परिमाणक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Scale of numbers with a fixed ratio}}
{{Short description|निश्चित अनुपात के साथ संख्याओं का पैमाना}}
{{other uses}}
{{other uses}}
परिमाण का क्रम कुछ प्रासंगिक रूप से समझे जाने वाले संदर्भ मूल्य के सापेक्ष मान के लघुगणक का अनुमान है, सामान्यतः 10, लघुगणक के आधार और परिमाण के मूल्यों के प्रतिनिधि के रूप में व्याख्या की गई हैं। सामान्य अर्थों में सामान्य वितरण होते हैं तथा इस प्रकार के वितरण के नमूने लिए गए मानों के परिमाण-क्रम पर विचार कर अधिक सहजज्ञान युक्त हो सकता है। जब संदर्भ मान 10 होता है, तो परिमाण के क्रम को मान के आधार-10 प्रतिनिधित्व में अंकों की संख्या के रूप में समझा जा सकता है। इसी प्रकार, यदि संदर्भ मान 2 की कुछ घात में से एक है, चूंकि कंप्यूटर डेटा को बाइनरी प्रारूप में संग्रहीत करते हैं, तो परिमाण को उस मान को संग्रहीत करने के लिए आवश्यक कंप्यूटर मेमोरी की मात्रा के संदर्भ में समझा जा सकता है।
परिमाण का क्रम कुछ प्रासंगिक रूप से समझे जाने वाले संदर्भ मूल्य के सापेक्ष मान के लघुगणक का अनुमान है, सामान्यतः 10, लघुगणक के आधार और परिमाण के मूल्यों के प्रतिनिधि के रूप में व्याख्या की गई हैं। सामान्य अर्थों में वितरण होते हैं तथा इस प्रकार के वितरण के नमूने लिए गए मानों के परिमाण-क्रम पर विचार कर अधिक सहजज्ञान युक्त हो सकता है। जब संदर्भ मान 10 होता है, तो परिमाण के क्रम को मान के आधार-10 प्रतिनिधित्व में अंकों की संख्या के रूप में समझा जा सकता है। इसी प्रकार, यदि संदर्भ मान 2 कुछ घात में से एक है, चूंकि कंप्यूटर डेटा को बाइनरी प्रारूप में संग्रहीत करते हैं, तो परिमाण को उस मान को संग्रहीत करने के लिए आवश्यक कंप्यूटर मेमोरी की मात्रा के संदर्भ में समझा जा सकता है।


परिमाण के क्रम में अंतर को "[[दशकों|दशक (लॉग स्केल)]]" (यानी, दस के कारक) में आधार -10 लघुगणकीय पैमाने पर मापा जा सकता है।<ref>{{cite web
परिमाण के क्रम में अंतर को "[[दशकों|दशक (लॉग पैमाना)]]" (यानी, दस के कारक) में आधार -10 लघुगणकीय पैमाने पर मापा जा सकता है।<ref>{{cite web
  |url        = http://public.wsu.edu/~brians/errors/orders.html
  |url        = http://public.wsu.edu/~brians/errors/orders.html
  |title      = Orders of Magnitude
  |title      = Orders of Magnitude
Line 35: Line 35:
| 1000 || 1 × 10<sup>3</sup>|| 3
| 1000 || 1 × 10<sup>3</sup>|| 3
|}
|}
<math>10^{b-1/2}</math> और <math>10^{b+1/2}</math> का ज्यामितीय मतलब है <math>10^b</math>, जिसका मतलब है कि वास्तव में एक मूल्य <math>10^b</math> (अर्थात., <math>a=1</math>) <math>a</math> के संभावित मूल्यों की सीमा के भीतर ज्यामितीय आधे रास्ते का प्रतिनिधित्व करता है।
<math>10^{b-1/2}</math> और <math>10^{b+1/2}</math> का ज्यामितीय मतलब है <math>10^b</math>, जिसका मतलब है कि वास्तव में मूल्य <math>10^b</math> (अर्थात., <math>a=1</math>) <math>a</math> के संभावित मूल्यों की सीमा के भीतर ज्यामितीय आधे रास्ते का प्रतिनिधित्व करता है।


