क्रमाकुंचक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Peristaltic pump head.jpg|thumb|दो उछला रोलर्स के साथ क्रमाकुंचक | [[File:Peristaltic pump head.jpg|thumb|दो उछला रोलर्स के साथ क्रमाकुंचक नली पंप]] | ||
[[File:Peristaltic pump.gif|thumb|क्रमाकुंचक पंप गति में]]एक क्रमाकुंचक (पेरिस्टाल्टिक) [[ पंप |पंप]], जिसे सामान्यतः रोलर पंप के रूप में भी जाना जाता है, एक प्रकार का प्रभावयुक्त विस्थापन पंप है जिसका उपयोग विभिन्न प्रकार के तरल पदार्थों को पंप करने के लिए किया जाता है।[[ द्रव |द्रव]] एक लचीली | [[File:Peristaltic pump.gif|thumb|क्रमाकुंचक पंप गति में]]एक क्रमाकुंचक (पेरिस्टाल्टिक) [[ पंप |पंप]], जिसे सामान्यतः रोलर पंप के रूप में भी जाना जाता है, एक प्रकार का प्रभावयुक्त विस्थापन पंप है जिसका उपयोग विभिन्न प्रकार के तरल पदार्थों को पंप करने के लिए किया जाता है।[[ द्रव |द्रव]] एक लचीली नली में निहित होता है जो एक गोलाकार पंप आवरण के अंदर लगा होता है। ज्यादातर क्रमिक वृत्तों में संकुचित करने वाला पंप घूर्णी गति के माध्यम से काम करते हैं, हालांकि रैखिक क्रमाकुंचक पंप भी बनाए गए हैं। [[ रोटर (टरबाइन) |रोटर(टरबाइन)]] में इसके बाहरी परिधि से जुड़े कई वाइपर या रोलर्स होते हैं, जो लचीली नली को घुमाते हुए संकुचित करते हैं। संपीड़न के अंतर्गत नली का हिस्सा बंद है, तरल पदार्थ को नली के माध्यम से स्थानांतरित करने के लिए मजबूर करता है। इसके अतिरिक्त, जैसे ही रोलर्स के गुजरने के बाद नली अपनी प्राकृतिक अवस्था में खुलती है, नली में अधिक तरल पदार्थ खींचा जाता है। इस प्रक्रिया को [[ क्रमाकुंचन |क्रमाकुंचन]] कहा जाता है और इसका उपयोग कई जैविक प्रणालियों जैसे जठरांत्र संबंधी मार्ग में किया जाता है। सामान्यतः, दो या दो से अधिक रोलर्स नली को संकुचित करते हैं, उनके बीच तरल पदार्थ के तत्व को सम्पीड़ित करते हैं। द्रव के तत्व को नली के माध्यम से पंप विसर्जन केन्द्र की ओर ले जाया जाता है। क्रमिक वृत्तों में क्रमाकुंचक पंप लगातार चल सकते हैं, या उन्हें कम मात्रा में तरल पदार्थ देने के लिए आंशिक परिक्रमण के माध्यम से अनुक्रमित किया जा सकता है। | ||
== इतिहास == | == इतिहास == | ||
[[File:Schlauchpumpe-lineare-Verdraengung.png|thumb|रैखिक क्रमाकुंचक पंप]]1845 में द मैकेनिक्स मैगज़ीन में क्रमाकुंचक पंप का एक रूप वर्णित किया गया था। पंप ने एक चमड़े की नली का | [[File:Schlauchpumpe-lineare-Verdraengung.png|thumb|रैखिक क्रमाकुंचक पंप]]1845 में द मैकेनिक्स मैगज़ीन में क्रमाकुंचक पंप का एक रूप वर्णित किया गया था। पंप ने एक चमड़े की नली का प्रयोग किया था, जिसे रोलर्स द्वारा जारी किए जाने पर स्वयं खोलने की आवश्यकता नहीं थी, इसके अतिरिक्त आने वाले पानी पर निर्भर करते हुए खुले प्रवेशिका अंत को भरने के लिए पर्याप्त दबाव था। प्रत्येक चक्र।<ref>{{Cite book|url=https://books.google.com/books?id=LBnCZeMnapYC|title=The Mechanics' Magazine, Museum, Register, Journal & Gazette|date=1845|publisher=Knight and Lacey|pages=52–53|language=en}}</ref> क्रमाकुंचक पंप को पहली बार संयुक्त राज्य अमेरिका में 1855 में [[ रूफस पोर्टर (चित्रकार) |रूफस पोर्टर (चित्रकार)]] और जेडी ब्रैडली द्वारा पेटेंट कराया गया था (यू.एस. पेटेंट संख्या 12753)।<ref>{{Cite web|url=https://patents.google.com/patent/US12753A/en|title=Elastic-tube ptjmp}}</ref> एक अच्छी पंप के रूप में, और बाद में 1881 में यूजीन एलन द्वारा (यू.एस. पेटेंट संख्या 249285)<ref>{{Cite web|url=https://patents.google.com/patent/US249285A/en|title=Instrument for transfusion of blood}}</ref> रक्त आधान के लिए। इसे ह्रदय के सर्जन माइकल ई. डेबेकी द्वारा विकसित किया गया था| डॉ. माइकल डेबेकी<ref name="mh" >{{cite web | ||
|title=Methodist DeBakey Heart & Vascular Center | |title=Methodist DeBakey Heart & Vascular Center | ||
|author=Dr. Michael E. DeBakey | |author=Dr. Michael E. DeBakey | ||
Line 12: | Line 12: | ||
|archive-date=2011-07-27 | |archive-date=2011-07-27 | ||
|url-status=dead | |url-status=dead | ||
}}</ref> रक्त आधान के लिए<ref>{{Cite web|url=https://profiles.nlm.nih.gov/spotlight/fj/catalog?search_field=all_fields|title=- Michael E. DeBakey - Profiles in Science Search Results|website=profiles.nlm.nih.gov}}</ref> जबकि वह 1932 में एक मेडिकल छात्र थे और बाद में उनके द्वारा [[ कार्डियोपल्मोनरी बाईपास |कार्डियोपल्मोनरी बाईपास]] के लिए | }}</ref> रक्त आधान के लिए<ref>{{Cite web|url=https://profiles.nlm.nih.gov/spotlight/fj/catalog?search_field=all_fields|title=- Michael E. DeBakey - Profiles in Science Search Results|website=profiles.nlm.nih.gov}}</ref> जबकि वह 1932 में एक मेडिकल छात्र थे और बाद में उनके द्वारा [[ कार्डियोपल्मोनरी बाईपास |कार्डियोपल्मोनरी बाईपास]] के लिए प्रयोग किया गया था<ref>{{Cite journal|pmc = 4462970|year = 2015|last1 = Passaroni|first1 = A. C|title = Cardiopulmonary bypass: Development of John Gibbon's heart-lung machine|journal = Revista Brasileira de Cirurgia Cardiovascular|volume = 30|issue = 2|pages = 235–245|last2 = Silva|first2 = M. A|last3 = Yoshida|first3 = W. B|pmid = 26107456|doi = 10.5935/1678-9741.20150021}}</ref> सिस्टम। एक विशेष गैर-रोचक रोलर पंप (यूएस पेटेंट 5222880)<ref>{{Cite web|url=https://patents.google.com/patent/US5222880A/en|title=Self-regulating blood pump}}</ref> कार्डियोपल्मोनरी उपमार्ग तंत्र के लिए 1992 में सॉफ्ट फ्लैट टयूबिंग का उपयोग करके विकसित किया गया था। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
क्रमिक वृत्तों में | क्रमिक वृत्तों में क्रमाकुंचक पंप सामान्यतः स्वच्छ/बाँझ या अत्यधिक प्रतिक्रियाशील तरल पदार्थों को पंप करने के लिए,उन तरल पदार्थों को खुले पंप घटकों से संदूषण के लिए उजागर किए बिना उपयोग किए जाते हैं। कुछ सामान्य अनुप्रयोगों में निषेचन उपकरण, [[ अफेरेसिस |अफेरेसिस]] , अत्यधिक प्रतिक्रियाशील रसायनों, उच्च ठोस स्लरी और अन्य सामग्रियों के माध्यम से IV तरल पदार्थों को पंप करना शामिल है जहां पर्यावरण से उत्पाद का अलगाव महत्वपूर्ण है। [[ बायपास सर्जरी |बायपास सर्जरी]] के दौरान और [[ हीमोडायलिसिस |हीमोडायलिसिस]] सिस्टम में रक्त को प्रसारित करने के लिए [[ हृदय-फेफड़े की मशीन |हृदय-फेफड़े की मशीन]] ों में भी उनका उपयोग किया जाता है, क्योंकि पंप महत्वपूर्ण [[ hemolysis |hemolysis]] या रक्त कोशिकाओं के टूटने का कारण नहीं बनता है। | ||
