हार्मोनिक्स: Difference between revisions

From Vigyanwiki
Line 20: Line 20:


== वोल्टेज हार्मोनिक्स ==
== वोल्टेज हार्मोनिक्स ==
वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। यदिइस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स लोड को हस्तांतरित वास्तविक शक्ति पर कोई प्रभाव नहीं डालते हैं।इसे देखने का एक सहज तरीका मौलिक आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी चरण बदलाव के वर्तमान हार्मोनिक को ओवरले करने से आता है (अधिक आसानी से निम्नलिखित घटना का निरीक्षण करने के लिए)।क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और वर्तमान हार्मोनिक तरंग के नीचे समान क्षेत्र होता है क्योंकि अक्ष के नीचे और वर्तमान हार्मोनिक लहर के ऊपर होता है।इसका मतलब यह है कि वर्तमान हार्मोनिक्स द्वारा योगदान की जाने वाली औसत वास्तविक शक्ति शून्य के बराबर है।चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो वर्तमान हार्मोनिक्स लोड में स्थानांतरित वास्तविक शक्ति में योगदान करते हैं।
वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। य दि इस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स लोड को हस्तांतरित वास्तविक शक्ति पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मौलिक आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी चरण बदलाव के वर्तमान हार्मोनिक को ओवरले करने से आता है(निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और वर्तमान हार्मोनिक तरंग के नीचे समान क्षेत्र होता है क्योंकि अक्ष के नीचे और वर्तमान हार्मोनिक तरंग के ऊपर होता है। इसका मतलब यह है कि वर्तमान हार्मोनिक्स द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है।चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो वर्तमान हार्मोनिक्स लोड को हस्तांतरित वास्तविक शक्ति में योगदान करते हैं।


एक संतुलित तीन-चरण (तीन-वायर या चार-तार) पावर सिस्टम में तीन लाइन (या लाइन-टू-लाइन) वोल्टेज का सेट में हार्मोनिक्स सम्मलित नहीं हो सकते हैं, जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है (अर्थात हारमोनिक्सआदेश की <math>h = 3 n</math>), जिसमें ट्रिपलन हार्मोनिक्स सम्मलित हैं (अर्थात ऑर्डर का हारमोनिक्स <math>h = 3 (2 n - 1)</math>)।<ref name="Wakileh_2001">{{cite book | title = पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन| edition = 1 | first = George J. | last = Wakileh | publisher = Springer | year = 2001 | pages = 13–15 | isbn = 978-3-642-07593-3}}</ref> यह इसलिए होता है क्योंकि अन्यथा Kirchhoff के वोल्टेज कानून (KVL) का उल्लंघन किया जाएगा: ऐसे हार्मोनिक्स चरण में हैं, इसलिए तीन चरणों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज के योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, जिसके लिए आवश्यकता होती है।ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए।एक ही तर्क के साथ, संतुलित तीन-तार तीन-चरण शक्ति प्रणाली में तीन लाइन धाराओं का सेट में हार्मोनिक्स सम्मलित नहीं हो सकते हैं, जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है;लेकिन चार-तार प्रणाली कर सकते हैं, और लाइन धाराओं के ट्रिपलन हार्मोनिक्स तटस्थ वर्तमान का गठन करेंगे।
एक संतुलित तीन-चरण (तीन-तार या चार-तार) पावर सिस्टम में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है जिसकी आवृत्ति तीसरे हार्मोनिक्स (यानी हार्मोनिक्स) की आवृत्ति का एक पूर्णांक गुणक है। आदेश की<math>h = 3 n</math>), जिसमें ट्रिपलन हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) <math>h = 3 (2 n - 1)</math>सम्मलित हैं।<ref name="Wakileh_2001">{{cite book | title = पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन| edition = 1 | first = George J. | last = Wakileh | publisher = Springer | year = 2001 | pages = 13–15 | isbn = 978-3-642-07593-3}}</ref> यह इसलिए होता है क्योंकि अन्यथा '''किरचॉफ''' के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स चरण में हैं, इसलिए तीन चरणों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज के योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, जिसके लिए आवश्यकता होती है।ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए।क ही तर्क के साथ, संतुलित तीन-तार तीन-चरण बिजली व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करेंगे।


== यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स ==
== यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स ==
एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के हार्मोनिक्स को उनके आदेश के अनुसार वर्गीकृत किया जा सकता है।
एक विकृत (गैर-साइनसॉइडल) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है।


हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे बराबर हैं <math>n f_0</math> या <math>h f_0</math>, कहाँ पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्या हैं) और <math>f_0</math> विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है।इसी तरह, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है <math>\omega_n</math> या <math>\omega_h</math>, और वे बराबर हैं <math>n \omega_0</math> या <math>h \omega_0</math>, कहाँ पे <math>\omega_0</math> विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक कोणीय आवृत्ति है।कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है <math>\omega = 2 \pi f</math> (हार्मोनिक्स के साथ -साथ मौलिक घटक के लिए मान्य)।
हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है <math>f_n</math> या <math>f_h</math>, और वे इसके बराबर हैं <math>n f_0</math> या <math>h f_0</math>, जहां पे <math>n</math> या <math>h</math> हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और <math>f_0</math> विकृत (गैर-साइनसॉइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है <math>\omega_n</math> या <math>\omega_h</math>, और वे बराबर हैं <math>n \omega_0</math> या <math>h \omega_0</math>, जहां पे <math>\omega_0</math> विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है <math>\omega = 2 \pi f</math> (हार्मोनिक्स के साथ-साथ मौलिक घटक के लिए मान्य होते है )।


=== यहां तक कि हार्मोनिक्स ===
=== यहां तक कि हार्मोनिक्स ===
यहां तक कि विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति शून्य की समता है। गैर-शून्य ''यहां तक कि'' पूर्णांक कई प्रकार के मौलिक आवृत्ति की मौलिक आवृत्ति (जो कि आवृत्ति की आवृत्ति के समान हैमौलिक घटक)।तो, उनका आदेश द्वारा दिया गया है:
एक विकृत (गैर-साइनसॉइडल) आवधिक सिग्नल के भी हार्मोनिक्स हार्मोनिक्स होते हैं जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति (जो मौलिक घटक की आवृत्ति के समान होती है) के गैर-शून्य भी पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है:


<math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math>
<math>h = 2 k, \quad k \in \N \quad \text{(even harmonics)}</math>
कहाँ पे <math>k</math> पूर्णांक संख्या है;उदाहरण के लिए, <math>h = 2, 4, 6, 8, 10</math>।यदि विकृत सिग्नल को त्रिकोणमितीय रूप या फूरियर श्रृंखला के आयाम-चरण रूप में दर्शाया जाता है, तो <math>k</math> केवल सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), यह है कि यह [[ प्राकृतिक संख्या |प्राकृतिक संख्या]] के सेट से मान लेता है;यदि विकृत सिग्नल को फूरियर श्रृंखला के जटिल घातीय रूप में दर्शाया गया है, तो <math>k</math> नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)।
 
कहाँ पे <math>k</math> पूर्णांक संख्या है;उदाहरण के लिए, <math>h = 2, 4, 6, 8, 10</math>। यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम-चरण रूप में दर्शाया गया है, तो <math>k</math> धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो <math>k</math> के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)।


=== विषम हार्मोनिक्स ===
=== विषम हार्मोनिक्स ===

Revision as of 01:42, 23 January 2023

एक विद्युत शक्ति तंत्र में, वोल्टेज या वर्तमान तरंग का लयबद्ध ज्यावक्रीय तरंग है, जिसकी आवृत्ति मौलिक आवृत्ति का पूर्णांक बहु है। हार्मोनिक आवृत्तियों को गैर-रेखीय भार जैसे कि परिशोधक, गैस- निर्वहन प्रकाश, या संतृप्त विद्युत् मशीनों की क्रिया द्वारा उत्पादित किया जाता है। ये बिजली की गुणवत्ता की समस्याओं के लगातार कारण से हैं, और इसके परिणामस्वरूप उपकरण और विद्युत चालक ताप , परिवर्तनीय गति ड्राइव में अपज्वलन और मोटर्स और जनरेटर में आघूर्ण बल स्पंदन हो सकता है।

हार्मोनिक्स को सामान्यतः दो अलग-अलग मानदंडों द्वारा वर्गीकृत किया जाता है: संचार का प्रकार (वोल्टेज या करंट), और हार्मोनिक का क्रम (यहां तक कि, सम, विषम, ट्रिपलेन, या गैर-ट्रिपल विषम); तीन-चरण प्रणाली में, उन्हें अपने चरण अनुक्रम (सकारात्मक, नकारात्मक, शून्य) के अनुसार आगे वर्गीकृत किया जा सकता है।

वर्तमान हार्मोनिक्स

एक सामान्य वैकल्पिक विद्युत प्रणाली में, वर्तमान एक विशिष्ट आवृत्ति पर, सामान्यतः 50 या 60 हेटर्स पर ज्यावक्रीयी रूप से भिन्न होता है। जब रैखिक सर्किट समय-अपरिवर्तनीय प्रणाली | समय-अपरिवर्तनीय विद्युत लोड सिस्टम से सयोजित होता है, तो यह वोल्टेज के समान आवृत्ति पर एक ज्यावक्रीय करंट खींचता है (चूंकि सामान्यतः वोल्टेज के साथ चरण (तरंगों) में नहीं) होते है।[1]: 2 