कुछ सरल परिभाषा का उपयोग करते हैं जहां <math>0.5<a\leq 5</math>, शायद इसलिए कि अंकगणित का मतलब <math>10^b</math> और <math>10^{b+c}</math> दृष्टिकोण <math>5\times10^{b+c-1}</math> <math>c</math> को बढ़ाने के लिए{{cn|date=March 2022}} इस परिभाषा का <math>b</math> के मूल्यों को थोड़ा कम करने का प्रभाव है:
कुछ सरल परिभाषा का उपयोग करते हैं जहां <math>0.5<a\leq 5</math>, शायद इसलिए कि अंकगणित का मतलब <math>10^b</math> और <math>10^{b+c}</math> दृष्टिकोण <math>5\times10^{b+c-1}</math> <math>c</math> को बढ़ाने के लिए{{cn|date=March 2022}} इस परिभाषा का <math>b</math> के मूल्यों को थोड़ा कम करने का प्रभाव है:
Line 242: Line 242:


===परिमाण का क्रम===
===परिमाण का क्रम===
किसी चर का परिमाण-कोटि-अनुमान, जिसका सटीक मूल्य अज्ञात होता है, वह दस की निकटतम शक्ति के आधार पर किया गया अनुमान है। उदाहरण के लिए, लगभग 3 अरब और 30 अरब (जैसे कि पृथ्वी की [[मानव]] आबादी) के बीच एक चर के लिए परिमाण का क्रम अनुमान 10 अरब है। किसी संख्या को उसके परिमाण के निकटतम अनुक्रम में राउंड करने के लिए, सके लघुगणक को निकटतम पूर्णांक में घेरता है। इस प्रकार 4000000, जिसका लघुगणक (आधार 10 में) 6.602 है, इसकी परिमाण के निकटतम क्रम के रूप में 7 है, क्योंकि "निकटतम" का तात्पर्य ट्रंकेशन के बजाय गोलाई से है। वैज्ञानिक संकेतन में लिखी गई संख्या के लिए, इस लॉगरिदमिक राउंडिंग स्केल को दस की अगली शक्ति तक पूर्णांकित करने की आवश्यकता होती है, जब गुणक दस के वर्गमूल (लगभग 3.162) से अधिक होता है। उदाहरण के लिए, 1.7×10<sup>8</sup> के परिमाण की निकटतम कोटि 8 है, जबकि 3.7×10<sup>8</sup> के लिए परिमाण की निकटतम कोटि 9 है। परिमाण के क्रम अनुमान को कभी-कभी शून्य क्रम सन्निकटन भी कहा जाता है।
किसी चर का परिमाण-कोटि-अनुमान, जिसका सटीक मूल्य अज्ञात होता है, वह दस की निकटतम शक्ति के आधार पर किया गया अनुमान है। उदाहरण के लिए, लगभग 3 अरब और 30 अरब (जैसे कि पृथ्वी की [[मानव]] आबादी) के बीच एक चर के लिए परिमाण का क्रम अनुमान 10 अरब है। किसी संख्या को उसके परिमाण के निकटतम अनुक्रम में राउंड करने के लिए, सके लघुगणक को निकटतम पूर्णांक में घेरता है। इस प्रकार 4000000, जिसका लघुगणक (आधार 10 में) 6.602 है, इसकी परिमाण के निकटतम क्रम के रूप में 7 है, क्योंकि "निकटतम" का तात्पर्य ट्रंकेशन के बजाय गोलाई से है। वैज्ञानिक संकेतन में लिखी गई संख्या के लिए, इस लघुगणकिक राउंडिंग स्केल को दस की अगली शक्ति तक पूर्णांकित करने की आवश्यकता होती है, जब गुणक दस के वर्गमूल (लगभग 3.162) से अधिक होता है। उदाहरण के लिए, 1.7×10<sup>8</sup> के परिमाण की निकटतम कोटि 8 है, जबकि 3.7×10<sup>8</sup> के लिए परिमाण की निकटतम कोटि 9 है। परिमाण के क्रम अनुमान को कभी-कभी शून्य क्रम सन्निकटन भी कहा जाता है।