== मुख्य डिजाइन पैरामीटर == | == मुख्य डिजाइन पैरामीटर == | ||
Line 31: | Line 31: | ||
पंप में निचोड़ने के लाखों चक्रों के बाद गोलाकार क्रॉस-सेक्शन को बनाए रखने के लिए टयूबिंग को इलास्टोमेरिक होना चाहिए। यह आवश्यकता विभिन्न प्रकार के गैर-इलास्टोमेरिक पॉलिमर को समाप्त कर देती है, जिसमें पंप टयूबिंग के लिए सामग्री के रूप में [[ पीटीएफई |पीटीएफई]] , [[ पॉल्योलेफ़िन्स |पॉल्योलेफ़िन्स]] , [[ पीवीडीएफ |पीवीडीएफ]] , आदि जैसे रसायनों की एक विस्तृत श्रृंखला के साथ संगतता होती है। पंप टयूबिंग के लिए लोकप्रिय इलास्टोमर्स नाइट्राइल (एनबीआर), [[ हाइपलॉन |हाइपलॉन]] , विटॉन, [[ सिलिकॉन |सिलिकॉन]] , [[ पीवीसी |पीवीसी]] , [[ ईपीडीएम |ईपीडीएम]] , ईपीडीएम + [[ polypropylene |polypropylene]] ([[ सैंटोप्रीन | सैंटोप्रीन]] के रूप में), [[ polyurethane |polyurethane]] और प्राकृतिक [[ रबड़ |रबड़]] हैं। इन सामग्रियों में, प्राकृतिक रबर में सबसे अच्छा थकान प्रतिरोध होता है, और ईपीडीएम और हाइपलॉन में सबसे अच्छी रासायनिक संगतता होती है। सिलिकॉन जल-आधारित तरल पदार्थों में लोकप्रिय है, जैसे [[ जैव फार्मा |जैव फार्मा]] उद्योग में, लेकिन अन्य उद्योगों में इसकी रासायनिक अनुकूलता की एक सीमित सीमा है। | पंप में निचोड़ने के लाखों चक्रों के बाद गोलाकार क्रॉस-सेक्शन को बनाए रखने के लिए टयूबिंग को इलास्टोमेरिक होना चाहिए। यह आवश्यकता विभिन्न प्रकार के गैर-इलास्टोमेरिक पॉलिमर को समाप्त कर देती है, जिसमें पंप टयूबिंग के लिए सामग्री के रूप में [[ पीटीएफई |पीटीएफई]] , [[ पॉल्योलेफ़िन्स |पॉल्योलेफ़िन्स]] , [[ पीवीडीएफ |पीवीडीएफ]] , आदि जैसे रसायनों की एक विस्तृत श्रृंखला के साथ संगतता होती है। पंप टयूबिंग के लिए लोकप्रिय इलास्टोमर्स नाइट्राइल (एनबीआर), [[ हाइपलॉन |हाइपलॉन]] , विटॉन, [[ सिलिकॉन |सिलिकॉन]] , [[ पीवीसी |पीवीसी]] , [[ ईपीडीएम |ईपीडीएम]] , ईपीडीएम + [[ polypropylene |polypropylene]] ([[ सैंटोप्रीन | सैंटोप्रीन]] के रूप में), [[ polyurethane |polyurethane]] और प्राकृतिक [[ रबड़ |रबड़]] हैं। इन सामग्रियों में, प्राकृतिक रबर में सबसे अच्छा थकान प्रतिरोध होता है, और ईपीडीएम और हाइपलॉन में सबसे अच्छी रासायनिक संगतता होती है। सिलिकॉन जल-आधारित तरल पदार्थों में लोकप्रिय है, जैसे [[ जैव फार्मा |जैव फार्मा]] उद्योग में, लेकिन अन्य उद्योगों में इसकी रासायनिक अनुकूलता की एक सीमित सीमा है। | ||
एक्सट्रूडेड [[ फ्लोरो |फ्लोरो]] पॉलीमर | एक्सट्रूडेड [[ फ्लोरो |फ्लोरो]] पॉलीमर नली जैसे कि [[ एफकेएम |एफकेएम]] (विटॉन, फ्लोरल, आदि) में एसिड, [[ हाइड्रोकार्बन |हाइड्रोकार्बन]] और [[ पेट्रोलियम ईंधन |पेट्रोलियम ईंधन]] के साथ अच्छी संगतता है, लेकिन एक प्रभावी नली जीवन प्राप्त करने के लिए अपर्याप्त थकान प्रतिरोध है। | ||
कुछ नए टयूबिंग विकास हैं जो लाइन टयूबिंग और [[ fluoro[[ elastomer | elastomer]] ]]्स का उपयोग करके व्यापक रासायनिक संगतता प्रदान करते हैं। | कुछ नए टयूबिंग विकास हैं जो लाइन टयूबिंग और [[ fluoro[[ elastomer | elastomer]] ]]्स का उपयोग करके व्यापक रासायनिक संगतता प्रदान करते हैं। | ||
लाइन्ड टयूबिंग के साथ, अंदर का पतला लाइनर पॉली-ओलेफ़िन और PTFE जैसी रासायनिक रूप से प्रतिरोधी सामग्री से बना होता है, जो टयूबिंग की बाकी दीवार के लिए पंप किए गए तरल पदार्थ के संपर्क में आने से रोकता है। ये लाइनर ऐसी सामग्रियां हैं जो अक्सर इलास्टोमेरिक नहीं होती हैं, इसलिए क्रमाकुंचक पंप अनुप्रयोगों के लिए इस सामग्री के साथ पूरी | लाइन्ड टयूबिंग के साथ, अंदर का पतला लाइनर पॉली-ओलेफ़िन और PTFE जैसी रासायनिक रूप से प्रतिरोधी सामग्री से बना होता है, जो टयूबिंग की बाकी दीवार के लिए पंप किए गए तरल पदार्थ के संपर्क में आने से रोकता है। ये लाइनर ऐसी सामग्रियां हैं जो अक्सर इलास्टोमेरिक नहीं होती हैं, इसलिए क्रमाकुंचक पंप अनुप्रयोगों के लिए इस सामग्री के साथ पूरी नली दीवार नहीं बनाई जा सकती है। यह ट्यूबिंग रासायनिक रूप से चुनौतीपूर्ण अनुप्रयोगों में उपयोग की जाने वाली पर्याप्त रासायनिक अनुकूलता और जीवन प्रदान करती है। इन ट्यूबों का उपयोग करते समय कुछ बातों का ध्यान रखना चाहिए - निर्माण के दौरान लाइनर में कोई भी पिनहोल टयूबिंग को रासायनिक हमले के प्रति संवेदनशील बना सकता है। पॉलीओलेफ़िन जैसे कठोर प्लास्टिक लाइनर के मामले में, क्रमाकुंचक पंप में बार-बार ठोके जाने से वे दरारें विकसित कर सकते हैं, थोक सामग्री को फिर से रासायनिक हमले के लिए कमजोर कर सकते हैं। सभी पंक्तिबद्ध टयूबिंग के साथ एक सामान्य मुद्दा लाइनर का बार-बार फ्लेक्सिंग के साथ प्रदूषण है जो नली के जीवन के अंत का संकेत देता है। रासायनिक रूप से संगत टयूबिंग की आवश्यकता वाले लोगों के लिए, ये पंक्तिबद्ध टयूबिंग एक अच्छा समाधान प्रदान करते हैं। | ||
फ्लोरोएलेस्टोमर टयूबिंग के साथ, इलास्टोमेर में ही रासायनिक प्रतिरोध होता है। उदाहरण के मामले में केम-श्योर, यह एक पेरफ्लुओरोएलेस्टोमर से बना है, जिसमें सभी इलास्टोमर्स की व्यापक रासायनिक संगतता है। ऊपर सूचीबद्ध दो फ्लोरोएलेस्टोमर | फ्लोरोएलेस्टोमर टयूबिंग के साथ, इलास्टोमेर में ही रासायनिक प्रतिरोध होता है। उदाहरण के मामले में केम-श्योर, यह एक पेरफ्लुओरोएलेस्टोमर से बना है, जिसमें सभी इलास्टोमर्स की व्यापक रासायनिक संगतता है। ऊपर सूचीबद्ध दो फ्लोरोएलेस्टोमर नली रासायनिक संगतता को उनके सुदृढीकरण प्रौद्योगिकी से उपजी एक बहुत लंबी नली जीवन के साथ जोड़ते हैं, लेकिन एक उच्च प्रारंभिक लागत पर आते हैं। किसी को लंबी नली जीवन से प्राप्त कुल मूल्य के साथ लागत को उचित ठहराना होगा और अन्य विकल्पों जैसे कि अन्य टयूबिंग या यहां तक कि अन्य पंप प्रौद्योगिकियों के साथ तुलना करनी होगी। | ||