वर्तमान हार्मोनिक्स गैर-रैखिक भार के कारण होते हैं। जब गैर-रैखिक लोड, जैसे कि रेक्टिफायर सिस्टम से जुड़ा होता है, जब एक गैर-रैखिक भार, जैसे कि एक रेक्टीफायर सिस्टम से जुड़ा होता है, तो यह एक ऐसा करंट खींचता है जो अनिवार्य रूप से साइनसोइडल नहीं होता है। लोड के प्रकार और सिस्टम के अन्य घटकों के साथ इसकी बातचीत के आधार पर वर्तमान तरंग विरूपण काफी जटिल हो सकता है। भले ही वर्तमान तरंग कितनी जटिल हो, फूरियर श्रृंखला रूपांतरण जटिल तरंग को सरल साइनसोइड्स की एक श्रृंखला में विखंडित करना संभव बनाता है, जो कि बिजली प्रणाली मौलिक आवृत्ति पर शुरू होती है और मौलिक आवृत्ति के पूर्णांक गुणकों पर होती है।

पावर सिस्टम में, हार्मोनिक्स को मौलिक आवृत्ति के सकारात्मक पूर्णांक गुणकों के रूप में परिभाषित किया जाता है। इस प्रकार, तीसरा हार्मोनिक मौलिक आवृत्ति का तीसरा गुणक है।

बिजली प्रणालियों में हार्मोनिक्स गैर-रैखिक भार द्वारा उत्पन्न होते हैं। सेमीकंडक्टर डिवाइस जैसे ट्रांजिस्टर, आईजीबीटी, एमओएसएफईटीएस, डायोड आदि सभी गैर-रैखिक भार हैं। गैर-रेखीय भार के अन्य उदाहरणों में सामान्य कार्यालय उपकरण जैसे कंप्यूटर और प्रिंटर, फ्लोरोसेंट लाइटिंग, बैटरी चार्जर और चर-गति ड्राइव भी सम्मलित हैं। विद्युत् मोटर्स सामान्यतः हार्मोनिक पीढ़ी में महत्वपूर्ण योगदान नहीं देते हैं। मोटर और ट्रांसफ़ॉर्मर दोनों हार्मोनिक्स तब बनाएंगे जब वे ओवर-फ्लक्स या संतृप्त होंगे।

गैर-रैखिक भार धाराएं उपयोगिता द्वारा आपूर्ति किए गए शुद्ध साइनसोइडल वोल्टेज तरंग में विकृति पैदा करती हैं, और इसके परिणामस्वरूप प्रतिध्वनि हो सकती है। और इसके परिणामस्वरूप अनुनाद हो सकता है। एक चक्र के सकारात्मक और नकारात्मक हिस्सों के बीच समरूपता के कारण समान रूप से हार्मोनिक्स सामान्य रूप से बिजली व्यवस्था में मौजूद नहीं होते हैं। इसके अतिरिक्त, यदि तीन चरणों की तरंग सममित है, तो नीचे वर्णित ट्रांसफार्मर और मोटर्स के डेल्टा (Δ) कनेक्शन द्वारा तीनों के हार्मोनिक गुणकों को दबा दिया जाता है।

यदि हम उदाहरण के लिए केवल तीसरे हार्मोनिक पर ध्यान केंद्रित करते हैं, तो हम देख सकते हैं कि तीनों के गुणक वाले सभी हार्मोनिक्स पावर सिस्टम में कैसे व्यवहार करते हैं।[2]

तीसरा आदेश हार्मोनिक जोड़

बिजली की आपूर्ति तीन चरण प्रणाली द्वारा की जाती है, जहां प्रत्येक चरण 120 डिग्री अलग होता है। यह दो कारणों से किया जाता है: मुख्य रूप से क्योंकि तीन चरण जनरेटर और मोटर तीन चरण चरणों में विकसित निरंतर टोक़ के कारण निर्माण करना आसान होता है; और दूसरी बात, यदि तीन चरणों को संतुलित किया जाता है, तो उनका योग शून्य होता है, और कुछ स्थिति में तटस्थ कंडक्टरों के आकार को कम या छोड़ा जा सकता है। इन दोनों उपायों के परिणामस्वरूप उपयोगिता कंपनियों को महत्वपूर्ण लागत पर बचत होती है।चूंकि, संतुलित तीसरा हार्मोनिक करंट न्यूट्रल में शून्य में नहीं जुड़ेगा। जैसा कि चित्र में देखा गया है, तीसरा हार्मोनिक तीन चरणों में रचनात्मक रूप से जोड़ देगा। इससे न्यूट्रल वायर में मौलिक आवृत्ति से तीन गुना अधिक करंट होता है, जो समस्याओं का कारण बन सकता है यदि सिस्टम इसके लिए डिज़ाइन नहीं किया गया है,(अर्थात कंडक्टर केवल सामान्य संचालन के लिए आकार देते हैं।)[2] तीसरे क्रम के प्रभाव को कम करने के लिए हार्मोनिक्स डेल्टा कनेक्शन एटेन्यूएटर्स, या तीसरे हार्मोनिक शॉर्ट्स के रूप में उपयोग किए जाते हैं क्योंकि वर्तमान डेल्टा में वाई-Δ ट्रांसफॉर्मर (वाईई कनेक्शन) के तटस्थ प्रवाह के बजाय कनेक्शन को प्रसारित करता है।