=== परिमाण अंतर का क्रम ===
=== परिमाण अंतर का क्रम ===
Line 261: Line 261:
| 3 || align=right | {{val|1000|fmt=none}} || align=right | {{val|1000000000000000000}} || align=right | क्विंटिलियन || align="right" | ट्रिलियन
| 3 || align=right | {{val|1000|fmt=none}} || align=right | {{val|1000000000000000000}} || align=right | क्विंटिलियन || align="right" | ट्रिलियन
|}
|}
दाईं ओर तालिका में SI इकाइयों का उपयोग SI उपसर्गों के साथ किया जाता है, जो मुख्य रूप से आधार 1000 परिमाणों को ध्यान में रखते हुए तैयार किए गए थे। आधार 1024 के साथ आईईसी मानक उपसर्गों का आविष्कार इलेक्ट्रॉनिक प्रौद्योगिकी में उपयोग के लिए किया गया था।
दाईं ओर तालिका में एसआई इकाइयों का उपयोग एसआई उपसर्गों के साथ किया जाता है, जो मुख्य रूप से आधार 1000 परिमाणों को ध्यान में रखते हुए तैयार किए गए थे। आधार 1024 के साथ आईईसी मानक उपसर्गों का आविष्कार इलेक्ट्रॉनिक प्रौद्योगिकी में उपयोग के लिए किया गया था।


तारों की चमक के लिए प्राचीन स्पष्ट परिमाण आधार का उपयोग करता है <math>\sqrt[5]{100} \approx 2.512</math> और उलटा होता है। आधुनिक संस्करण हालांकि गैर-पूर्णांक मानों के साथ लघुगणकीय पैमाने में बदल जाता है।
तारों की चमक के लिए प्राचीन स्पष्ट परिमाण आधार का उपयोग करता है <math>\sqrt[5]{100} \approx 2.512</math> और उलटा होता है। आधुनिक संस्करण हालांकि गैर-पूर्णांक मानों के साथ लघुगणकीय पैमाने में बदल जाता है।


=== बहुत [[ बड़ी संख्या |बड़ी संख्या]] ===
=== बहुत [[ बड़ी संख्या |बड़ी संख्या]] ===
अत्यधिक बड़ी संख्या के लिए, परिमाण का एक सामान्यीकृत क्रम उनके लघुगणक # अन्य घातीय कार्यों के व्युत्क्रम या सुपर-लघुगणक पर आधारित हो सकता है। इन्हें नीचे की ओर एक पूर्णांक तक गोल करने से बहुत गोल संख्याओं के बीच श्रेणियां मिलती हैं, उन्हें निकटतम पूर्णांक पर गोल करना और उलटा कार्य लागू करने से निकटतम गोल संख्या मिलती है।
अत्यधिक बड़ी संख्या के लिए, परिमाण का सामान्यीकृत क्रम उनके दोहरे लघुगणक या अति-लघुगणक पर आधारित हो सकता है। इन्हें नीचे से पूर्णांक में पूर्णांकित करने से बहुत "गोल संख्याओं" के मध्य वर्ग प्राप्त होता है, उन्हें निकटतम पूर्णांक में पूर्णन तथा प्रतिलोम फलन के प्रयोग से "निकटतम" गोल संख्या प्राप्त होती है।


दोहरे लघुगणक से श्रेणियां प्राप्त होती हैं:
दोहरे लघुगणक से श्रेणियां प्राप्त होती हैं:
: ..., 1.0023–1.023, 1.023–1.26, 1.26–10, 10–10<sup>10</sup>, 10<sup>10</sup>–10<sup>100</sup>, 10<sup>100</sup>–10<sup>{{val|1000|fmt=none}}</सुप>, ...
: ..., 1.0023–1.023, 1.023–1.26, 1.26–10, 10–10<sup>10</sup>, 10<sup>10</sup>–10<sup>100</sup>, 10<sup>100</sup>–10<sup>{{val|1000|fmt=none}},...
(पहले दो का उल्लेख किया गया है, और बाईं ओर का विस्तार, बहुत उपयोगी नहीं हो सकता है, वे केवल यह प्रदर्शित करते हैं कि अनुक्रम गणितीय रूप से बाईं ओर कैसे जारी रहता है)।
(पहले दो का उल्लेख किया गया है, और बाईं ओर का विस्तार, बहुत उपयोगी नहीं हो सकता है, वे केवल यह प्रदर्शित करते हैं कि अनुक्रम गणितीय रूप से बाईं ओर कैसे जारी रहता है)।