पंप किए गए तरल पदार्थ के साथ टयूबिंग सामग्री की रासायनिक संगतता की जांच के लिए कई ऑनलाइन साइटें हैं। टयूबिंग निर्माताओं के पास उनके टयूबिंग उत्पादन विधि, कोटिंग, सामग्री और पंप किए जा रहे तरल पदार्थ के लिए विशिष्ट संगतता चार्ट भी हो सकते हैं। | पंप किए गए तरल पदार्थ के साथ टयूबिंग सामग्री की रासायनिक संगतता की जांच के लिए कई ऑनलाइन साइटें हैं। टयूबिंग निर्माताओं के पास उनके टयूबिंग उत्पादन विधि, कोटिंग, सामग्री और पंप किए जा रहे तरल पदार्थ के लिए विशिष्ट संगतता चार्ट भी हो सकते हैं। | ||
जबकि ये चार्ट सामान्यतः सामना किए जाने वाले तरल पदार्थों की सूची को कवर करते हैं, हो सकता है कि उनमें सभी तरल पदार्थ न हों। यदि कोई तरल पदार्थ है जिसकी अनुकूलता कहीं सूचीबद्ध नहीं है, तो अनुकूलता का एक सामान्य परीक्षण विसर्जन परीक्षण है। टयूबिंग के 1 से 2 इंच के नमूने को 24 से 48 घंटों तक कहीं भी पंप किए जाने वाले तरल पदार्थ में डुबोया जाता है, और विसर्जन से पहले और बाद में वजन की मात्रा को मापा जाता है। यदि वजन परिवर्तन प्रारंभिक वजन के 10% से अधिक है, तो वह टीउबे द्रव के साथ संगत नहीं है, और उस अनुप्रयोग में इसका उपयोग नहीं किया जाना चाहिए। यह परीक्षण अभी भी एक तरफा परीक्षण है, इस अर्थ में कि अभी भी एक दूरस्थ मौका है कि इस परीक्षण को पास करने वाला टयूबिंग अभी भी आवेदन के लिए असंगत हो सकता है क्योंकि सीमा रेखा संगतता और यांत्रिक फ्लेक्सिंग के संयोजन से | जबकि ये चार्ट सामान्यतः सामना किए जाने वाले तरल पदार्थों की सूची को कवर करते हैं, हो सकता है कि उनमें सभी तरल पदार्थ न हों। यदि कोई तरल पदार्थ है जिसकी अनुकूलता कहीं सूचीबद्ध नहीं है, तो अनुकूलता का एक सामान्य परीक्षण विसर्जन परीक्षण है। टयूबिंग के 1 से 2 इंच के नमूने को 24 से 48 घंटों तक कहीं भी पंप किए जाने वाले तरल पदार्थ में डुबोया जाता है, और विसर्जन से पहले और बाद में वजन की मात्रा को मापा जाता है। यदि वजन परिवर्तन प्रारंभिक वजन के 10% से अधिक है, तो वह टीउबे द्रव के साथ संगत नहीं है, और उस अनुप्रयोग में इसका उपयोग नहीं किया जाना चाहिए। यह परीक्षण अभी भी एक तरफा परीक्षण है, इस अर्थ में कि अभी भी एक दूरस्थ मौका है कि इस परीक्षण को पास करने वाला टयूबिंग अभी भी आवेदन के लिए असंगत हो सकता है क्योंकि सीमा रेखा संगतता और यांत्रिक फ्लेक्सिंग के संयोजन से नली को किनारे पर धकेल दिया जा सकता है। , जिसके परिणामस्वरूप समय से पहले नली विफलता हो जाती है। | ||
सामान्य तौर पर, हाल ही में टयूबिंग के विकास ने क्रमिक वृत्तों में | सामान्य तौर पर, हाल ही में टयूबिंग के विकास ने क्रमिक वृत्तों में क्रमाकुंचक पंप विकल्प के लिए व्यापक रासायनिक अनुकूलता ला दी है कि कई रासायनिक खुराक अनुप्रयोग अन्य मौजूदा पंप प्रौद्योगिकियों पर लाभ उठा सकते हैं। | ||
=== समावेशन === | === समावेशन === | ||
रोलर और आवास के बीच न्यूनतम अंतर टयूबिंग पर लागू अधिकतम निचोड़ निर्धारित करता है। टयूबिंग पर लागू निचोड़ की मात्रा पंपिंग प्रदर्शन और | रोलर और आवास के बीच न्यूनतम अंतर टयूबिंग पर लागू अधिकतम निचोड़ निर्धारित करता है। टयूबिंग पर लागू निचोड़ की मात्रा पंपिंग प्रदर्शन और नली जीवन को प्रभावित करती है - अधिक निचोड़ने से टयूबिंग जीवन नाटकीय रूप से कम हो जाता है, जबकि कम निचोड़ने से पंप माध्यम वापस फिसल सकता है, विशेष रूप से उच्च दबाव पंपिंग में, और पंप की दक्षता कम हो जाती है नाटकीय रूप से और स्लिप बैक का उच्च वेग सामान्यतः नली की समयपूर्व विफलता का कारण बनता है। इसलिए, निचोड़ की यह मात्रा एक महत्वपूर्ण डिज़ाइन पैरामीटर बन जाती है। | ||
रोड़ा शब्द का उपयोग निचोड़ की मात्रा को मापने के लिए किया जाता है। यह या तो दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है, या दीवार की एक पूर्ण मात्रा के रूप में निचोड़ा जाता है। | रोड़ा शब्द का उपयोग निचोड़ की मात्रा को मापने के लिए किया जाता है। यह या तो दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है, या दीवार की एक पूर्ण मात्रा के रूप में निचोड़ा जाता है। | ||
Line 59: | Line 59: | ||
: y = 100% x (2t - g) / (2t) (जब दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है) | : y = 100% x (2t - g) / (2t) (जब दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है) | ||
रोड़ा सामान्यतः 10% से 20% होता है, जिसमें नरम | रोड़ा सामान्यतः 10% से 20% होता है, जिसमें नरम नली सामग्री के लिए उच्च रोड़ा और कठिन नली सामग्री के लिए कम रोड़ा होता है। | ||
इस प्रकार किसी दिए गए पंप के लिए, सबसे महत्वपूर्ण ट्यूबिंग आयाम दीवार की मोटाई बन जाता है। यहां एक दिलचस्प बात यह है कि टयूबिंग के अंदर का व्यास (आईडी) पंप के लिए टयूबिंग की उपयुक्तता के लिए एक महत्वपूर्ण डिजाइन पैरामीटर नहीं है। इसलिए, एक पंप के साथ एक से अधिक आईडी का उपयोग करना सामान्य है, जब तक दीवार की मोटाई समान रहती है। | इस प्रकार किसी दिए गए पंप के लिए, सबसे महत्वपूर्ण ट्यूबिंग आयाम दीवार की मोटाई बन जाता है। यहां एक दिलचस्प बात यह है कि टयूबिंग के अंदर का व्यास (आईडी) पंप के लिए टयूबिंग की उपयुक्तता के लिए एक महत्वपूर्ण डिजाइन पैरामीटर नहीं है। इसलिए, एक पंप के साथ एक से अधिक आईडी का उपयोग करना सामान्य है, जब तक दीवार की मोटाई समान रहती है। | ||
=== भीतरी व्यास === | === भीतरी व्यास === | ||
पंप की दी गई घूर्णी गति के लिए, एक बड़े आंतरिक व्यास (आईडी) वाली | पंप की दी गई घूर्णी गति के लिए, एक बड़े आंतरिक व्यास (आईडी) वाली नली एक छोटे आंतरिक व्यास वाले की तुलना में उच्च प्रवाह दर देगी। प्रवाह दर नली बोर के क्रॉस-सेक्शन क्षेत्र का एक कार्य है। | ||
=== प्रवाह दर === | === प्रवाह दर === | ||
पंप के लिए प्रवाह दर एक महत्वपूर्ण पैरामीटर है। क्रमाकुंचक पंप में प्रवाह दर कई कारकों द्वारा निर्धारित की जाती है, जैसे: | पंप के लिए प्रवाह दर एक महत्वपूर्ण पैरामीटर है। क्रमाकुंचक पंप में प्रवाह दर कई कारकों द्वारा निर्धारित की जाती है, जैसे: | ||
# | # नली आंतरिक व्यास - बड़े आंतरिक व्यास के साथ उच्च प्रवाह दर | ||
# पम्प हेड बाहरी व्यास - बड़े बाहरी व्यास के साथ उच्च प्रवाह दर | # पम्प हेड बाहरी व्यास - बड़े बाहरी व्यास के साथ उच्च प्रवाह दर | ||
# पंप सिर घूर्णी गति - उच्च गति के साथ उच्च प्रवाह दर | # पंप सिर घूर्णी गति - उच्च गति के साथ उच्च प्रवाह दर | ||
# | # प्रवेशिका पल्सेशन - पल्स नली के भरने की मात्रा को कम कर देता है | ||
रोलर्स की संख्या बढ़ने से प्रवाह दर में वृद्धि नहीं होती है, बल्कि यह सिर के प्रभावी (यानी द्रव-पंपिंग) परिधि को कम करके प्रवाह दर को कुछ हद तक कम कर देगा। स्पंदित प्रवाह की आवृत्ति को बढ़ाकर रोलर्स | रोलर्स की संख्या बढ़ने से प्रवाह दर में वृद्धि नहीं होती है, बल्कि यह सिर के प्रभावी (यानी द्रव-पंपिंग) परिधि को कम करके प्रवाह दर को कुछ हद तक कम कर देगा। स्पंदित प्रवाह की आवृत्ति को बढ़ाकर रोलर्स विसर्जन केन्द्र पर तरल पदार्थ के स्पंदन के आयाम को कम करते हैं। | ||