एक कॉम्पैक्ट फ्लोरोसेंट लैंप गैर-रैखिक विशेषता के साथ विद्युत भार का उदाहरण है, जो कि सही करनेवाला सर्किट का उपयोग करता है।वर्तमान तरंग, नीला, अत्यधिक विकृत है।

वोल्टेज हार्मोनिक्स

वोल्टेज हार्मोनिक्स ज्यादातर वर्तमान हार्मोनिक्स के कारण होते हैं।स्रोत प्रतिबाधा के कारण वोल्टेज स्रोत द्वारा प्रदान किया गया वोल्टेज वर्तमान हार्मोनिक्स द्वारा विकृत हो जाता है। ययदि वोल्टेज स्रोत का स्रोत प्रतिबाधा छोटा है, तो वर्तमान हार्मोनिक्स केवल छोटे वोल्टेज हार्मोनिक्स का कारण होगा। यह सामान्यतः ऐसा होता है कि वर्तमान हार्मोनिक्स की तुलना में वोल्टेज हार्मोनिक्स वास्तव में छोटे होते हैं। उस कारण से, वोल्टेज तरंग को सामान्यतः वोल्टेज की मौलिक आवृत्ति द्वारा अनुमानित किया जा सकता है। य दि इस सन्निकटन का उपयोग किया जाता है, तो वर्तमान हार्मोनिक्स लोड को हस्तांतरित वास्तविक शक्ति पर कोई प्रभाव नहीं डालते हैं। इसे देखने का एक सहज तरीका मौलिक आवृत्ति पर वोल्टेज तरंग को स्केच करने और बिना किसी चरण बदलाव के वर्तमान हार्मोनिक को ओवरले करने से आता है(निम्नलिखित घटना को अधिक आसानी से देखने के लिए)। क्या देखा जा सकता है कि वोल्टेज की प्रत्येक अवधि के लिए, क्षैतिज अक्ष के ऊपर और वर्तमान हार्मोनिक तरंग के नीचे समान क्षेत्र होता है क्योंकि अक्ष के नीचे और वर्तमान हार्मोनिक तरंग के ऊपर होता है। इसका मतलब यह है कि वर्तमान हार्मोनिक्स द्वारा योगदान की गई औसत वास्तविक शक्ति शून्य के बराबर है।चूंकि, यदि वोल्टेज के उच्च हार्मोनिक्स पर विचार किया जाता है, तो वर्तमान हार्मोनिक्स लोड को हस्तांतरित वास्तविक शक्ति में योगदान करते हैं।

एक संतुलित तीन-चरण (तीन-तार या चार-तार) पावर सिस्टम में तीन लाइन, (या लाइन-टू-लाइन) वोल्टेज का एक सेट हार्मोनिक्स नहीं रख सकता है जिसकी आवृत्ति तीसरे हार्मोनिक्स (यानी हार्मोनिक्स) की आवृत्ति का एक पूर्णांक गुणक है। आदेश की, ), जिसमें ट्रिपलन हार्मोनिक्स (अर्थात् ऑर्डर के हार्मोनिक्स) सम्मलित हैं।[3] यह इसलिए होता है क्योंकि अन्यथा किरचॉफ के वोल्टेज कानून (केवीएल) का उल्लंघन होगा: इस तरह के हार्मोनिक्स चरण में हैं, इसलिए तीन चरणों के लिए उनका योग शून्य नहीं है, चूंकि KVL को ऐसे वोल्टेज के योग की आवश्यकता होती है, जिसके लिए शून्य होने की आवश्यकता होती है, जिसके लिए आवश्यकता होती है।ऐसे हार्मोनिक्स का योग भी शून्य होना चाहिए।क ही तर्क के साथ, संतुलित तीन-तार तीन-चरण बिजली व्यवस्था में तीन लाइन धाराओं का एक सेट हार्मोनिक्स नहीं रख सकता है जिनकी आवृत्ति तीसरी हार्मोनिक्स की आवृत्ति का पूर्णांक है; लेकिन एक चार-तार प्रणाली कर सकती है, और लाइन धाराओं के ट्रिपल हार्मोनिक्स तटस्थ धारा का गठन करेंगे।

यहां तक कि, विषम, ट्रिपलन और नॉन-ट्रिप्लेन विषम हार्मोनिक्स

एक विकृत (गैर-साइनसॉइडल) आवधिक संकेत के हार्मोनिक्स को उनके क्रम के अनुसार वर्गीकृत किया जा सकता है।

