमाव शामिल हैं, बहुभुज को रूपांतरित करते हैं।

प्रतिनिधित्व सिद्धांत के गणित क्षेत्र में, समूह निरूपण सार समूह (गणित) का वर्णन सदिश स्थान के स्वयं के लिए विशेषण रैखिक परिवर्तन ों के संदर्भ में करता है (अर्थात सदिश स्थान automorphism ); विशेष रूप से, उनका उपयोग समूह तत्वों को व्युत्क्रमणीय मैट्रिक्स के रूप में प्रस्तुत करने के लिए किया जा सकता है ताकि समूह संचालन को मैट्रिक्स गुणन द्वारा दर्शाया जा सके।

रसायन विज्ञान में, एक समूह प्रतिनिधित्व गणितीय समूह तत्वों को सममित घूर्णन और अणुओं के प्रतिबिंबों से संबंधित कर सकता है।

समूहों के प्रतिनिधित्व महत्वपूर्ण हैं क्योंकि वे कई समूह सिद्धांत | समूह-सैद्धांतिक समस्याओं को रैखिक बीजगणित में समस्याओं को कम करने की अनुमति देते हैं, जो अच्छी तरह से समझ में आता है।[dubious ] वे भौतिकी में भी महत्वपूर्ण हैं क्योंकि, उदाहरण के लिए, वे वर्णन करते हैं कि कैसे एक भौतिक प्रणाली का [[ समरूपता समूह ]] उस प्रणाली का वर्णन करने वाले समीकरणों के समाधान को प्रभावित करता है।

किसी गणितीय वस्तु के परिवर्तनों के समूह के रूप में किसी समूह के किसी भी विवरण का अर्थ करने के लिए समूह का शब्द प्रतिनिधित्व भी अधिक सामान्य अर्थ में उपयोग किया जाता है। अधिक औपचारिक रूप से, एक प्रतिनिधित्व का अर्थ है समूह से किसी वस्तु के ऑटोमोर्फिज्म समूह में समरूपता। यदि वस्तु एक सदिश स्थान है तो हमारे पास एक रैखिक प्रतिनिधित्व है। कुछ लोग सामान्य धारणा के लिए बोध का उपयोग करते हैं और रेखीय निरूपण के विशेष मामले के लिए प्रतिनिधित्व शब्द आरक्षित करते हैं। इस लेख का बड़ा हिस्सा रैखिक प्रतिनिधित्व सिद्धांत का वर्णन करता है; सामान्यीकरण के लिए अंतिम खंड देखें।

समूह प्रतिनिधित्व सिद्धांत की शाखाएँ

समूहों के प्रतिनिधित्व सिद्धांत का प्रतिनिधित्व किए जाने वाले समूह के प्रकार के आधार पर उप-सिद्धांतों में विभाजित होता है। विभिन्न सिद्धांत विस्तार से काफी भिन्न हैं, हालांकि कुछ बुनियादी परिभाषाएं और अवधारणाएं समान हैं। सबसे महत्वपूर्ण विभाग हैं:

  • परिमित समूह - परिमित समूहों के अध्ययन में समूह प्रतिनिधित्व एक बहुत ही महत्वपूर्ण उपकरण है। वे परिमित समूह सिद्धांत के क्रिस्टलोग्राफी और ज्यामिति के अनुप्रयोगों में भी उत्पन्न होते हैं। यदि वेक्टर स्पेस के स्केलर्स के क्षेत्र (गणित) में विशेषता (बीजगणित) पी है, और यदि पी समूह के क्रम को विभाजित करता है, तो इसे मॉड्यूलर प्रतिनिधित्व सिद्धांत कहा जाता है; इस विशेष मामले में बहुत भिन्न गुण हैं। परिमित समूहों का प्रतिनिधित्व सिद्धांत देखें।
  • कॉम्पैक्ट समूह या स्थानीय रूप से कॉम्पैक्ट समूह - परिमित समूह प्रतिनिधित्व सिद्धांत के कई परिणाम समूह के औसत से साबित होते हैं। इन सबूतों को एक अभिन्न के साथ औसत के प्रतिस्थापन द्वारा अनंत समूहों में ले जाया जा सकता है, बशर्ते कि अभिन्न की स्वीकार्य धारणा को परिभाषित किया जा सके। यह हार उपाय का उपयोग करके स्थानीय रूप से कॉम्पैक्ट समूहों के लिए किया जा सकता है। परिणामी सिद्धांत हार्मोनिक विश्लेषण का एक केंद्रीय हिस्सा है। पोंट्रीगिन द्वैत एक सामान्यीकृत फूरियर रूपांतरण के रूप में, कम्यूटेटिव समूहों के सिद्धांत का वर्णन करता है। इन्हें भी देखें: पीटर-वेइल प्रमेय।
  • झूठ समूह - कई महत्वपूर्ण झूठ समूह कॉम्पैक्ट होते हैं, इसलिए कॉम्पैक्ट प्रतिनिधित्व सिद्धांत के परिणाम उन पर लागू होते हैं। लाई समूहों के लिए विशिष्ट अन्य तकनीकों का भी उपयोग किया जाता है। भौतिकी और रसायन विज्ञान में महत्वपूर्ण अधिकांश समूह झूठ समूह हैं, और उनका प्रतिनिधित्व सिद्धांत उन क्षेत्रों में समूह सिद्धांत के अनुप्रयोग के लिए महत्वपूर्ण है। झूठ समूहों के प्रतिनिधित्व और झूठ बीजगणित के प्रतिनिधित्व देखें।
  • रैखिक बीजगणितीय समूह (या अधिक आम तौर पर समूह योजना एं) - ये झूठ समूहों के अनुरूप हैं, लेकिन सिर्फ 'आर' या 'सी' की तुलना में अधिक सामान्य क्षेत्रों में। हालांकि रैखिक बीजगणितीय समूहों का एक वर्गीकरण है जो झूठ समूहों के समान है, और झूठ बीजगणित के समान परिवारों को जन्म देता है, उनके प्रतिनिधित्व अलग-अलग होते हैं (और बहुत कम अच्छी तरह से समझा जाता है)। झूठ समूहों का अध्ययन करने के लिए उपयोग की जाने वाली विश्लेषणात्मक तकनीकों को बीजगणितीय ज्यामिति से तकनीकों द्वारा प्रतिस्थापित किया जाना चाहिए, जहां अपेक्षाकृत कमजोर जरिस्की टोपोलॉजी कई तकनीकी जटिलताओं का कारण बनती है।
  • गैर-कॉम्पैक्ट टोपोलॉजिकल समूह - गैर-कॉम्पैक्ट समूहों का वर्ग किसी भी सामान्य प्रतिनिधित्व सिद्धांत का निर्माण करने के लिए बहुत व्यापक है, लेकिन विशिष्ट विशेष मामलों का अध्ययन किया गया है, कभी-कभी तदर्थ तकनीकों का उपयोग करते हुए। अर्ध-सरल झूठ समूहों का एक गहरा सिद्धांत है, जो कॉम्पैक्ट केस पर आधारित है। पूरक हल करने योग्य झूठ समूहों को उसी तरह वर्गीकृत नहीं किया जा सकता है। लाई समूहों के लिए सामान्य सिद्धांत मैकी सिद्धांत नामक सामान्य परिणामों के माध्यम से दो प्रकार के अर्ध-प्रत्यक्ष उत्पाद ों से संबंधित है, जो विग्नर के वर्गीकरण विधियों का सामान्यीकरण है।

प्रतिनिधित्व सिद्धांत भी सदिश स्थान के प्रकार पर बहुत अधिक निर्भर करता है जिस पर समूह कार्य करता है। एक परिमित-आयामी प्रतिनिधित्व और अनंत-आयामी प्रतिनिधित्व के बीच अंतर करता है। अनंत-आयामी मामले में, अतिरिक्त संरचनाएं महत्वपूर्ण हैं (उदाहरण के लिए अंतरिक्ष एक हिल्बर्ट अंतरिक्ष , बानाच स्थान, आदि है या नहीं)।

