प्रोजेक्टिव मॉड्यूल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 95: Line 95:
नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सच है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि और केवल यदि यह अनुमानित है।
नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सच है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि और केवल यदि यह अनुमानित है।


चूंकि, एक [[ नथियन रिंग |नथियन छल्ले]] पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं।उदाहरण के लिए,
चूंकि, एक [[ नथियन रिंग |नथियन वलय]] पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं।उदाहरण के लिए,
एक [[ बूलियन रिंग |बूलियन छल्ले]] में दो तत्वों के क्षेत्र 'f'<sub>2</sub>, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन छल्ले पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु  
एक [[ बूलियन रिंग |बूलियन वलय]] में दो तत्वों के क्षेत्र 'f'<sub>2</sub>, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन वलय पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु  
बूलियन के छल्ले पर कुछ गैर-प्रक्षेप्य मापांक होते हैं।एक उदाहरण आर/आई है जहां
बूलियन के वलयों पर कुछ गैर-प्रक्षेप्य मापांक होते हैं।एक उदाहरण आर/आई है जहां
आर 'एफ' की कई प्रतियों का एक प्रत्यक्ष उत्पाद है<sub>2</sub> और आई आर के अंदर  'एफ' की कई प्रतियों का प्रत्यक्ष योग है<sub>2</sub>।
आर 'एफ' की कई प्रतियों का एक प्रत्यक्ष उत्पाद है<sub>2</sub> और आई आर के अंदर  'एफ' की कई प्रतियों का प्रत्यक्ष योग है<sub>2</sub>।
आर-मापांक आर/आई स्थानीय रूप से मुक्त है क्योंकि आर बूलियन है (और यह आर-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के एक फैले हुए सेट के साथ), लेकिन आर/आई प्रक्षेपी नहीं है क्योंकि
आर-मापांक आर/आई स्थानीय रूप से मुक्त है क्योंकि आर बूलियन है (और यह आर-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के एक फैले हुए सेट के साथ), लेकिन आर/आई प्रक्षेपी नहीं है क्योंकि
आई एक प्रमुख आदर्श नहीं है।(यदि एक भागफल मापांक r/i, किसी भी क्रमविनिमेय रिंग R और आदर्श I के लिए, एक अनुमानित R-मापांक है तब आई प्रमुख है।)
आई एक प्रमुख आदर्श नहीं है।(यदि एक भागफल मापांक r/i, किसी भी क्रमविनिमेय रिंग R और आदर्श I के लिए, एक अनुमानित R-मापांक है तब आई प्रमुख है।)


चूंकि, यह सच है कि क्रमविनिमेय छल्ला आर (विशेष रूप से यदि एम एक सूक्ष्म रूप से उत्पन्न आर-मापांक है और आर नूथेरियन है) पर[[ बारीक रूप से प्रस्तुत मॉड्यूल | सूक्ष्म रूप से प्रस्तुत मापांक]] के लिए, निम्नलिखित समतुल्य हैं।<ref>Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, ''Commutative Algebra with a view towards Algebraic Geometry'', GTM 150, Springer-Verlag, 1995. Also, {{harvnb|Milne|1980}}</ref>
चूंकि, यह सच है कि क्रमविनिमेय वलय आर (विशेष रूप से यदि एम एक सूक्ष्म रूप से उत्पन्न आर-मापांक है और आर नूथेरियन है) पर[[ बारीक रूप से प्रस्तुत मॉड्यूल | सूक्ष्म रूप से प्रस्तुत मापांक]] के लिए, निम्नलिखित समतुल्य हैं।<ref>Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, ''Commutative Algebra with a view towards Algebraic Geometry'', GTM 150, Springer-Verlag, 1995. Also, {{harvnb|Milne|1980}}</ref>
#<math>M</math> सपाट है।
#<math>M</math> सपाट है।
#<math>M</math> प्रक्षेपी है।
#<math>M</math> प्रक्षेपी है।
Line 112: Line 112:
*का आयाम (सदिश स्थान) <math>k(\mathfrak{p})</math>-[[ सदिश स्थल ]] <math>M \otimes_R k(\mathfrak{p})</math> सभी प्रमुख आदर्शों के लिए समान है <math>\mathfrak{p}</math> आर, जहां <math>k(\mathfrak{p})</math> पर अवशेष क्षेत्र  <math>\mathfrak{p}</math>.<ref>That is, <math>k(\mathfrak{p})=R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}</math> is the residue field of the local ring <math>R_\mathfrak{p}</math>.</ref>है कहने का अर्थ यह है कि, एम में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)।
*का आयाम (सदिश स्थान) <math>k(\mathfrak{p})</math>-[[ सदिश स्थल ]] <math>M \otimes_R k(\mathfrak{p})</math> सभी प्रमुख आदर्शों के लिए समान है <math>\mathfrak{p}</math> आर, जहां <math>k(\mathfrak{p})</math> पर अवशेष क्षेत्र  <math>\mathfrak{p}</math>.<ref>That is, <math>k(\mathfrak{p})=R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}</math> is the residue field of the local ring <math>R_\mathfrak{p}</math>.</ref>है कहने का अर्थ यह है कि, एम में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)।