हार्मोनिक्स की चक्रीय आवृत्ति (हर्ट्ज में) सामान्यतः इस रूप में लिखी जाती है या , और वे इसके बराबर हैं या , जहां पे या हार्मोनिक्स का क्रम है (जो पूर्णांक संख्याएं हैं)और विकृत (गैर-साइनसॉइडल) आवधिक संकेत की मौलिक चक्रीय आवृत्ति है। इसी प्रकार, हार्मोनिक्स के कोणीय आवृत्ति (रेडियन प्रति सेकंड में) के रूप में लिखा जाता है या , और वे बराबर हैं या , जहां पे विकृत (गैर-साइनसोइडल) आवधिक संकेत की मौलिक कोणीय आवृत्ति है। कोणीय आवृत्ति चक्रीय आवृत्ति से संबंधित है (हार्मोनिक्स के साथ-साथ मौलिक घटक के लिए मान्य होते है )।

यहां तक कि हार्मोनिक्स

एक विकृत (गैर-साइनसॉइडल) आवधिक सिग्नल के भी हार्मोनिक्स हार्मोनिक्स होते हैं जिनकी आवृत्ति विकृत संचार की मौलिक आवृत्ति (जो मौलिक घटक की आवृत्ति के समान होती है) के गैर-शून्य भी पूर्णांक गुणक होती है। तो, उनका आदेश इसके द्वारा दिया गया है:

कहाँ पे पूर्णांक संख्या है;उदाहरण के लिए, । यदि विकृत संकेत त्रिकोणमितीय रूप में या फूरियर श्रृंखला के आयाम-चरण रूप में दर्शाया गया है, तो धनात्मक पूर्णांक मान लेता है (शून्य सहित नहीं), अर्थात यह प्राकृतिक संख्याओं के समुच्चय से मान लेता है; यदि फूरियर श्रृंखला के जटिल घातीय रूप में विकृत संकेत का प्रतिनिधित्व किया जाता है, तो के नकारात्मक और सकारात्मक पूर्णांक मान लेता है (शून्य सहित नहीं, क्योंकि डीसी घटक को सामान्यतः हार्मोनिक नहीं माना जाता है)।

विषम हार्मोनिक्स

एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के विषम हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति विषम पूर्णांक है जो विकृत सिग्नल की मौलिक आवृत्ति के कई कई (जो मौलिक घटक की आवृत्ति के समान है) है।तो, उनका आदेश द्वारा दिया गया है:

उदाहरण के लिए,

विकृत आवधिक संकेतों (या तरंगों) में जो आधे-तरंग समरूपता के अधिकारी होते हैं, जिसका अर्थ है कि नकारात्मक आधे चक्र के समय तरंग सकारात्मक आधे चक्र के समय तरंग के नकारात्मक के बराबर है, सभी हार्मोनिक्स भी शून्य हैं) और डीसी घटक भी शून्य है (), इसलिए वे केवल विषम हार्मोनिक्स हैं ();सामान्य रूप से ये विषम हार्मोनिक्स कोसाइन शर्तों के साथ -साथ साइन शब्द भी हैं, लेकिन कुछ तरंगों में जैसे कि वर्ग तरंग जैसे कि कोसाइन शब्द शून्य हैं (, )।पावर इन्वर्टर , वोल्टेज नियंत्रक और साइक्लोकॉनवर्टर जैसे कई गैर-रैखिक भारों में, आउटपुट वोल्टेज (एस) वेवफॉर्म (एस) में सामान्यतः आधा-तरंग समरूपता होती है और इसलिए इसमें केवल विषम हार्मोनिक्स होते हैं।

मौलिक घटक विषम हार्मोनिक है, जब से , उपरोक्त सूत्र पैदावार , जो मौलिक घटक का क्रम है।यदि मौलिक घटक को विषम हार्मोनिक्स से बाहर रखा गया है, तो शेष हार्मोनिक्स का क्रम दिया जाता है:

उदाहरण के लिए,

ट्रिपलन हार्मोनिक्स

एक विकृत (गैर- ज्यावक्रीय) आवधिक संकेत के ट्रिपलन हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति विकृत सिग्नल के तीसरे हार्मोनिक (एस) की आवृत्ति के विषम पूर्णांक कई है।तो, उनका आदेश द्वारा दिया गया है:

उदाहरण के लिए,

सभी ट्रिपलन हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी ट्रिपलन हार्मोनिक्स नहीं हैं।

नॉन-ट्रिप्लेन विषम हार्मोनिक्स

कुछ विकृत (गैर-साइनसोइडल) आवधिक संकेतों में केवल उन हार्मोनिक्स होते हैं जो हार्मोनिक्स भी नहीं होते हैं और न ही ट्रिपलन हार्मोनिक्स, उदाहरण के लिए चरण कोण नियंत्रण और फायरिंग कोण के साथ तीन-चरण WYE- कनेक्टेड वोल्टेज नियंत्रक के आउटपुट वोल्टेज और अपने आउटपुट से जुड़े विशुद्ध रूप से प्रतिरोधक लोड के साथ और तीन-चरण साइनसोइडल संतुलित वोल्टेज के साथ खिलाया जाता है।उनका आदेश द्वारा दिया गया है:

उदाहरण के लिए,

सभी हार्मोनिक्स जो कि हार्मोनिक्स भी नहीं हैं और न ही ट्रिपलन हार्मोनिक्स भी विषम हार्मोनिक्स हैं, लेकिन सभी विषम हार्मोनिक्स भी हार्मोनिक्स नहीं हैं जो कि हार्मोनिक्स भी नहीं हैं और न ही ट्रिपलन हार्मोनिक्स।

यदि मौलिक घटक को उन हार्मोनिक्स से बाहर रखा गया है जो न तो भी न तो हैं और न ही ट्रिपलन हार्मोनिक्स, तो शेष हार्मोनिक्स का क्रम दिया जाता है:

या द्वारा भी:

उदाहरण के लिए, ।इस बाद के स्थिति में, इन हार्मोनिक्स को इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स द्वारा नॉनट्रिपल ऑड हार्मोनिक्स के रूप में बुलाया जाता है।[4]


सकारात्मक अनुक्रम, नकारात्मक अनुक्रम और शून्य अनुक्रम हार्मोनिक्स

संतुलित तीन-चरण प्रणालियों (तीन-तार या चार-तार) के स्थिति में, तीन विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के हार्मोनिक्स को उनके चरण अनुक्रम के अनुसार भी वर्गीकृत किया जा सकता है।[1]: 7–8 [5][3]


पॉजिटिव सीक्वेंस हार्मोनिक्स

तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के सकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जो तीन मूल संकेतों के समान चरण अनुक्रम होते हैं, और दूसरे के बीच 120 ° द्वारा समय में चरण-शिफ्ट किए जाते हैं।आवृत्ति या आदेश दिया।[6] यह साबित किया जा सकता है कि सकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:

उदाहरण के लिए, .[5][3]

तीन संकेतों के मौलिक घटक सकारात्मक अनुक्रम हार्मोनिक्स हैं, जब से , उपरोक्त सूत्र पैदावार , जो मौलिक घटकों का क्रम है।यदि मौलिक घटकों को सकारात्मक अनुक्रम हार्मोनिक्स से बाहर रखा गया है, तो शेष हार्मोनिक्स का क्रम दिया जाता है:[1]

उदाहरण के लिए,

नकारात्मक अनुक्रम हार्मोनिक्स

तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स होते हैं जो तीन मूल संकेतों के विपरीत चरण अनुक्रम होते हैं, और किसी दिए गए आवृत्ति के लिए 120 ° द्वारा समय में चरण-शिफ्ट किया जाता है।गण।[6]यह साबित किया जा सकता है कि नकारात्मक अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनके द्वारा आदेश दिया गया है:[1]

उदाहरण के लिए, .[5][3]


शून्य अनुक्रम हार्मोनिक्स

तीन-चरण विकृत (गैर-साइनसोइडल) आवधिक संकेतों के सेट के शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जो किसी दिए गए आवृत्ति या आदेश के लिए समय में चरण में होते हैं।यह साबित हो सकता है कि शून्य अनुक्रम हार्मोनिक्स हार्मोनिक्स हैं जिनकी आवृत्ति तीसरे हार्मोनिक्स की आवृत्ति का पूर्णांक है।[1]तो, उनका आदेश द्वारा दिया गया है:

उदाहरण के लिए, .[5][3]

सभी ट्रिपलन हार्मोनिक्स भी शून्य अनुक्रम हार्मोनिक्स हैं,[1]लेकिन सभी शून्य अनुक्रम हार्मोनिक्स भी ट्रिपलन हार्मोनिक्स नहीं हैं।

कुल हार्मोनिक विरूपण

कुल हार्मोनिक विरूपण, या THD बिजली प्रणालियों में सम्मलित हार्मोनिक विरूपण के स्तर का सामान्य माप है।THD या तो वर्तमान हार्मोनिक्स या वोल्टेज हार्मोनिक्स से संबंधित हो सकता है, और इसे मौलिक घटक समय 100%के आरएमएस मूल्य के लिए सभी हार्मोनिक्स के आरएमएस मूल्य के अनुपात के रूप में परिभाषित किया गया है;डीसी घटक उपेक्षित है।

जहां वीkकेथ हार्मोनिक का आरएमएस वोल्टेज है, मैंkKTH हार्मोनिक का RMS वर्तमान है, और k = 1 मौलिक घटक का क्रम है।

यह सामान्यतः स्थिति है कि हम उच्च वोल्टेज हार्मोनिक्स की उपेक्षा करते हैं;चूंकि, यदि हम उनकी उपेक्षा नहीं करते हैं, तो लोड में स्थानांतरित वास्तविक शक्ति हार्मोनिक्स से प्रभावित होती है।औसत वास्तविक शक्ति वोल्टेज और वर्तमान (और बिजली कारक, पीएफ द्वारा यहां निरूपित) के उत्पाद को जोड़कर वोल्टेज और वर्तमान के उत्पाद के लिए मौलिक आवृत्ति पर, या या वर्तमान में पाया जा सकता है, या या

