घूर्णी व्युत्क्रमण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ गणित ]] में, एक [[ आंतरिक उत्पाद स्थान ]] पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी व्युत्क्रमण के लिए कहा जाता है यदि इसका मान तब नहीं बदलता है जब उसके तर्क पर स्वैच्छिक घूर्णन प्रयुक्त होते हैं। | [[ गणित | गणित]] में, एक [[ आंतरिक उत्पाद स्थान |आंतरिक उत्पाद स्थान]] पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी व्युत्क्रमण के लिए कहा जाता है यदि इसका मान तब नहीं बदलता है जब उसके तर्क पर स्वैच्छिक घूर्णन प्रयुक्त होते हैं। | ||
== गणित == | == गणित == | ||
Line 8: | Line 8: | ||
:<math>f(x,y) = x^2 + y^2 </math> | :<math>f(x,y) = x^2 + y^2 </math> | ||
मूल के चारों ओर तल के घूर्णन के तहत अपरिवर्तनीय है, क्योंकि किसी भी [[ कोण ]] θ के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए | मूल के चारों ओर तल के घूर्णन के तहत अपरिवर्तनीय है, क्योंकि किसी भी [[ कोण |कोण]] θ के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए | ||
:<math>x' = x \cos \theta - y \sin \theta </math> | :<math>x' = x \cos \theta - y \sin \theta </math> | ||
Line 15: | Line 15: | ||
:<math>f(x',y') = {x}^2 + {y}^2 </math> | :<math>f(x',y') = {x}^2 + {y}^2 </math> | ||
[[ रोटेशन मैट्रिक्स ]] का उपयोग करके [[ मैट्रिक्स (गणित) ]] फॉर्म का उपयोग करके निर्देशांक के रोटेशन को व्यक्त किया जा सकता है, | [[ रोटेशन मैट्रिक्स | रोटेशन मैट्रिक्स]] का उपयोग करके [[ मैट्रिक्स (गणित) |मैट्रिक्स (गणित)]] फॉर्म का उपयोग करके निर्देशांक के रोटेशन को व्यक्त किया जा सकता है, | ||
:<math>\begin{bmatrix} x' \\ y' \\ \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix}. </math> | :<math>\begin{bmatrix} x' \\ y' \\ \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix}. </math> | ||
Line 23: | Line 23: | ||
शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है। | शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है। | ||
अवधारणा एक या एक से अधिक चर के [[ वेक्टर-मूल्यवान फ़ंक्शन | वेक्टर-मूल्यवान फ़ंक्शन]] f तक भी विस्तारित होती है; | अवधारणा एक या एक से अधिक चर के [[ वेक्टर-मूल्यवान फ़ंक्शन |वेक्टर-मूल्यवान फ़ंक्शन]] f तक भी विस्तारित होती है; | ||
:<math>\mathbf{f}(\mathbf{x}') = \mathbf{f}(\mathbf{Rx}) = \mathbf{f}(\mathbf{x}) </math> | :<math>\mathbf{f}(\mathbf{x}') = \mathbf{f}(\mathbf{Rx}) = \mathbf{f}(\mathbf{x}) </math> | ||
Line 33: | Line 33: | ||
:<math>f : X \rightarrow X </math> | :<math>f : X \rightarrow X </math> | ||
जो वास्तविक रेखा R के [[ सबसेट ]] X से तत्वों को स्वयं में मैप करता है, 'घूर्णी व्युत्क्रमण' का अर्थ यह भी हो सकता है कि फ़ंक्शन [[ कम्यूटेटिव ऑपरेशन ]] X में तत्वों के घूर्णन के साथ चलता है। यह एक ऑपरेटर (गणित) के लिए भी प्रयुक्त होता है जो इस प्रकार के फलनों पर कार्य करता है। एक उदाहरण दो-आयामी [[ लाप्लास ऑपरेटर ]] है | जो वास्तविक रेखा R के [[ सबसेट |सबसेट]] X से तत्वों को स्वयं में मैप करता है, 'घूर्णी व्युत्क्रमण' का अर्थ यह भी हो सकता है कि फ़ंक्शन [[ कम्यूटेटिव ऑपरेशन |कम्यूटेटिव ऑपरेशन]] X में तत्वों के घूर्णन के साथ चलता है। यह एक ऑपरेटर (गणित) के लिए भी प्रयुक्त होता है जो इस प्रकार के फलनों पर कार्य करता है। एक उदाहरण दो-आयामी [[ लाप्लास ऑपरेटर |लाप्लास ऑपरेटर]] है | ||