किसी को उस प्रकार के क्षेत्र (गणित) पर भी विचार करना चाहिए जिस पर सदिश स्थान परिभाषित किया गया है। सबसे महत्वपूर्ण मामला जटिल संख्या ओं का क्षेत्र है। अन्य महत्वपूर्ण मामले वास्तविक संख्या, परिमित क्षेत्र और p-adic संख्या के क्षेत्र हैं। सामान्य तौर पर, बीजगणितीय रूप से बंद क्षेत्रों को गैर-बीजगणितीय रूप से बंद क्षेत्रों की तुलना में संभालना आसान होता है। क्षेत्र की विशेषता (बीजगणित) भी महत्वपूर्ण है; परिमित समूहों के लिए कई प्रमेय आदेश (समूह सिद्धांत) को विभाजित नहीं करने वाले क्षेत्र की विशेषता पर निर्भर करते हैं।

परिभाषाएँ

एक क्षेत्र (गणित) K पर एक सदिश स्थान V पर एक समूह (गणित) G का प्रतिनिधित्व G से GL(V') तक एक समूह समरूपता है '), सामान्य रेखीय समूह#V पर सदिश स्थान का सामान्य रेखीय समूह। अर्थात्, एक प्रतिनिधित्व एक नक्शा है

ऐसा है कि

यहाँ V को 'प्रतिनिधित्व स्थान' कहा जाता है और V के आयाम को प्रतिनिधित्व का 'आयाम' कहा जाता है। संदर्भ से होमोमोर्फिज्म स्पष्ट होने पर प्रतिनिधित्व के रूप में वी को संदर्भित करना आम बात है।

ऐसे मामले में जहां V परिमित आयाम n का है, V के लिए एक आधार (रैखिक बीजगणित) चुनना और GL(V) की पहचान करना आम बात है GL(n, K), क्षेत्र K पर n-by-n उलटा मैट्रिक्स का समूह।

एक वफादार प्रतिनिधित्व वह है जिसमें समरूपता है G → GL(V) इंजेक्शन है; दूसरे शब्दों में, जिसका कर्नेल तुच्छ उपसमूह {e} है जिसमें केवल समूह का पहचान तत्व शामिल है।
  • दो K सदिश समष्टियाँ V और W, दो निरूपण दिए गए हैं ρ : G → GL(V) और π : G → GL(W) समतुल्य या तुल्याकार कहा जाता है यदि कोई सदिश स्थान तुल्याकारिता मौजूद है α : VW ताकि G में सभी g के लिए,


उदाहरण

सम्मिश्र संख्या u = e पर विचार करें2πi / 3 जिसका गुण u है3 = 1. समुच्चय C3 = {1, यू, यू2} गुणन के तहत एक चक्रीय समूह बनाता है। इस समूह का प्रतिनिधित्व ρ पर है के द्वारा दिया गया:

यह निरूपण विश्वसनीय है क्योंकि ρ एक अंतःक्षेपी|एक-से-एक मानचित्र है।

सी के लिए एक और प्रतिनिधित्व3 पर , पिछले एक के लिए आइसोमॉर्फिक, σ द्वारा दिया गया है:

समूह सी3 पर भी ईमानदारी से प्रतिनिधित्व किया जा सकता है τ द्वारा दिया गया:

कहां

एक और उदाहरण:

होने देना वेरिएबल्स में जटिल संख्याओं पर सजातीय डिग्री -3 बहुपदों का स्थान हो फिर पर कार्य करता है तीन चरों के क्रमचय द्वारा।

उदाहरण के लिए, भेजता है को .

न्यूनीकरण

V का एक सबस्पेस W जो कि समूह क्रिया (गणित) के तहत अपरिवर्तनीय है, को उप-प्रतिनिधित्व कहा जाता है। यदि V के ठीक दो उपनिरूपण हैं, अर्थात् शून्य-आयामी उपसमष्टि और स्वयं V, तो निरूपण को 'इरेड्यूसिबल' कहा जाता है; यदि इसमें गैर-शून्य आयाम का उचित उप-निरूपण है, तो प्रतिनिधित्व को 'कम करने योग्य' कहा जाता है। आयाम शून्य का प्रतिनिधित्व न तो कम करने योग्य और न ही कम करने योग्य माना जाता है, [1] जिस प्रकार संख्या 1 को न तो समग्र संख्या और न ही अभाज्य संख्या माना जाता है।