नली की लंबाई (प्रवेशिका के निकट प्रारंभिक पिंच बिंदु से विसर्जन केन्द्र के पास अंतिम रिलीज बिंदु तक मापी गई) प्रवाह दर को प्रभावित नहीं करती है। हालांकि, एक लंबी नली का मतलब प्रवेशिका और विसर्जन केन्द्र के बीच अधिक पिंच पॉइंट होता है, जिससे पंप उत्पन्न हो सकता है। | |||
क्रमाकुंचक पंप की प्रवाह दर ज्यादातर मामलों में रैखिक नहीं होती है। पंप के | क्रमाकुंचक पंप की प्रवाह दर ज्यादातर मामलों में रैखिक नहीं होती है। पंप के प्रवेशिका पर स्पंदन के प्रभाव से क्रमाकुंचक नली के भरने की डिग्री बदल जाती है। उच्च प्रवेशिका स्पंदन के साथ, क्रमाकुंचक नली अंडाकार आकार की हो सकती है, जिसके परिणामस्वरूप कम प्रवाह होता है। | ||
क्रमाकुंचक पंप के साथ सटीक पैमाइश तभी संभव है जब पंप में निरंतर प्रवाह दर हो, या जब | क्रमाकुंचक पंप के साथ सटीक पैमाइश तभी संभव है जब पंप में निरंतर प्रवाह दर हो, या जब प्रवेशिका स्पंदन को सही डिज़ाइन किए गए पल्सेशन डैम्पनर के उपयोग से समाप्त कर दिया जाए। | ||
=== स्पंदन === | === स्पंदन === | ||
स्पंदन क्रमिक वृत्तों में | स्पंदन क्रमिक वृत्तों में क्रमाकुंचक पंप का एक महत्वपूर्ण पक्ष प्रभाव है। क्रमाकुंचक पंप में स्पंदन कई कारकों द्वारा निर्धारित किया जाता है, जैसे: | ||
# प्रवाह दर - उच्च प्रवाह दर अधिक स्पंदन देती है | # प्रवाह दर - उच्च प्रवाह दर अधिक स्पंदन देती है | ||
# लाइन लेंथ - लंबी पाइपलाइन अधिक स्पंदन देती हैं | # लाइन लेंथ - लंबी पाइपलाइन अधिक स्पंदन देती हैं | ||
Line 90: | Line 90: | ||
=== नली पंप === | === नली पंप === | ||
उच्च दबाव क्रमिक वृत्तों में | उच्च दबाव क्रमिक वृत्तों में क्रमाकुंचक नली (टयूबिंग) पंप जो आम तौर पर के खिलाफ काम कर सकते हैं {{cvt|16|bar|psi}} निरंतर सेवा में, जूते का उपयोग करें (केवल कम दबाव वाले प्रकारों पर उपयोग किए जाने वाले रोलर्स) और पंप नली के बाहरी हिस्से के घर्षण को रोकने के लिए और गर्मी के अपव्यय में सहायता करने के लिए [[ चिकनाई |चिकनाई]] से भरे आवरण होते हैं, और प्रबलित ट्यूबों का उपयोग करते हैं, जिन्हें अक्सर होसेस कहा जाता है। पंप के इस वर्ग को अक्सर नली पंप कहा जाता है। | ||
रोलर पंपों की तुलना में होज़ पंपों का सबसे बड़ा लाभ 16 बार तक का उच्च परिचालन दबाव है। रोलर्स के साथ, अधिकतम दबाव तक पहुंच सकता है {{cvt|12|bar|psi}} किसी भी समस्या के बिना। यदि उच्च परिचालन दबाव की आवश्यकता नहीं है, तो नली पंप की तुलना में एक टयूबिंग पंप एक बेहतर विकल्प है यदि पंप किया हुआ माध्यम अपघर्षक नहीं है। दबाव, जीवन और रासायनिक अनुकूलता के साथ-साथ उच्च प्रवाह दर श्रेणियों के लिए टयूबिंग प्रौद्योगिकी में हाल की प्रगति के साथ, नली पंपों के रोलर पंपों पर होने वाले फायदे क्षीण होते जा रहे हैं। | रोलर पंपों की तुलना में होज़ पंपों का सबसे बड़ा लाभ 16 बार तक का उच्च परिचालन दबाव है। रोलर्स के साथ, अधिकतम दबाव तक पहुंच सकता है {{cvt|12|bar|psi}} किसी भी समस्या के बिना। यदि उच्च परिचालन दबाव की आवश्यकता नहीं है, तो नली पंप की तुलना में एक टयूबिंग पंप एक बेहतर विकल्प है यदि पंप किया हुआ माध्यम अपघर्षक नहीं है। दबाव, जीवन और रासायनिक अनुकूलता के साथ-साथ उच्च प्रवाह दर श्रेणियों के लिए टयूबिंग प्रौद्योगिकी में हाल की प्रगति के साथ, नली पंपों के रोलर पंपों पर होने वाले फायदे क्षीण होते जा रहे हैं। | ||
=== | === नली पंप === | ||
कम दबाव क्रमाकुंचक पंपों में सामान्यतः शुष्क आवरण होते हैं और गैर-प्रबलित, एक्सट्रूडेड टयूबिंग के साथ रोलर्स का उपयोग करते हैं। पंप के इस वर्ग को कभी-कभी | कम दबाव क्रमाकुंचक पंपों में सामान्यतः शुष्क आवरण होते हैं और गैर-प्रबलित, एक्सट्रूडेड टयूबिंग के साथ रोलर्स का उपयोग करते हैं। पंप के इस वर्ग को कभी-कभी नली पंप या ट्यूबिंग पंप कहा जाता है। ये पंप नली को निचोड़ने के लिए रोलर्स का प्रयोग करते हैं। नीचे बताए अनुसार 360° सनकी पंप डिज़ाइन को छोड़कर, इन पंपों में कम से कम 2 रोलर्स 180° के अलावा होते हैं और इनमें 8 या 12 रोलर्स तक हो सकते हैं। रोलर्स की संख्या बढ़ने से विसर्जन केन्द्र पर पंप किए गए तरल पदार्थ की दबाव नाड़ी आवृत्ति बढ़ जाती है, जिससे स्पंदन का आयाम कम हो जाता है। रोलर्स की संख्या बढ़ाने का नकारात्मक पक्ष यह है कि यह उस नली के माध्यम से दिए गए संचयी प्रवाह के लिए टयूबिंग पर निचोड़ने, या अवरोधन की संख्या को आनुपातिक रूप से बढ़ाता है, जिससे टयूबिंग जीवन कम हो जाता है। | ||
क्रमाकुंचक पंपों में दो प्रकार के रोलर डिज़ाइन होते हैं: | क्रमाकुंचक पंपों में दो प्रकार के रोलर डिज़ाइन होते हैं: | ||
* फिक्स्ड रोड़ा - इस तरह के पंप में, रोलर्स का एक निश्चित स्थान होता है, जब यह | * फिक्स्ड रोड़ा - इस तरह के पंप में, रोलर्स का एक निश्चित स्थान होता है, जब यह नली को निचोड़ता है, तो रोड़ा स्थिर रहता है। यह एक सरल, फिर भी प्रभावी डिजाइन है। इस डिज़ाइन का एकमात्र नकारात्मक पक्ष यह है कि नली पर प्रतिशत के रूप में रोड़ा नली की दीवार की मोटाई की भिन्नता के साथ बदलता रहता है। सामान्यतः एक्सट्रूडेड ट्यूबों की दीवार की मोटाई इतनी भिन्न होती है कि% रोड़ा दीवार की मोटाई के साथ भिन्न हो सकता है (ऊपर देखें)। इसलिए, अधिक दीवार की मोटाई के साथ नली का एक खंड, लेकिन स्वीकृत सहनशीलता के भीतर, उच्च प्रतिशत रोड़ा होगा, जो टयूबिंग पर पहनने को बढ़ाता है, जिससे नली जीवन कम हो जाता है। नली की दीवार की मोटाई की सहनशीलता आज आम तौर पर इतनी तंग रखी जाती है कि यह मुद्दा ज्यादा व्यावहारिक चिंता का नहीं है। यंत्रवत् इच्छुक लोगों के लिए, यह निरंतर तनाव संचालन हो सकता है। | ||