जहां वीkऔर मैंkहार्मोनिक k पर RMS वोल्टेज और वर्तमान परिमाण हैं ( मौलिक आवृत्ति को दर्शाता है), और हार्मोनिक घटकों में फैक्टरिंग के बिना शक्ति की पारंपरिक परिभाषा है।

ऊपर उल्लिखित शक्ति कारक विस्थापन शक्ति कारक है।एक और शक्ति कारक है जो THD पर निर्भर करता है।सच्चा शक्ति कारक औसत वास्तविक शक्ति और आरएमएस वोल्टेज और वर्तमान के परिमाण के बीच अनुपात का मतलब है, .[7]

और

सही शक्ति कारक के लिए समीकरण के लिए इसे प्रतिस्थापित करते हुए, यह स्पष्ट हो जाता है कि मात्रा में दो घटकों के लिए लिया जा सकता है, जिनमें से पारंपरिक शक्ति कारक है (हारमोनिक्स के प्रभाव की उपेक्षा) और जिनमें से हार्मोनिक्स का योगदान हैशक्ति तत्व:

नाम दो अलग -अलग कारकों को सौंपे गए हैं:

कहाँ पे विस्थापन शक्ति कारक है और विरूपण शक्ति कारक है (अर्थात कुल बिजली कारक के लिए हार्मोनिक्स का योगदान)।

प्रभाव

पावर सिस्टम हार्मोनिक्स के प्रमुख प्रभावों में से सिस्टम में करंट को बढ़ाना है।यह विशेष रूप से तीसरे हार्मोनिक के लिए स्थिति है, जो वर्तमान सममित घटक ों में तेज वृद्धि का कारण बनता है, और इसलिए जमीन और तटस्थ कंडक्टर में वर्तमान को बढ़ाता है।इस प्रभाव को गैर-रैखिक भार की सेवा के लिए इलेक्ट्रिक सिस्टम के डिजाइन में विशेष विचार की आवश्यकता हो सकती है।[8] बढ़ी हुई रेखा वर्तमान के अतिरिक्त, विद्युत उपकरण के विभिन्न टुकड़े बिजली प्रणाली पर हार्मोनिक्स से प्रभाव डाल सकते हैं।

मोटर्स

मोटर के लोहे के कोर में स्थापित हिस्टैरिसीस और एड़ी धाराओं के कारण इलेक्ट्रिक मोटर्स का नुकसान होता है।ये वर्तमान की आवृत्ति के आनुपातिक हैं।चूंकि हार्मोनिक्स उच्च आवृत्तियों पर होते हैं, वे बिजली की आवृत्ति की तुलना में मोटर में उच्च कोर नुकसान का उत्पादन करते हैं।इसके परिणामस्वरूप मोटर कोर का हीटिंग बढ़ जाता है, जो (यदि अत्यधिक) मोटर के जीवन को छोटा कर सकता है।5 वें हार्मोनिक बड़े मोटर्स में CEMF (काउंटर इलेक्ट्रोमोटिव बल) का कारण बनता है जो रोटेशन की विपरीत दिशा में कार्य करता है।CEMF रोटेशन का मुकाबला करने के लिए पर्याप्त बड़ा नहीं है;चूंकि यह मोटर की परिणामस्वरूप घूर्णन गति में छोटी भूमिका निभाता है।

टेलीफोन

संयुक्त राज्य अमेरिका में, सामान्य टेलीफोन लाइनों को 300 और 3400 Hz के बीच आवृत्तियों को प्रसारित करने के लिए डिज़ाइन किया गया है।चूंकि संयुक्त राज्य अमेरिका में इलेक्ट्रिक पावर 60 Hz पर वितरित किया जाता है, इसलिए यह सामान्य रूप से टेलीफोन संचार में हस्तक्षेप नहीं करता है क्योंकि इसकी आवृत्ति बहुत कम है।

स्रोत

एक शुद्ध साइनसोइडल वोल्टेज वैचारिक मात्रा है जो आदर्श एसी जनरेटर द्वारा निर्मित है जो बारीक वितरित स्टेटर और फील्ड वाइंडिंग के साथ निर्मित है जो समान चुंबकीय क्षेत्र में काम करता है।चूंकि न तो वाइंडिंग डिस्ट्रीब्यूशन और न ही मैग्नेटिक फील्ड वर्किंग एसी मशीन में समान हैं, इसलिए वोल्टेज वेवफॉर्म विकृतियां बनाई जाती हैं, और वोल्टेज-टाइम रिलेशनशिप शुद्ध साइन फ़ंक्शन से विचलित हो जाती है।पीढ़ी के बिंदु पर विरूपण बहुत छोटा है (लगभग 1% से 2%), लेकिन फिर भी यह सम्मलित है।क्योंकि यह शुद्ध साइन लहर से विचलन है, विचलन आवधिक कार्य के रूप में है, और परिभाषा के अनुसार, वोल्टेज विरूपण में हार्मोनिक्स होता है।