सुपर-लघुगणक श्रेणियों का उत्पादन करता है:
अति-लघुगणक श्रेणियों का उत्पादन करता है:
:0–1, 1–10, 10–10<sup>10</sup>, 10<sup>10</sup>–10<sup>10<sup>10</sup></sup>, 10<sup>10<sup>10</sup></sup>–10<sup>10<sup>10<sup>10</sup></sup></sup>, ... टेट्रेशन
:0–1, 1–10, 10–10<sup>10</sup>, 10<sup>10</sup>–10<sup>10<sup>10</sup></sup>, 10<sup>10<sup>10</sup></sup>–10<sup>10<sup>10<sup>10</sup></sup></sup>, ... अथवा
 
:0-<sup>0</sup>10, <sup>0</sup>10–<sup>1</sup>10, <sup>1</sup>10–<sup>2</sup>10, <sup>2</sup>10–<sup>3</sup>10, <sup>3</sup>10–<sup>4</sup>10, ...
:0-<sup>0</sup>10, <sup>0</sup>10–<sup>1</sup>10, <sup>1</sup>10–<sup>2</sup>10, <sup>2</sup>10–<sup>3</sup>10, <sup>3</sup>10–<sup>4</sup>10, ...


Line 280: Line 279:
:1.076, 2.071, 1453, {{val|4.20|e=31}}, {{val|1.69|e=316}},...
:1.076, 2.071, 1453, {{val|4.20|e=31}}, {{val|1.69|e=316}},...
और, दूसरे मामले में प्रक्षेप विधि के आधार पर
और, दूसरे मामले में प्रक्षेप विधि के आधार पर
: -0.301, 0.5, 3.162, {{val|1453|fmt=none}}, {{val|1|e=1453|fmt=none}}, <math>(10 \uparrow)^1 10^{1453}</math>, <math>(10 \uparrow)^2 10^{1453}</math>,... (बड़ी संख्याएं देखें#लेखन की मानकीकृत प्रणाली)
: -0.301, 0.5, 3.162, {{val|1453|fmt=none}}, {{val|1|e=1453|fmt=none}}, <math>(10 \uparrow)^1 10^{1453}</math>, <math>(10 \uparrow)^2 10^{1453}</math>,... (अत्यंत बड़ी संख्या की संकेतन देखें)


बहुत छोटी संख्या के लिए (शून्य के करीब के अर्थ में) कोई भी विधि सीधे उपयुक्त नहीं है, लेकिन व्युत्क्रम (गणित) के परिमाण के सामान्यीकृत क्रम पर विचार किया जा सकता है।
अत्यधिक छोटी संख्याओं के लिए (शून्य के करीब के अर्थ में) कोई भी विधि प्रत्यक्ष रूप से उपयुक्त नहीं है, परंतु व्युत्क्रम के परिमाण के सामान्यीकृत क्रम पर विचार किया जा सकता है।


लॉगरिदमिक स्केल # ग्राफिक प्रतिनिधित्व के समान एक डबल लॉगरिदमिक स्केल हो सकता है (उदाहरण बिग बैंग से हीट डेथ तक ग्राफिकल टाइमलाइन प्रदान करता है) और सुपर-लॉगरिदमिक स्केल। ऊपर के सभी अंतरालों की लंबाई समान होती है, मध्यबिंदु वास्तव में बीच में होते हैं। अधिक आम तौर पर, दो बिंदुओं के बीच का एक बिंदु सामान्यीकृत f-mean|सामान्यीकृत f-mean f(x) संगत फ़ंक्शन लॉग लॉग x या slog x के संगत होता है। लॉग लॉग एक्स के मामले में, दो संख्याओं का यह मतलब (उदाहरण के लिए 2 और 16 4 देता है) लॉगरिदम के आधार पर निर्भर नहीं होता है, जैसे लॉग एक्स के मामले में (ज्यामितीय मतलब, 2 और 8 4 देते हैं), लेकिन लॉग लॉग के मामले में इसके विपरीत लॉग एक्स (4 और {{val|65536}} यदि आधार 2 है तो 16 देना, अन्यथा नहीं)
लघुगणकीय मापक्रम के समान ही लघुगणक मापक्रम दोहरा (यहाँ दिया गया उदाहरण) तथा अतिलघुगणकीय मापनी कर सकता है। सब से ऊपर के अंतराल की लंबाई उन पर समान होती है और "मध्य बिन्दु" वास्तव में बीच में होती है। अधिक आम तौर पर, दो बिंदुओं के बीच का एक बिंदु सामान्यीकृत f-माध्य से मिलता जुलता है जिसमें f(x) संबंधित फ़ंक्शन लॉग लॉग x या स्लॉग x होता है। लॉग लॉग एक्स के मामले में, दो संख्याओं का यह मतलब (उदाहरण के लिए 2 और 16, 4 देता है) लघुगणक के आधार पर निर्भर नहीं होता है, जैसे लॉग एक्स के मामले में (ज्यामितीय मतलब, 2 और 8 जो है 4 देते हैं), लेकिन लॉग लॉग लॉग एक्स के मामले में विपरीत (4 और 65536 जो है 16 देता है यदि आधार 2 है, लेकिन अन्यथा नहीं) होता है।