* स्प्रिंग-लोडेड रोलर्स - जैसा कि नाम से संकेत मिलता है, इस पंप में रोलर्स स्प्रिंग पर लगे होते हैं। यह डिज़ाइन निश्चित रोड़ा की तुलना में अधिक विस्तृत है, लेकिन व्यापक रेंज में | * स्प्रिंग-लोडेड रोलर्स - जैसा कि नाम से संकेत मिलता है, इस पंप में रोलर्स स्प्रिंग पर लगे होते हैं। यह डिज़ाइन निश्चित रोड़ा की तुलना में अधिक विस्तृत है, लेकिन व्यापक रेंज में नली की दीवार की मोटाई में बदलाव को दूर करने में मदद करता है। विविधताओं के बावजूद, रोलर टयूबिंग पर समान मात्रा में तनाव प्रदान करता है जो वसंत स्थिरांक के समानुपाती होता है, जिससे यह एक निरंतर तनाव संचालन बन जाता है। वसंत का चयन न केवल टयूबिंग की घेरा शक्ति पर काबू पाने के लिए किया जाता है, बल्कि पंप किए गए तरल पदार्थ के दबाव को भी दूर करने के लिए किया जाता है। | ||
इन पंपों का परिचालन दबाव टयूबिंग द्वारा निर्धारित किया जाता है और टयूबिंग की घेरा शक्ति और द्रव दबाव को दूर करने की मोटर की क्षमता से निर्धारित होता है। | इन पंपों का परिचालन दबाव टयूबिंग द्वारा निर्धारित किया जाता है और टयूबिंग की घेरा शक्ति और द्रव दबाव को दूर करने की मोटर की क्षमता से निर्धारित होता है। | ||
Line 151: | Line 151: | ||
== लाभ == | == लाभ == | ||
* कोई संदूषण नहीं। क्योंकि पंप का एकमात्र हिस्सा पंप किए जा रहे तरल पदार्थ के संपर्क में है, | * कोई संदूषण नहीं। क्योंकि पंप का एकमात्र हिस्सा पंप किए जा रहे तरल पदार्थ के संपर्क में है, नली का इंटीरियर है, यह नसबंदी (सूक्ष्म जीव विज्ञान) के लिए आसान है और पंप के अंदर की सतहों को साफ करता है। | ||
* कम रखरखाव की जरूरत और साफ करने में आसान; उनके वाल्व, सील और स्टफिंग बॉक्स # ग्लैंड्स की कमी उन्हें बनाए रखने के लिए तुलनात्मक रूप से सस्ती बनाती है। | * कम रखरखाव की जरूरत और साफ करने में आसान; उनके वाल्व, सील और स्टफिंग बॉक्स # ग्लैंड्स की कमी उन्हें बनाए रखने के लिए तुलनात्मक रूप से सस्ती बनाती है। | ||
*वे घोल, चिपचिपे, कतरनी-संवेदनशील और आक्रामक तरल पदार्थों को संभालने में सक्षम हैं। | *वे घोल, चिपचिपे, कतरनी-संवेदनशील और आक्रामक तरल पदार्थों को संभालने में सक्षम हैं। | ||
Line 176: | Line 176: | ||
[[File:Watson-Marlow Peristaltic Pump.JPG|thumb|जल शोधन संयंत्र की रासायनिक उपचार प्रक्रिया में क्रमाकुंचक पंप का उपयोग किया जाता है<ref>{{cite news|last1=Treutel|first1=Chuck|title=Peristaltic answer to caustic problems|url=http://www.worldpumps.com/view/1725/peristaltic-answer-to-caustic-problems/|access-date=10 July 2014|publisher=World Pumps|date=7 May 2009}}</ref>]]*दवा | [[File:Watson-Marlow Peristaltic Pump.JPG|thumb|जल शोधन संयंत्र की रासायनिक उपचार प्रक्रिया में क्रमाकुंचक पंप का उपयोग किया जाता है<ref>{{cite news|last1=Treutel|first1=Chuck|title=Peristaltic answer to caustic problems|url=http://www.worldpumps.com/view/1725/peristaltic-answer-to-caustic-problems/|access-date=10 July 2014|publisher=World Pumps|date=7 May 2009}}</ref>]]*दवा | ||
**[[ किडनी डायलिसिस | किडनी डायलिसिस]] मशीन | **[[ किडनी डायलिसिस | किडनी डायलिसिस]] मशीन | ||
**कार्डियोपल्मोनरी बाईपास|ओपन- | **कार्डियोपल्मोनरी बाईपास|ओपन-ह्रदय बाईपास पंप मशीनें | ||
**[[ जलसेक का पम्प ]] | **[[ जलसेक का पम्प ]] | ||
* परीक्षण और अनुसंधान | * परीक्षण और अनुसंधान |
Revision as of 14:38, 20 January 2023
एक क्रमाकुंचक (पेरिस्टाल्टिक) पंप, जिसे सामान्यतः रोलर पंप के रूप में भी जाना जाता है, एक प्रकार का प्रभावयुक्त विस्थापन पंप है जिसका उपयोग विभिन्न प्रकार के तरल पदार्थों को पंप करने के लिए किया जाता है।द्रव एक लचीली नली में निहित होता है जो एक गोलाकार पंप आवरण के अंदर लगा होता है। ज्यादातर क्रमिक वृत्तों में संकुचित करने वाला पंप घूर्णी गति के माध्यम से काम करते हैं, हालांकि रैखिक क्रमाकुंचक पंप भी बनाए गए हैं। रोटर(टरबाइन) में इसके बाहरी परिधि से जुड़े कई वाइपर या रोलर्स होते हैं, जो लचीली नली को घुमाते हुए संकुचित करते हैं। संपीड़न के अंतर्गत नली का हिस्सा बंद है, तरल पदार्थ को नली के माध्यम से स्थानांतरित करने के लिए मजबूर करता है। इसके अतिरिक्त, जैसे ही रोलर्स के गुजरने के बाद नली अपनी प्राकृतिक अवस्था में खुलती है, नली में अधिक तरल पदार्थ खींचा जाता है। इस प्रक्रिया को क्रमाकुंचन कहा जाता है और इसका उपयोग कई जैविक प्रणालियों जैसे जठरांत्र संबंधी मार्ग में किया जाता है। सामान्यतः, दो या दो से अधिक रोलर्स नली को संकुचित करते हैं, उनके बीच तरल पदार्थ के तत्व को सम्पीड़ित करते हैं। द्रव के तत्व को नली के माध्यम से पंप विसर्जन केन्द्र की ओर ले जाया जाता है। क्रमिक वृत्तों में क्रमाकुंचक पंप लगातार चल सकते हैं, या उन्हें कम मात्रा में तरल पदार्थ देने के लिए आंशिक परिक्रमण के माध्यम से अनुक्रमित किया जा सकता है।
इतिहास
1845 में द मैकेनिक्स मैगज़ीन में क्रमाकुंचक पंप का एक रूप वर्णित किया गया था। पंप ने एक चमड़े की नली का प्रयोग किया था, जिसे रोलर्स द्वारा जारी किए जाने पर स्वयं खोलने की आवश्यकता नहीं थी, इसके अतिरिक्त आने वाले पानी पर निर्भर करते हुए खुले प्रवेशिका अंत को भरने के लिए पर्याप्त दबाव था। प्रत्येक चक्र।[1] क्रमाकुंचक पंप को पहली बार संयुक्त राज्य अमेरिका में 1855 में रूफस पोर्टर (चित्रकार) और जेडी ब्रैडली द्वारा पेटेंट कराया गया था (यू.एस. पेटेंट संख्या 12753)।[2] एक अच्छी पंप के रूप में, और बाद में 1881 में यूजीन एलन द्वारा (यू.एस. पेटेंट संख्या 249285)[3] रक्त आधान के लिए। इसे ह्रदय के सर्जन माइकल ई. डेबेकी द्वारा विकसित किया गया था| डॉ. माइकल डेबेकी[4] रक्त आधान के लिए[5] जबकि वह 1932 में एक मेडिकल छात्र थे और बाद में उनके द्वारा कार्डियोपल्मोनरी बाईपास के लिए प्रयोग किया गया था[6] सिस्टम। एक विशेष गैर-रोचक रोलर पंप (यूएस पेटेंट 5222880)[7] कार्डियोपल्मोनरी उपमार्ग तंत्र के लिए 1992 में सॉफ्ट फ्लैट टयूबिंग का उपयोग करके विकसित किया गया था।
अनुप्रयोग
क्रमिक वृत्तों में क्रमाकुंचक पंप सामान्यतः स्वच्छ/बाँझ या अत्यधिक प्रतिक्रियाशील तरल पदार्थों को पंप करने के लिए,उन तरल पदार्थों को खुले पंप घटकों से संदूषण के लिए उजागर किए बिना उपयोग किए जाते हैं। कुछ सामान्य अनुप्रयोगों में निषेचन उपकरण, अफेरेसिस , अत्यधिक प्रतिक्रियाशील रसायनों, उच्च ठोस स्लरी और अन्य सामग्रियों के माध्यम से IV तरल पदार्थों को पंप करना शामिल है जहां पर्यावरण से उत्पाद का अलगाव महत्वपूर्ण है। बायपास सर्जरी के दौरान और हीमोडायलिसिस सिस्टम में रक्त को प्रसारित करने के लिए हृदय-फेफड़े की मशीन ों में भी उनका उपयोग किया जाता है, क्योंकि पंप महत्वपूर्ण hemolysis या रक्त कोशिकाओं के टूटने का कारण नहीं बनता है।