:<math>\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} </math> | :<math>\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} </math> | ||
जो किसी अन्य फ़ंक्शन ∇<sup>2</sup>f | जो किसी अन्य फ़ंक्शन ∇<sup>2</sup>f को प्राप्त करने के लिए एक फ़ंक्शन f पर कार्य करता है। यह ऑपरेटर घूर्णन के तहत अपरिवर्तनीय है। | ||
यदि g फ़ंक्शन ''g''(''p'') = ''f''(''R''(''p'')) है, जहाँ R कोई रोटेशन है, तो (∇<sup>2</sup>''g'')(''p'') = (∇<sup>2</sup>''f'' )(''R''(''p'')); अर्थात्, किसी फ़ंक्शन को घुमाने से केवल उसका लाप्लासियन घूमता है। <!-- Should add the (classical) physics sense, and Computer Vision sense too --> | यदि g फ़ंक्शन ''g''(''p'') = ''f''(''R''(''p'')) है, जहाँ R कोई रोटेशन है, तो (∇<sup>2</sup>''g'')(''p'') = (∇<sup>2</sup>''f'' )(''R''(''p'')); अर्थात्, किसी फ़ंक्शन को घुमाने से केवल उसका लाप्लासियन घूमता है। <!-- Should add the (classical) physics sense, and Computer Vision sense too --> | ||
Line 43: | Line 43: | ||
== भौतिकी == | == भौतिकी == | ||
भौतिकी में, यदि कोई प्रणाली समान रूप से व्यवहार करती है, चाहे वह अंतरिक्ष में कैसे उन्मुख हो, तो इसका लैग्रेंजियन घूर्णी रूप से अपरिवर्तनीय है। नूथर के प्रमेय के अनुसार, यदि एक भौतिक प्रणाली की कार्रवाई (भौतिकी) (इसके लैग्रैन्जियन के समय के साथ अभिन्न) रोटेशन के तहत अपरिवर्तनीय है, तो [[ कोणीय गति का संरक्षण | कोणीय गति संरक्षित]] है। | भौतिकी में, यदि कोई प्रणाली समान रूप से व्यवहार करती है, चाहे वह अंतरिक्ष में कैसे उन्मुख हो, तो इसका लैग्रेंजियन घूर्णी रूप से अपरिवर्तनीय है। नूथर के प्रमेय के अनुसार, यदि एक भौतिक प्रणाली की कार्रवाई (भौतिकी) (इसके लैग्रैन्जियन के समय के साथ अभिन्न) रोटेशन के तहत अपरिवर्तनीय है, तो [[ कोणीय गति का संरक्षण |कोणीय गति संरक्षित]] है। | ||
=== क्वांटम यांत्रिकी के लिए आवेदन === | === क्वांटम यांत्रिकी के लिए आवेदन === | ||
{{Further|रोटेशन ऑपरेटर (क्वांटम यांत्रिकी)|क्वांटम यांत्रिकी में समरूपता}} | {{Further|रोटेशन ऑपरेटर (क्वांटम यांत्रिकी)|क्वांटम यांत्रिकी में समरूपता}} | ||
[[ क्वांटम यांत्रिकी ]] में, घूर्णी व्युत्क्रमण वह गुण है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है। वह है | [[ क्वांटम यांत्रिकी | क्वांटम यांत्रिकी]] में, घूर्णी व्युत्क्रमण वह गुण है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है। वह है | ||
:<math>[R,E-H] = 0</math> | :<math>[R,E-H] = 0</math> | ||
Line 62: | Line 62: | ||
:<math>\frac{d}{dt}J_z = 0\,,</math> | :<math>\frac{d}{dt}J_z = 0\,,</math> | ||