== यह भी देखें ==
== यह भी देखें ==
Line 324: Line 323:


==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
* [http://htwins.net/scale2/ The Scale of the Universe 2 ] Interactive tool from [[Planck length]] 10<sup>−35</sup> meters to universe size 10<sup>27</sup>
* [http://htwins.net/scale2/ The Scale of the Universe 2] Interactive tool from [[Planck length]] 10<sup>−35</sup> meters to universe size 10<sup>27</sup>
* [https://web.archive.org/web/20080412094332/http://www.shekpvar.net/~dna/Publications/Cosmos/cosmos.html Cosmos &ndash; an Illustrated Dimensional Journey from microcosmos to macrocosmos] &ndash; from Digital Nature Agency
* [https://web.archive.org/web/20080412094332/http://www.shekpvar.net/~dna/Publications/Cosmos/cosmos.html Cosmos &ndash; an Illustrated Dimensional Journey from microcosmos to macrocosmos] &ndash; from Digital Nature Agency
* [http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html Powers of 10], a graphic animated illustration that starts with a view of the [[Milky Way]] at 10<sup>23</sup> meters and ends with [[subatomic particle]]s at 10<sup>−16</sup> meters.
* [http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html Powers of 10], a graphic animated illustration that starts with a view of the [[Milky Way]] at 10<sup>23</sup> meters and ends with [[subatomic particle]]s at 10<sup>−16</sup> meters.

Revision as of 09:17, 19 January 2023

परिमाण का क्रम कुछ प्रासंगिक रूप से समझे जाने वाले संदर्भ मूल्य के सापेक्ष मान के लघुगणक का अनुमान है, सामान्यतः 10, लघुगणक के आधार और परिमाण के मूल्यों के प्रतिनिधि के रूप में व्याख्या की गई हैं। सामान्य अर्थों में वितरण होते हैं तथा इस प्रकार के वितरण के नमूने लिए गए मानों के परिमाण-क्रम पर विचार कर अधिक सहजज्ञान युक्त हो सकता है। जब संदर्भ मान 10 होता है, तो परिमाण के क्रम को मान के आधार-10 प्रतिनिधित्व में अंकों की संख्या के रूप में समझा जा सकता है। इसी प्रकार, यदि संदर्भ मान 2 कुछ घात में से एक है, चूंकि कंप्यूटर डेटा को बाइनरी प्रारूप में संग्रहीत करते हैं, तो परिमाण को उस मान को संग्रहीत करने के लिए आवश्यक कंप्यूटर मेमोरी की मात्रा के संदर्भ में समझा जा सकता है।

परिमाण के क्रम में अंतर को "दशक (लॉग पैमाना)" (यानी, दस के कारक) में आधार -10 लघुगणकीय पैमाने पर मापा जा सकता है।[1] विभिन्न परिमाणों की संख्याओं के उदाहरण परिमाण (संख्या) के आदेशों पर पाये जा सकते हैं।

परिभाषा

सामान्यतः किसी संख्या के परिमाण का क्रम उस संख्या का प्रतिनिधित्व करने के लिए उपयोग की जाने वाली 10 की सबसे छोटी घात होती है।[2] किसी संख्या के परिमाण के क्रम की गणना करने के लिए, संख्या को पहले निम्नलिखित रूप में व्यक्त किया जाता है:

जहां , या लगभग .फिर, संख्या के परिमाणक्रम का प्रतिनिधित्व करता है। परिमाण की कोटि किसी भी पूर्णांक की हो सकती है। नीचे दी गई तालिका इस परिभाषा के प्रकाश में कुछ संख्याओं के परिमाण के क्रम को दर्शाती है:

संख्या अभिव्यक्ति में परिमाणक्रम
0.2 2 × 10−1 −1
1 1 × 100 0
5 0.5 × 101 1
6 0.6 × 101 1
31 3.1 × 101 1
32 0.32 × 102 2
999 0.999 × 103 3
1000 1 × 103 3

और का ज्यामितीय मतलब है , जिसका मतलब है कि वास्तव में मूल्य (अर्थात., ) के संभावित मूल्यों की सीमा के भीतर ज्यामितीय आधे रास्ते का प्रतिनिधित्व करता है।

कुछ सरल परिभाषा का उपयोग करते हैं जहां , शायद इसलिए कि अंकगणित का मतलब और दृष्टिकोण को बढ़ाने के लिए[citation needed] इस परिभाषा का के मूल्यों को थोड़ा कम करने का प्रभाव है:

संख्या अभिव्यक्ति में परिमाणक्रम
0.2 2 × 10−1 −1
1 1 × 100 0
5 5 × 100 0
6 0.6 × 101 1
31 3.1 × 101 1
32 3.2 × 101 1
999 0.999 × 103 3
1000 1 × 103 3

अभी तक अन्य लोगों को उन मानों के लिए को प्रतिबंधित करता है जहां ,[citation needed] वैज्ञानिक संकेत में किसी संख्या के परिमाण के क्रम को उसके घातांक भाग के ठीक बराबर बनाना होता है।

उपयोग करता है

परिमाणक्रम के आदेश का प्रयोग अनुमानित तुलना करने के लिए किया जाता है। यदि संख्याएँ परिमाण के एक क्रम से भिन्न होती हैं, तो x, y की तुलना में मात्रा से लगभग दस गुना भिन्न होता है। यदि मान परिमाण के दो क्रमों से भिन्न होते हैं, तो वे लगभग 100 के कारक से भिन्न होते हैं। परिमाण के समान क्रम की दो संख्याओं का पैमाना लगभग समान होता है: बड़ा मान छोटे मान के दस गुना से कम होता है। इंटरनेट डेटा की बढ़ती मात्रा ने हाल ही 2022 में समय के साथ नए एसआई उपसर्गों को जोड़ा है।[3]

शब्दों में उपसर्ग (प्रतीक) दशमलव दस की घात परिमाणक्रम
nonillionth quecto- (q) 0.000000000000000000000000000001 10−30 −30
octillionth ronto- (r) 0.000000000000000000000000001 10−27 −27
septillionth yocto- (y) 0.000000000000000000000001 10−24 −24
sextillionth zepto- (z) 0.000000000000000000001 10−21 −21
quintillionth atto- (a) 0.000000000000000001 10−18 −18
quadrillionth femto- (f) 0.000000000000001 10−15 −15
trillionth pico- (p) 0.000000000001 10−12 −12
billionth nano- (n) 0.000000001 10−9 −9
millionth micro- (µ) 0.000001 10−6 −6
thousandth milli- (m) 0.001 10−3 −3
hundredth centi- (c) 0.01 10−2 −2
tenth deci- (d) 0.1 10−1 −1
one   1 100 0
ten deca- (da) 10 101 1
hundred hecto- (h) 100 102 2
thousand kilo- (k) 1000 103 3
million mega- (M) 1000000 106 6
billion giga- (G) 1000000000 109 9
trillion tera- (T) 1000000000000 1012 12
quadrillion peta- (P) 1000000000000000 1015 15
quintillion exa- (E) 1000000000000000000 1018 18
sextillion zetta- (Z) 1000000000000000000000 1021 21
septillion yotta- (Y) 1000000000000000000000000 1024 24
octillion ronna- (R) 1000000000000000000000000000 1027 27
nonillion quetta- (Q) 1000000000000000000000000000000 1030 30
शब्दों में उपसर्ग (प्रतीक) दशमलव दस की घात परिमाणक्रम