मुख्य डिजाइन पैरामीटर
आदर्श क्रमाकुंचक पंप में पंप हेड का अनंत व्यास और रोलर्स का सबसे बड़ा संभव व्यास होना चाहिए। इस तरह का एक आदर्श क्रमाकुंचक पंप सबसे लंबे समय तक संभव टयूबिंग जीवनकाल प्रदान करेगा और एक स्थिर और स्पंदन-मुक्त प्रवाह दर प्रदान करेगा।
ऐसा आदर्श क्रमाकुंचक पंप वास्तव में नहीं बनाया जा सकता है। हालांकि, क्रमाकुंचक पंपों को इन आदर्श क्रमाकुंचक पंप पैरामीटरों तक पहुंचने के लिए डिज़ाइन किया जा सकता है।
सावधानीपूर्वक डिजाइन टयूबिंग टूटने के जोखिम के बिना लंबे टयूबिंग जीवनकाल के साथ-साथ कई हफ्तों तक निरंतर सटीक प्रवाह दर प्रदान कर सकता है।[citation needed]
रासायनिक संगतता
पंप किया गया द्रव केवल टयूबिंग की अंदरूनी सतह से संपर्क करता है। यह अन्य पंप घटकों जैसे वाल्व, ओ-रिंग और सील के साथ द्रव संगतता चिंताओं को समाप्त करता है, जिसे अन्य पंप डिजाइनों के लिए माना जाना चाहिए। इसलिए, केवल टयूबिंग की संरचना जिसके माध्यम से पंप माध्यम यात्रा करता है, रासायनिक संगतता के लिए माना जाता है।
पंप में निचोड़ने के लाखों चक्रों के बाद गोलाकार क्रॉस-सेक्शन को बनाए रखने के लिए टयूबिंग को इलास्टोमेरिक होना चाहिए। यह आवश्यकता विभिन्न प्रकार के गैर-इलास्टोमेरिक पॉलिमर को समाप्त कर देती है, जिसमें पंप टयूबिंग के लिए सामग्री के रूप में पीटीएफई , पॉल्योलेफ़िन्स , पीवीडीएफ , आदि जैसे रसायनों की एक विस्तृत श्रृंखला के साथ संगतता होती है। पंप टयूबिंग के लिए लोकप्रिय इलास्टोमर्स नाइट्राइल (एनबीआर), हाइपलॉन , विटॉन, सिलिकॉन , पीवीसी , ईपीडीएम , ईपीडीएम + polypropylene ( सैंटोप्रीन के रूप में), polyurethane और प्राकृतिक रबड़ हैं। इन सामग्रियों में, प्राकृतिक रबर में सबसे अच्छा थकान प्रतिरोध होता है, और ईपीडीएम और हाइपलॉन में सबसे अच्छी रासायनिक संगतता होती है। सिलिकॉन जल-आधारित तरल पदार्थों में लोकप्रिय है, जैसे जैव फार्मा उद्योग में, लेकिन अन्य उद्योगों में इसकी रासायनिक अनुकूलता की एक सीमित सीमा है।
एक्सट्रूडेड फ्लोरो पॉलीमर नली जैसे कि एफकेएम (विटॉन, फ्लोरल, आदि) में एसिड, हाइड्रोकार्बन और पेट्रोलियम ईंधन के साथ अच्छी संगतता है, लेकिन एक प्रभावी नली जीवन प्राप्त करने के लिए अपर्याप्त थकान प्रतिरोध है।
कुछ नए टयूबिंग विकास हैं जो लाइन टयूबिंग और [[ fluoro elastomer ]]्स का उपयोग करके व्यापक रासायनिक संगतता प्रदान करते हैं।
लाइन्ड टयूबिंग के साथ, अंदर का पतला लाइनर पॉली-ओलेफ़िन और PTFE जैसी रासायनिक रूप से प्रतिरोधी सामग्री से बना होता है, जो टयूबिंग की बाकी दीवार के लिए पंप किए गए तरल पदार्थ के संपर्क में आने से रोकता है। ये लाइनर ऐसी सामग्रियां हैं जो अक्सर इलास्टोमेरिक नहीं होती हैं, इसलिए क्रमाकुंचक पंप अनुप्रयोगों के लिए इस सामग्री के साथ पूरी नली दीवार नहीं बनाई जा सकती है। यह ट्यूबिंग रासायनिक रूप से चुनौतीपूर्ण अनुप्रयोगों में उपयोग की जाने वाली पर्याप्त रासायनिक अनुकूलता और जीवन प्रदान करती है। इन ट्यूबों का उपयोग करते समय कुछ बातों का ध्यान रखना चाहिए - निर्माण के दौरान लाइनर में कोई भी पिनहोल टयूबिंग को रासायनिक हमले के प्रति संवेदनशील बना सकता है। पॉलीओलेफ़िन जैसे कठोर प्लास्टिक लाइनर के मामले में, क्रमाकुंचक पंप में बार-बार ठोके जाने से वे दरारें विकसित कर सकते हैं, थोक सामग्री को फिर से रासायनिक हमले के लिए कमजोर कर सकते हैं। सभी पंक्तिबद्ध टयूबिंग के साथ एक सामान्य मुद्दा लाइनर का बार-बार फ्लेक्सिंग के साथ प्रदूषण है जो नली के जीवन के अंत का संकेत देता है। रासायनिक रूप से संगत टयूबिंग की आवश्यकता वाले लोगों के लिए, ये पंक्तिबद्ध टयूबिंग एक अच्छा समाधान प्रदान करते हैं।
फ्लोरोएलेस्टोमर टयूबिंग के साथ, इलास्टोमेर में ही रासायनिक प्रतिरोध होता है। उदाहरण के मामले में केम-श्योर, यह एक पेरफ्लुओरोएलेस्टोमर से बना है, जिसमें सभी इलास्टोमर्स की व्यापक रासायनिक संगतता है। ऊपर सूचीबद्ध दो फ्लोरोएलेस्टोमर नली रासायनिक संगतता को उनके सुदृढीकरण प्रौद्योगिकी से उपजी एक बहुत लंबी नली जीवन के साथ जोड़ते हैं, लेकिन एक उच्च प्रारंभिक लागत पर आते हैं। किसी को लंबी नली जीवन से प्राप्त कुल मूल्य के साथ लागत को उचित ठहराना होगा और अन्य विकल्पों जैसे कि अन्य टयूबिंग या यहां तक कि अन्य पंप प्रौद्योगिकियों के साथ तुलना करनी होगी।
पंप किए गए तरल पदार्थ के साथ टयूबिंग सामग्री की रासायनिक संगतता की जांच के लिए कई ऑनलाइन साइटें हैं। टयूबिंग निर्माताओं के पास उनके टयूबिंग उत्पादन विधि, कोटिंग, सामग्री और पंप किए जा रहे तरल पदार्थ के लिए विशिष्ट संगतता चार्ट भी हो सकते हैं।
जबकि ये चार्ट सामान्यतः सामना किए जाने वाले तरल पदार्थों की सूची को कवर करते हैं, हो सकता है कि उनमें सभी तरल पदार्थ न हों। यदि कोई तरल पदार्थ है जिसकी अनुकूलता कहीं सूचीबद्ध नहीं है, तो अनुकूलता का एक सामान्य परीक्षण विसर्जन परीक्षण है। टयूबिंग के 1 से 2 इंच के नमूने को 24 से 48 घंटों तक कहीं भी पंप किए जाने वाले तरल पदार्थ में डुबोया जाता है, और विसर्जन से पहले और बाद में वजन की मात्रा को मापा जाता है। यदि वजन परिवर्तन प्रारंभिक वजन के 10% से अधिक है, तो वह टीउबे द्रव के साथ संगत नहीं है, और उस अनुप्रयोग में इसका उपयोग नहीं किया जाना चाहिए। यह परीक्षण अभी भी एक तरफा परीक्षण है, इस अर्थ में कि अभी भी एक दूरस्थ मौका है कि इस परीक्षण को पास करने वाला टयूबिंग अभी भी आवेदन के लिए असंगत हो सकता है क्योंकि सीमा रेखा संगतता और यांत्रिक फ्लेक्सिंग के संयोजन से नली को किनारे पर धकेल दिया जा सकता है। , जिसके परिणामस्वरूप समय से पहले नली विफलता हो जाती है।
सामान्य तौर पर, हाल ही में टयूबिंग के विकास ने क्रमिक वृत्तों में क्रमाकुंचक पंप विकल्प के लिए व्यापक रासायनिक अनुकूलता ला दी है कि कई रासायनिक खुराक अनुप्रयोग अन्य मौजूदा पंप प्रौद्योगिकियों पर लाभ उठा सकते हैं।
समावेशन
रोलर और आवास के बीच न्यूनतम अंतर टयूबिंग पर लागू अधिकतम निचोड़ निर्धारित करता है। टयूबिंग पर लागू निचोड़ की मात्रा पंपिंग प्रदर्शन और नली जीवन को प्रभावित करती है - अधिक निचोड़ने से टयूबिंग जीवन नाटकीय रूप से कम हो जाता है, जबकि कम निचोड़ने से पंप माध्यम वापस फिसल सकता है, विशेष रूप से उच्च दबाव पंपिंग में, और पंप की दक्षता कम हो जाती है नाटकीय रूप से और स्लिप बैक का उच्च वेग सामान्यतः नली की समयपूर्व विफलता का कारण बनता है। इसलिए, निचोड़ की यह मात्रा एक महत्वपूर्ण डिज़ाइन पैरामीटर बन जाती है।