जब साइनसोइडल वोल्टेज को रैखिक सर्किट समय-अपरिवर्तनीय लोड पर लागू किया जाता है, जैसे कि हीटिंग तत्व, इसके माध्यम से वर्तमान भी साइनसोइडल होता है।गैर-रेखीय और/या समय-वेरिएंट लोड में, जैसे कि क्लिपिंग विरूपण के साथ एम्पलीफायर, लागू साइनसॉइड का वोल्टेज स्विंग सीमित है और शुद्ध टोन हार्मोनिक्स के ढेर के साथ प्रदूषित है।

जब पावर स्रोत से नॉनलाइनर लोड तक पथ में महत्वपूर्ण प्रतिबाधा होता है, तो ये वर्तमान विकृतियां लोड पर वोल्टेज तरंग में विकृतियों का भी उत्पादन करेंगी।चूंकि, ज्यादातर मामलों में जहां पावर डिलीवरी सिस्टम सामान्य परिस्थितियों में सही ढंग से काम कर रहा है, वोल्टेज विकृतियां काफी छोटी होंगी और सामान्यतः इसे अनदेखा किया जा सकता है।

वेवफॉर्म विरूपण को गणितीय रूप से यह दिखाने के लिए विश्लेषण किया जा सकता है कि यह शुद्ध साइनवे पर अतिरिक्त आवृत्ति घटकों को सुपरइम्पोज़ करने के बराबर है।ये आवृत्तियां मौलिक आवृत्ति के हार्मोनिक्स (पूर्णांक गुणक) हैं, और कभी -कभी nonlinear लोड से बाहर की ओर फैल सकती हैं, जिससे बिजली प्रणाली पर कहीं और समस्याएं पैदा होती हैं।

एक गैर-रैखिक लोड का क्लासिक उदाहरण संधारित्र इनपुट फिल्टर के साथ रेक्टिफायर है, जहां रेक्टिफायर डायोड केवल उस समय के समय लोड को पास करने की अनुमति देता है, जो लागू वोल्टेज संधारित्र में संग्रहीत वोल्टेज से अधिक है, जो अपेक्षाकृत हो सकता हैआने वाले वोल्टेज चक्र का छोटा हिस्सा।

Nonlinear लोड के अन्य उदाहरण बैटरी चार्जर, इलेक्ट्रॉनिक बैलास्ट, वैरिएबल फ़्रीक्वेंसी ड्राइव और स्विचिंग मोड पावर सप्लाई हैं।

यह भी देखें

आगे की पढाई

  • Sankaran, C. (1999-10-01). "Effects of Harmonics on Power Systems". Electrical Construction and Maintenance Magazine. Penton Media, Inc. Retrieved 2020-03-11.


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Das, J. C. (2015). पावर सिस्टम हार्मोनिक्स और पैसिव फिल्टर डिज़ाइन. Wiley, IEEE Press. ISBN 978-1-118-86162-2. रैखिक और nonlinear भार के बीच अंतर करने के लिए, हम कह सकते हैं कि रैखिक समय-अपरिवर्तनीय भार की विशेषता है ताकि एक साइनसोइडल वोल्टेज के एक अनुप्रयोग के परिणामस्वरूप वर्तमान का एक साइनसोइडल प्रवाह हो।}
  2. 2.0 2.1 "Harmonics Made Simple". ecmweb.com. Retrieved 2015-11-25.
  3. 3.0 3.1 3.2 3.3 3.4 Wakileh, George J. (2001). पावर सिस्टम हार्मोनिक्स: फंडामेंटल, एनालिसिस और फिल्टर डिज़ाइन (1 ed.). Springer. pp. 13–15. ISBN 978-3-642-07593-3.
  4. IEEE Standard 519, IEEE recommended practices and requirements for harmonic control in electric power systems, IEEE-519, 1992. p. 10.
  5. 5.0 5.1 5.2 5.3 Fuchs, Ewald F.; Masoum, Mohammad A. S. (2008). बिजली प्रणालियों और विद्युत मशीनों में बिजली की गुणवत्ता (1 ed.). Academic Press. pp. 17–18. ISBN 978-0123695369.
  6. 6.0 6.1 Santoso, Surya; Beaty, H. Wayne; Dugan, Roger C.; McGranaghan, Mark F. (2003). विद्युत बिजली प्रणालियों की गुणवत्ता (2 ed.). McGraw-Hill. p. 178. ISBN 978-0-07-138622-7.
  7. W. Mack Grady and Robert Gilleski. "Harmonics and How They Relate to Power Factor" (PDF). Proc. of the EPRI Power Quality Issues & Opportunities Conference.
  8. For example, see the National Electrical Code: "A 3-phase, 4-wire, wye-connected power system used to supply power to nonlinear loads may necessitate that the power system design allow for the possibility of high harmonic neutral currents. (Article 220.61(C), FPN No. 2)"