परिमाण के क्रम की गणना

किसी संख्या के परिमाण के क्रम को अंतःतया कहते हुए, संख्या में निहित 10 शक्तियों की संख्या है। अधिक सटीक रूप से, किसी संख्या के परिमाण के क्रम को सामान्य लघुगणक के संदर्भ में परिभाषित किया जा सकता है, आमतौर पर लघुगणक के पूर्णांक भाग के रूप में, जो ट्रंकेशन द्वारा प्राप्त किया जाता है। उदाहरण के लिए, संख्या 4000000 में 6.602 का लघुगणक (आधार 10) है;इसके परिमाण के क्रम 6 है। काट-छाँट करते समय, परिमाण के इस क्रम की संख्या 106 और 107 के बीच होती है। इसी तरह के उदाहरण में, "उसके पास सात-आंकड़ा आय" वाक्यांश के साथ, परिमाण का क्रम संख्याओं की संख्या घटाकर एक है, इसलिए यह कैलकुलेटर के बिना 6 तक आसानी से निर्धारित किया जाता है। परिमाण का क्रम लघुगणकीय पैमाने पर अनुमानित स्थिति है।

परिमाण का क्रम

किसी चर का परिमाण-कोटि-अनुमान, जिसका सटीक मूल्य अज्ञात होता है, वह दस की निकटतम शक्ति के आधार पर किया गया अनुमान है। उदाहरण के लिए, लगभग 3 अरब और 30 अरब (जैसे कि पृथ्वी की मानव आबादी) के बीच एक चर के लिए परिमाण का क्रम अनुमान 10 अरब है। किसी संख्या को उसके परिमाण के निकटतम अनुक्रम में राउंड करने के लिए, सके लघुगणक को निकटतम पूर्णांक में घेरता है। इस प्रकार 4000000, जिसका लघुगणक (आधार 10 में) 6.602 है, इसकी परिमाण के निकटतम क्रम के रूप में 7 है, क्योंकि "निकटतम" का तात्पर्य ट्रंकेशन के बजाय गोलाई से है। वैज्ञानिक संकेतन में लिखी गई संख्या के लिए, इस लघुगणकिक राउंडिंग स्केल को दस की अगली शक्ति तक पूर्णांकित करने की आवश्यकता होती है, जब गुणक दस के वर्गमूल (लगभग 3.162) से अधिक होता है। उदाहरण के लिए, 1.7×108 के परिमाण की निकटतम कोटि 8 है, जबकि 3.7×108 के लिए परिमाण की निकटतम कोटि 9 है। परिमाण के क्रम अनुमान को कभी-कभी शून्य क्रम सन्निकटन भी कहा जाता है।

परिमाण अंतर का क्रम

दो मानों के बीच परिमाण-क्रम का अंतर 10 का गुणक है। उदाहरण के लिए, शनि ग्रह का द्रव्यमान पृथ्वी के द्रव्यमान का 95 गुना है, इसलिए शनि पृथ्वी की तुलना में अधिक विशाल परिमाण के दो आदेश हैं। लघुगणकीय पैमाने पर मापे जाने पर क्रम-परिमाण के अंतर को दशक कहा जाता है।

परिमाण के गैर-दशमलव क्रम

विश्व की विभिन्न दशमलव संख्या पद्धति संख्या के आकार की बेहतर परिकल्पना करने के लिए बड़े आधार का प्रयोग करती है और इसी बड़े आधार की शक्तियों के नाम उत्पन्न करती है। तालिका दर्शाती है कि आधार 10 और आधार 1000000 के लिए परिमाण का क्रम किस संख्या पर लक्षित है। यह देखा जा सकता है कि परिमाण के क्रम को इस उदाहरण में संख्या नाम में शामिल किया गया है, क्योंकि द्वि- का अर्थ 2 और त्रि- का अर्थ 3 है (ये केवल लंबे पैमाने में समझ में आता है), और प्रत्यय-बिलियन बताता है कि आधार 1000000 है। लेकिन संख्या नाम बिलियन, ट्रिलियन खुद (यहां पहले अध्याय की तुलना में अन्य अर्थों के साथ) परिमाण के आदेश के नाम नहीं हैं, वे "परिमाण" के नाम हैं, अर्थात संख्या 1000000000000 आदि है।

परिमाणक्रम Is log10 of Is log1000000 of छोटा पैमाना लंबा पैमाना
1 10 1000000 मिलियन मिलियन
2 100 1000000000000 ट्रिलियन बिलियन
3 1000 1000000000000000000 क्विंटिलियन ट्रिलियन

दाईं ओर तालिका में एसआई इकाइयों का उपयोग एसआई उपसर्गों के साथ किया जाता है, जो मुख्य रूप से आधार 1000 परिमाणों को ध्यान में रखते हुए तैयार किए गए थे। आधार 1024 के साथ आईईसी मानक उपसर्गों का आविष्कार इलेक्ट्रॉनिक प्रौद्योगिकी में उपयोग के लिए किया गया था।