रोड़ा शब्द का उपयोग निचोड़ की मात्रा को मापने के लिए किया जाता है। यह या तो दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है, या दीवार की एक पूर्ण मात्रा के रूप में निचोड़ा जाता है।
होने देना
- जी = रोलर और आवास के बीच न्यूनतम अंतर
- टी = टयूबिंग की दीवार मोटाई
फिर
- y = 2t - g (जब निचोड़ की पूर्ण मात्रा के रूप में व्यक्त किया जाता है)
- y = 100% x (2t - g) / (2t) (जब दीवार की मोटाई के दोगुने प्रतिशत के रूप में व्यक्त किया जाता है)
रोड़ा सामान्यतः 10% से 20% होता है, जिसमें नरम नली सामग्री के लिए उच्च रोड़ा और कठिन नली सामग्री के लिए कम रोड़ा होता है।
इस प्रकार किसी दिए गए पंप के लिए, सबसे महत्वपूर्ण ट्यूबिंग आयाम दीवार की मोटाई बन जाता है। यहां एक दिलचस्प बात यह है कि टयूबिंग के अंदर का व्यास (आईडी) पंप के लिए टयूबिंग की उपयुक्तता के लिए एक महत्वपूर्ण डिजाइन पैरामीटर नहीं है। इसलिए, एक पंप के साथ एक से अधिक आईडी का उपयोग करना सामान्य है, जब तक दीवार की मोटाई समान रहती है।
भीतरी व्यास
पंप की दी गई घूर्णी गति के लिए, एक बड़े आंतरिक व्यास (आईडी) वाली नली एक छोटे आंतरिक व्यास वाले की तुलना में उच्च प्रवाह दर देगी। प्रवाह दर नली बोर के क्रॉस-सेक्शन क्षेत्र का एक कार्य है।
प्रवाह दर
पंप के लिए प्रवाह दर एक महत्वपूर्ण पैरामीटर है। क्रमाकुंचक पंप में प्रवाह दर कई कारकों द्वारा निर्धारित की जाती है, जैसे:
- नली आंतरिक व्यास - बड़े आंतरिक व्यास के साथ उच्च प्रवाह दर
- पम्प हेड बाहरी व्यास - बड़े बाहरी व्यास के साथ उच्च प्रवाह दर
- पंप सिर घूर्णी गति - उच्च गति के साथ उच्च प्रवाह दर
- प्रवेशिका पल्सेशन - पल्स नली के भरने की मात्रा को कम कर देता है
रोलर्स की संख्या बढ़ने से प्रवाह दर में वृद्धि नहीं होती है, बल्कि यह सिर के प्रभावी (यानी द्रव-पंपिंग) परिधि को कम करके प्रवाह दर को कुछ हद तक कम कर देगा। स्पंदित प्रवाह की आवृत्ति को बढ़ाकर रोलर्स विसर्जन केन्द्र पर तरल पदार्थ के स्पंदन के आयाम को कम करते हैं।
नली की लंबाई (प्रवेशिका के निकट प्रारंभिक पिंच बिंदु से विसर्जन केन्द्र के पास अंतिम रिलीज बिंदु तक मापी गई) प्रवाह दर को प्रभावित नहीं करती है। हालांकि, एक लंबी नली का मतलब प्रवेशिका और विसर्जन केन्द्र के बीच अधिक पिंच पॉइंट होता है, जिससे पंप उत्पन्न हो सकता है।
क्रमाकुंचक पंप की प्रवाह दर ज्यादातर मामलों में रैखिक नहीं होती है। पंप के प्रवेशिका पर स्पंदन के प्रभाव से क्रमाकुंचक नली के भरने की डिग्री बदल जाती है। उच्च प्रवेशिका स्पंदन के साथ, क्रमाकुंचक नली अंडाकार आकार की हो सकती है, जिसके परिणामस्वरूप कम प्रवाह होता है। क्रमाकुंचक पंप के साथ सटीक पैमाइश तभी संभव है जब पंप में निरंतर प्रवाह दर हो, या जब प्रवेशिका स्पंदन को सही डिज़ाइन किए गए पल्सेशन डैम्पनर के उपयोग से समाप्त कर दिया जाए।
स्पंदन
स्पंदन क्रमिक वृत्तों में क्रमाकुंचक पंप का एक महत्वपूर्ण पक्ष प्रभाव है। क्रमाकुंचक पंप में स्पंदन कई कारकों द्वारा निर्धारित किया जाता है, जैसे:
- प्रवाह दर - उच्च प्रवाह दर अधिक स्पंदन देती है
- लाइन लेंथ - लंबी पाइपलाइन अधिक स्पंदन देती हैं
- उच्च पंप गति - उच्च RPM अधिक स्पंदन देता है
- द्रव का विशिष्ट गुरुत्व - उच्च द्रव घनत्व अधिक स्पंदन देता है
रूपांतर
नली पंप
उच्च दबाव क्रमिक वृत्तों में क्रमाकुंचक नली (टयूबिंग) पंप जो आम तौर पर के खिलाफ काम कर सकते हैं 16 bar (230 psi) निरंतर सेवा में, जूते का उपयोग करें (केवल कम दबाव वाले प्रकारों पर उपयोग किए जाने वाले रोलर्स) और पंप नली के बाहरी हिस्से के घर्षण को रोकने के लिए और गर्मी के अपव्यय में सहायता करने के लिए चिकनाई से भरे आवरण होते हैं, और प्रबलित ट्यूबों का उपयोग करते हैं, जिन्हें अक्सर होसेस कहा जाता है। पंप के इस वर्ग को अक्सर नली पंप कहा जाता है।
रोलर पंपों की तुलना में होज़ पंपों का सबसे बड़ा लाभ 16 बार तक का उच्च परिचालन दबाव है। रोलर्स के साथ, अधिकतम दबाव तक पहुंच सकता है 12 bar (170 psi) किसी भी समस्या के बिना। यदि उच्च परिचालन दबाव की आवश्यकता नहीं है, तो नली पंप की तुलना में एक टयूबिंग पंप एक बेहतर विकल्प है यदि पंप किया हुआ माध्यम अपघर्षक नहीं है। दबाव, जीवन और रासायनिक अनुकूलता के साथ-साथ उच्च प्रवाह दर श्रेणियों के लिए टयूबिंग प्रौद्योगिकी में हाल की प्रगति के साथ, नली पंपों के रोलर पंपों पर होने वाले फायदे क्षीण होते जा रहे हैं।
नली पंप
कम दबाव क्रमाकुंचक पंपों में सामान्यतः शुष्क आवरण होते हैं और गैर-प्रबलित, एक्सट्रूडेड टयूबिंग के साथ रोलर्स का उपयोग करते हैं। पंप के इस वर्ग को कभी-कभी नली पंप या ट्यूबिंग पंप कहा जाता है। ये पंप नली को निचोड़ने के लिए रोलर्स का प्रयोग करते हैं। नीचे बताए अनुसार 360° सनकी पंप डिज़ाइन को छोड़कर, इन पंपों में कम से कम 2 रोलर्स 180° के अलावा होते हैं और इनमें 8 या 12 रोलर्स तक हो सकते हैं। रोलर्स की संख्या बढ़ने से विसर्जन केन्द्र पर पंप किए गए तरल पदार्थ की दबाव नाड़ी आवृत्ति बढ़ जाती है, जिससे स्पंदन का आयाम कम हो जाता है। रोलर्स की संख्या बढ़ाने का नकारात्मक पक्ष यह है कि यह उस नली के माध्यम से दिए गए संचयी प्रवाह के लिए टयूबिंग पर निचोड़ने, या अवरोधन की संख्या को आनुपातिक रूप से बढ़ाता है, जिससे टयूबिंग जीवन कम हो जाता है।
क्रमाकुंचक पंपों में दो प्रकार के रोलर डिज़ाइन होते हैं:
- फिक्स्ड रोड़ा - इस तरह के पंप में, रोलर्स का एक निश्चित स्थान होता है, जब यह नली को निचोड़ता है, तो रोड़ा स्थिर रहता है। यह एक सरल, फिर भी प्रभावी डिजाइन है। इस डिज़ाइन का एकमात्र नकारात्मक पक्ष यह है कि नली पर प्रतिशत के रूप में रोड़ा नली की दीवार की मोटाई की भिन्नता के साथ बदलता रहता है। सामान्यतः एक्सट्रूडेड ट्यूबों की दीवार की मोटाई इतनी भिन्न होती है कि% रोड़ा दीवार की मोटाई के साथ भिन्न हो सकता है (ऊपर देखें)। इसलिए, अधिक दीवार की मोटाई के साथ नली का एक खंड, लेकिन स्वीकृत सहनशीलता के भीतर, उच्च प्रतिशत रोड़ा होगा, जो टयूबिंग पर पहनने को बढ़ाता है, जिससे नली जीवन कम हो जाता है। नली की दीवार की मोटाई की सहनशीलता आज आम तौर पर इतनी तंग रखी जाती है कि यह मुद्दा ज्यादा व्यावहारिक चिंता का नहीं है। यंत्रवत् इच्छुक लोगों के लिए, यह निरंतर तनाव संचालन हो सकता है।