इस धारणा के तहत कि फ़ील्ड K की विशेषता (बीजगणित) समूह के आकार को विभाजित नहीं करती है, परिमित समूहों के निरूपण को अप्रासंगिक उप-प्रतिनिधियों के समूहों के प्रत्यक्ष योग में विघटित किया जा सकता है (मास्चके प्रमेय देखें)। यह विशेष रूप से जटिल संख्याओं पर परिमित समूह के किसी भी प्रतिनिधित्व के लिए है, क्योंकि जटिल संख्याओं की विशेषता शून्य है, जो समूह के आकार को कभी विभाजित नहीं करती है।

ऊपर दिए गए उदाहरण में, दिए गए पहले दो प्रतिनिधित्व (ρ और σ) दोनों दो 1-आयामी उप-निरूपण (स्पैन {(1,0)} और स्पैन {(0,1)} द्वारा दिए गए) में विघटित होते हैं, जबकि तीसरा प्रतिनिधित्व (τ) अलघुकरणीय है।

सामान्यीकरण

सेट-सैद्धांतिक अभ्यावेदन

एक सेट (गणित) X पर एक समूह (गणित) G का एक सेट-सैद्धांतिक प्रतिनिधित्व (जिसे समूह क्रिया या क्रमचय प्रतिनिधित्व के रूप में भी जाना जाता है) एक फ़ंक्शन (गणित) ρ द्वारा दिया जाता है: G → XX, X से X तक के कार्यों का सेट, जैसे कि सभी g के लिए1, जी2 जी में और एक्स में सभी एक्स:

कहां जी का पहचान तत्व है। यह स्थिति और एक समूह के लिए स्वयंसिद्धों का अर्थ है कि ρ (जी) जी में सभी जी के लिए एक आक्षेप (या क्रमचय) है। इस प्रकार हम समान रूप से क्रमचय प्रतिनिधित्व को जी से समूह समरूपता के रूप में परिभाषित कर सकते हैं सममित समूह एसX एक्स का।

इस विषय पर अधिक जानकारी के लिए समूह क्रिया (गणित) पर लेख देखें।

अन्य श्रेणियों में प्रतिनिधित्व

प्रत्येक समूह G को एक वस्तु के साथ एक श्रेणी (गणित) के रूप में देखा जा सकता है; इस श्रेणी में morphism s सिर्फ G के तत्व हैं। एक मनमानी श्रेणी C को देखते हुए, C में G का प्रतिनिधित्व G से C तक एक ऑपरेटर है। ऐसा फ़ंक्टर C में एक ऑब्जेक्ट X और G से Aut(X) के लिए एक समूह समरूपता का चयन करता है। ), एक्स का ऑटोमोर्फिज्म समूह।

मामले में जहां सी 'वेक्ट' हैKक्षेत्र K पर वेक्टर रिक्त स्थान की श्रेणी , यह परिभाषा एक रैखिक प्रतिनिधित्व के बराबर है। इसी तरह, एक सेट-सैद्धांतिक प्रतिनिधित्व सेट की श्रेणी में जी का प्रतिनिधित्व मात्र है।

जब सी 'एबी' है, एबेलियन समूहों की श्रेणी , प्राप्त वस्तुओं को जी-मॉड्यूल कहा जाता है। जी-मॉड्यूल।

एक अन्य उदाहरण के लिए टोपोलॉजिकल स्पेस की श्रेणी , 'टॉप' पर विचार करें। 'टॉप' में प्रतिनिधित्व G से होमियोमोर्फिज्म समूह के एक स्थलीय स्थान X के होमोमोर्फिज्म हैं।

रैखिक निरूपण से निकटता से संबंधित दो प्रकार के निरूपण हैं:

यह भी देखें

टिप्पणियाँ

  1. "1.4: प्रतिनिधित्व". Chemistry LibreTexts (in English). 2019-09-04. Retrieved 2021-06-23.


संदर्भ

श्रेणी: समूह सिद्धांत श्रेणी:प्रतिनिधित्व सिद्धांत