दूसरे शब्दों में [[ कोणीय गति ]] संरक्षित है। | दूसरे शब्दों में [[ कोणीय गति |कोणीय गति]] संरक्षित है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 07:10, 26 January 2023
गणित में, एक आंतरिक उत्पाद स्थान पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी व्युत्क्रमण के लिए कहा जाता है यदि इसका मान तब नहीं बदलता है जब उसके तर्क पर स्वैच्छिक घूर्णन प्रयुक्त होते हैं।
गणित
फ़ंक्शन
उदाहरण के लिए, फ़ंक्शन
मूल के चारों ओर तल के घूर्णन के तहत अपरिवर्तनीय है, क्योंकि किसी भी कोण θ के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए
फ़ंक्शन, शर्तों के कुछ निरस्त करने के बाद, बिल्कुल एक ही रूप लेता है
रोटेशन मैट्रिक्स का उपयोग करके मैट्रिक्स (गणित) फॉर्म का उपयोग करके निर्देशांक के रोटेशन को व्यक्त किया जा सकता है,
या प्रतीकात्मक रूप से x′ = Rx।प्रतीकात्मक रूप से, दो वास्तविक चरों के वास्तविक-मूल्यवान फलन का घूर्णन व्युत्क्रमण है
शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है।
अवधारणा एक या एक से अधिक चर के वेक्टर-मूल्यवान फ़ंक्शन f तक भी विस्तारित होती है;
उपरोक्त सभी स्थितियों में, तर्क (यहां समन्वय के लिए निर्देशांक कहा जाता है) को घुमाया जाता है, न कि फ़ंक्शन को ही।
ऑपरेटर
एक फलन (गणित) के लिए
जो वास्तविक रेखा R के सबसेट X से तत्वों को स्वयं में मैप करता है, 'घूर्णी व्युत्क्रमण' का अर्थ यह भी हो सकता है कि फ़ंक्शन कम्यूटेटिव ऑपरेशन X में तत्वों के घूर्णन के साथ चलता है। यह एक ऑपरेटर (गणित) के लिए भी प्रयुक्त होता है जो इस प्रकार के फलनों पर कार्य करता है। एक उदाहरण दो-आयामी लाप्लास ऑपरेटर है
जो किसी अन्य फ़ंक्शन ∇2f को प्राप्त करने के लिए एक फ़ंक्शन f पर कार्य करता है। यह ऑपरेटर घूर्णन के तहत अपरिवर्तनीय है।
यदि g फ़ंक्शन g(p) = f(R(p)) है, जहाँ R कोई रोटेशन है, तो (∇2g)(p) = (∇2f )(R(p)); अर्थात्, किसी फ़ंक्शन को घुमाने से केवल उसका लाप्लासियन घूमता है।
भौतिकी
भौतिकी में, यदि कोई प्रणाली समान रूप से व्यवहार करती है, चाहे वह अंतरिक्ष में कैसे उन्मुख हो, तो इसका लैग्रेंजियन घूर्णी रूप से अपरिवर्तनीय है। नूथर के प्रमेय के अनुसार, यदि एक भौतिक प्रणाली की कार्रवाई (भौतिकी) (इसके लैग्रैन्जियन के समय के साथ अभिन्न) रोटेशन के तहत अपरिवर्तनीय है, तो कोणीय गति संरक्षित है।
क्वांटम यांत्रिकी के लिए आवेदन
क्वांटम यांत्रिकी में, घूर्णी व्युत्क्रमण वह गुण है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है। वह है
- किसी भी रोटेशन के लिए R। चूंकि रोटेशन समय पर स्पष्ट रूप से निर्भर नहीं करता है, यह ऊर्जा ऑपरेटर के साथ संचार करता है। इस प्रकार घूर्णी व्युत्क्रमण के लिए हमारे पास [R, H] = 0 होना चाहिए।
अपरिमित घूर्णन के लिए (इस उदाहरण के लिए XY-PLANE में; यह किसी भी तल के लिए भी ऐसा किया जा सकता है) एक कोण dθ द्वारा ((infinitesimal) रोटेशन ऑपरेटर किया जाता है
तब
इस प्रकार
दूसरे शब्दों में कोणीय गति संरक्षित है।
यह भी देखें
- अक्षीय समरूपता
- अपरिवर्तनीय उपाय
- आइसोट्रॉपी
- मैक्सवेल का प्रमेय
- घूर्णी समरूपता
संदर्भ
- Stenger, Victor J. (2000). Timeless Reality. Prometheus Books. Especially chpt. 12. Nontechnical.