- स्प्रिंग-लोडेड रोलर्स - जैसा कि नाम से संकेत मिलता है, इस पंप में रोलर्स स्प्रिंग पर लगे होते हैं। यह डिज़ाइन निश्चित रोड़ा की तुलना में अधिक विस्तृत है, लेकिन व्यापक रेंज में नली की दीवार की मोटाई में बदलाव को दूर करने में मदद करता है। विविधताओं के बावजूद, रोलर टयूबिंग पर समान मात्रा में तनाव प्रदान करता है जो वसंत स्थिरांक के समानुपाती होता है, जिससे यह एक निरंतर तनाव संचालन बन जाता है। वसंत का चयन न केवल टयूबिंग की घेरा शक्ति पर काबू पाने के लिए किया जाता है, बल्कि पंप किए गए तरल पदार्थ के दबाव को भी दूर करने के लिए किया जाता है।
इन पंपों का परिचालन दबाव टयूबिंग द्वारा निर्धारित किया जाता है और टयूबिंग की घेरा शक्ति और द्रव दबाव को दूर करने की मोटर की क्षमता से निर्धारित होता है।
माइक्रोफ्लुइडिक पंप
माइक्रोफ्लुइडिक्स में, द्रव के परिसंचारी मात्रा को कम करने के लिए अक्सर वांछनीय होता है। पारंपरिक पंपों को माइक्रोफ्लुइडिक सर्किट के बाहर बड़ी मात्रा में तरल की आवश्यकता होती है। यह एनालिटिक्स के कमजोर पड़ने और पहले से ही जैविक सिग्नलिंग अणुओं को पतला करने के कारण समस्याएं पैदा कर सकता है।[9]
इस कारण से, दूसरों के बीच, माइक्रो-पंपिंग संरचना को माइक्रोफ्लुइडिक सर्किट में एकीकृत करना वांछनीय है। वू एट अल। 2008 में एक न्यूमेटिकली एक्टीवेटेड क्रमाकुंचक माइक्रोपंप प्रस्तुत किया गया था जो बड़े बाहरी परिसंचारी द्रव की मात्रा की आवश्यकता को समाप्त करता है।[8]
लाभ
- कोई संदूषण नहीं। क्योंकि पंप का एकमात्र हिस्सा पंप किए जा रहे तरल पदार्थ के संपर्क में है, नली का इंटीरियर है, यह नसबंदी (सूक्ष्म जीव विज्ञान) के लिए आसान है और पंप के अंदर की सतहों को साफ करता है।
- कम रखरखाव की जरूरत और साफ करने में आसान; उनके वाल्व, सील और स्टफिंग बॉक्स # ग्लैंड्स की कमी उन्हें बनाए रखने के लिए तुलनात्मक रूप से सस्ती बनाती है।
- वे घोल, चिपचिपे, कतरनी-संवेदनशील और आक्रामक तरल पदार्थों को संभालने में सक्षम हैं।
- पंप डिजाइन बिना वाल्व के बैकफ्लो और साइफन को रोकता है।
- तरल पदार्थ की एक निश्चित मात्रा को प्रति घुमाव पर पंप किया जाता है, इसलिए इसका उपयोग पंप किए गए तरल पदार्थ की मात्रा को मोटे तौर पर मापने के लिए किया जा सकता है।
नुकसान
- लचीला टयूबिंग समय के साथ खराब हो जाएगा और समय-समय पर प्रतिस्थापन की आवश्यकता होगी।
- प्रवाह स्पंदित होता है, विशेष रूप से कम घूर्णी गति पर। इसलिए, ये पंप कम उपयुक्त होते हैं जहां एक चिकनी सुसंगत प्रवाह की आवश्यकता होती है। उन अनुप्रयोगों में जिन्हें सुचारू प्रवाह की आवश्यकता होती है, तब एक वैकल्पिक प्रकार के प्रभावयुक्त विस्थापन पंप पर विचार किया जाना चाहिए।
- प्रभावशीलता तरल चिपचिपाहट द्वारा सीमित है
ट्यूबिंग
क्रमाकुंचक पंप टयूबिंग का चयन करने के लिए विचारों में पंप किए जाने वाले तरल के प्रति उचित रासायनिक प्रतिरोध शामिल है, चाहे पंप लगातार या अंतःक्रियात्मक रूप से उपयोग किया जाएगा, और लागत। क्रमाकुंचक पंपों में सामान्यतः उपयोग किए जाने वाले टयूबिंग के प्रकारों में शामिल हैं:
- पॉलीविनाइल क्लोराइड (पीवीसी)
- सिलिकॉन रबर
- फ्लोरोपॉलीमर
- फार्म्ड
- थर्माप्लास्टिक
- फ्लोरोएलेस्टोमर
निरंतर उपयोग के लिए, ज्यादातर सामग्रियां कम समय सीमा में समान प्रदर्शन करती हैं।[10] इससे पता चलता है कि पीवीसी जैसी कम लागत वाली सामग्री की अनदेखी एक अल्पकालिक, एक बार उपयोग होने वाले चिकित्सा अनुप्रयोगों की जरूरतों को पूरा कर सकती है। आंतरायिक उपयोग के लिए, संपीड़न सेट महत्वपूर्ण है और सिलिकॉन एक इष्टतम सामग्री विकल्प है।
विशिष्ट अनुप्रयोग
*दवा
- किडनी डायलिसिस मशीन
- कार्डियोपल्मोनरी बाईपास|ओपन-ह्रदय बाईपास पंप मशीनें
- जलसेक का पम्प
- परीक्षण और अनुसंधान
- ऑटो एनालाइजर
- विश्लेषणात्मक रसायन प्रयोग
- कार्बन मोनोआक्साइड मॉनीटर
- मीडिया डिस्पेंसर
- कृषि
- 'सैप्सकर' मेपल ट्री सैप निकालने के लिए पंप करता है
- हाइड्रोपोनिक सिस्टम के लिए खुराक
- खाद्य निर्माण और बिक्री
- तरल भोजन फव्वारे (उदा। मकई के नमकीन के लिए पनीर सॉस)
- पेय वितरण
- खाद्य-सेवा वॉशिंग मशीन द्रव पंप
- रासायनिक हैंडलिंग
- प्रिंटिंग, पेंट और पिगमेंट
- दवा उत्पादन
- डिशवॉशर और कपड़े धोने के रसायनों के लिए खुराक प्रणाली
- इंजीनियरिंग और निर्माण
- कंक्रीट पंप
- लुगदी और कागज के पौधे
- न्यूनतम मात्रा स्नेहन
- इंकजेट प्रिंटर
- पानी और अपशिष्ट
- जल शोधन संयंत्र में रासायनिक उपचार
- कीचड़ मल
- एक्वैरियम , विशेष रूप से कैल्शियम रिएक्टर
- अपशिष्ट जल गुणवत्ता संकेतक ों के लिए स्वचालित अपशिष्ट जल नमूनाकरण
यह भी देखें
संदर्भ
- ↑ The Mechanics' Magazine, Museum, Register, Journal & Gazette (in English). Knight and Lacey. 1845. pp. 52–53.
- ↑ "Elastic-tube ptjmp".
- ↑ "Instrument for transfusion of blood".
- ↑ Dr. Michael E. DeBakey. "Methodist DeBakey Heart & Vascular Center". Archived from the original on 2011-07-27. Retrieved 2010-06-27.
- ↑ "- Michael E. DeBakey - Profiles in Science Search Results". profiles.nlm.nih.gov.
- ↑ Passaroni, A. C; Silva, M. A; Yoshida, W. B (2015). "Cardiopulmonary bypass: Development of John Gibbon's heart-lung machine". Revista Brasileira de Cirurgia Cardiovascular. 30 (2): 235–245. doi:10.5935/1678-9741.20150021. PMC 4462970. PMID 26107456.
- ↑ "Self-regulating blood pump".
- ↑ 8.0 8.1 Wu, Min Hsien; Huang, Song Bin; Cui, Zhanfeng; Cui, Zheng; Lee, Gwo Bin (2008). "Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing". Sensors and Actuators, B: Chemical. 129 (1): 231–240. doi:10.1016/j.snb.2007.07.145.
- ↑ Wagner, I.; Materne, E.-M.; Brincker, S.; Süssbier, U.; Frädrich, C.; Busek, M.; Marx, U. (2013). "A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture". Lab on a Chip. 13 (18): 3538–47. doi:10.1039/c3lc50234a. PMID 23648632.
- ↑ "Material Selection for Peristaltic Pump Tubing | Whitepaper | Grayline LLC".
- ↑ Treutel, Chuck (7 May 2009). "Peristaltic answer to caustic problems". World Pumps. Retrieved 10 July 2014.