तारों की चमक के लिए प्राचीन स्पष्ट परिमाण आधार का उपयोग करता है और उलटा होता है। आधुनिक संस्करण हालांकि गैर-पूर्णांक मानों के साथ लघुगणकीय पैमाने में बदल जाता है।

बहुत बड़ी संख्या

अत्यधिक बड़ी संख्या के लिए, परिमाण का सामान्यीकृत क्रम उनके दोहरे लघुगणक या अति-लघुगणक पर आधारित हो सकता है। इन्हें नीचे से पूर्णांक में पूर्णांकित करने से बहुत "गोल संख्याओं" के मध्य वर्ग प्राप्त होता है, उन्हें निकटतम पूर्णांक में पूर्णन तथा प्रतिलोम फलन के प्रयोग से "निकटतम" गोल संख्या प्राप्त होती है।

दोहरे लघुगणक से श्रेणियां प्राप्त होती हैं:

..., 1.0023–1.023, 1.023–1.26, 1.26–10, 10–1010, 1010–10100, 10100–101000,...

(पहले दो का उल्लेख किया गया है, और बाईं ओर का विस्तार, बहुत उपयोगी नहीं हो सकता है, वे केवल यह प्रदर्शित करते हैं कि अनुक्रम गणितीय रूप से बाईं ओर कैसे जारी रहता है)।

अति-लघुगणक श्रेणियों का उत्पादन करता है:

0–1, 1–10, 10–1010, 1010–101010, 101010–10101010, ... अथवा
0-010, 010–110, 110–210, 210–310, 310–410, ...

मध्य बिंदु जो यह निर्धारित करते हैं कि कौन सी गोल संख्या पहले मामले में निकट है:

1.076, 2.071, 1453, 4.20×1031, 1.69×10316,...

और, दूसरे मामले में प्रक्षेप विधि के आधार पर

-0.301, 0.5, 3.162, 1453, 1×101453, , ,... (अत्यंत बड़ी संख्या की संकेतन देखें)

अत्यधिक छोटी संख्याओं के लिए (शून्य के करीब के अर्थ में) कोई भी विधि प्रत्यक्ष रूप से उपयुक्त नहीं है, परंतु व्युत्क्रम के परिमाण के सामान्यीकृत क्रम पर विचार किया जा सकता है।

लघुगणकीय मापक्रम के समान ही लघुगणक मापक्रम दोहरा (यहाँ दिया गया उदाहरण) तथा अतिलघुगणकीय मापनी कर सकता है। सब से ऊपर के अंतराल की लंबाई उन पर समान होती है और "मध्य बिन्दु" वास्तव में बीच में होती है। अधिक आम तौर पर, दो बिंदुओं के बीच का एक बिंदु सामान्यीकृत f-माध्य से मिलता जुलता है जिसमें f(x) संबंधित फ़ंक्शन लॉग लॉग x या स्लॉग x होता है। लॉग लॉग एक्स के मामले में, दो संख्याओं का यह मतलब (उदाहरण के लिए 2 और 16, 4 देता है) लघुगणक के आधार पर निर्भर नहीं होता है, जैसे लॉग एक्स के मामले में (ज्यामितीय मतलब, 2 और 8 जो है 4 देते हैं), लेकिन लॉग लॉग लॉग एक्स के मामले में विपरीत (4 और 65536 जो है 16 देता है यदि आधार 2 है, लेकिन अन्यथा नहीं) होता है।

यह भी देखें

संदर्भ

  1. Brians, Paus. "Orders of Magnitude". Retrieved 9 May 2013.
  2. "Order of Magnitude". Wolfram MathWorld. Retrieved 3 January 2017. Physicists and engineers use the phrase "order of magnitude" to refer to the smallest power of ten needed to represent a quantity.
  3. Gibney, Elizabeth (2022). "How many yottabytes in a quettabyte? Extreme numbers get new names". Nature. doi:10.1038/d41586-022-03747-9. PMID 36400954. S2CID 253671538. Retrieved 20 November 2022.


आगे की पढाई


बाहरी कड़ियाँ

श्रेणी: प्रारंभिक गणितश्रेणी: मापन के लघुगणकीय पैमाने