माना A एक क्रमविनिमेय वलय है।यदि B छल्ले पर (संभवतः गैर-क्रमविनिमेय) ए-बीजगणित है, जो एक [[ सबरिंग |सबरिंग]] के रूप में एक सूक्ष्म रूप से उत्पन्न प्रक्षेप्य ए-मापांक है, तो ए बी का प्रत्यक्ष कारक है।।<ref>{{harvnb|Bourbaki, Algèbre commutative|1989|loc=Ch II, §5, Exercise 4}}</ref>
माना A एक क्रमविनिमेय वलय है।यदि B वलय पर (संभवतः गैर-क्रमविनिमेय) ए-बीजगणित है, जो एक [[ सबरिंग |सबरिंग]] के रूप में एक सूक्ष्म रूप से उत्पन्न प्रक्षेप्य ए-मापांक है, तो ए बी का प्रत्यक्ष कारक है।।<ref>{{harvnb|Bourbaki, Algèbre commutative|1989|loc=Ch II, §5, Exercise 4}}</ref>





Revision as of 16:27, 20 January 2023

गणित में, विशेष रूप से बीजगणित में, प्रक्षेपी मापांक का वर्ग (समूह सिद्धांत) मुक्त मापांक के कुछ मुख्य गुणों को ध्यान में रखते हुए, वलय (गणित) के साथ मुक्त मापांक (अर्थात, मापांक (गणित) के आधार पर) के वर्ग को बढ़ाता है। इन मापांक के विभिन्न समकक्ष लक्षण नीचे दिखाई देते हैं।

प्रत्येक मुक्त मापांक प्रक्षेपी मापांक है, लेकिन कॉनवर्स (लॉजिक) कुछ वलयों को पकड़ने में विफल रहता है, जैसे कि डेडेकिंड वलय जो प्रमुख आदर्श डोमेन नहीं हैं।चूंकि, प्रत्येक प्रक्षेपी मापांक एक मुक्त मापांक है यदि वलय एक प्रमुख आदर्श डोमेन है जैसे कि पूर्णांक, या एक बहुपद वलय (यह क्विलन -सुस्लिन प्रमेय है)।

प्रक्षेपी मापांक को पहली बार 1956 में हेनरी कार्टन और सैमुअल एलेनबर्ग द्वारा प्रभावशाली पुस्तक 'समरूप बीजगणित' 'में प्रस्तुत किया गया था।

परिभाषाएँ

उठाना संपत्ति

सामान्य श्रेणी के सैद्धांतिक परिभाषा उठाने की संपत्ति के संदर्भ में है जो मुक्त से सघन मापांक तक ले जाती है: एक मापांक पी प्रक्षेपी है यदि और केवल यदि प्रत्येक विशेषण मापांक समरूपता के लिए f : NM और प्रत्येक मापांक समरूपता g : PM, एक मापांक समरूपता h : PN उपस्थित है जैसे कि fh = g।(हमें लिफ्टिंग समरूपता एच को अद्वितीय होने की आवश्यकता नहीं है; यह एक सार्वभौमिक संपत्ति नहीं है।)

Projective-module-P.svgप्रक्षेपी की इस परिभाषा का लाभ यह है कि इसे मापांक श्रेणियों की तुलना में अधिक सामान्य श्रेणी (गणित) में किया जा सकता है: हमें मुक्त वस्तु की धारणा की आवश्यकता नहीं है।यह दोहरी (श्रेणी सिद्धांत) भी हो सकता है, जिससे इंजेक्टिव मापांक हो सकते हैं। भारोत्तोलन संपत्ति को प्रत्येक रूपवाद के रूप में भी दोहराया जा सकता है से कारक प्रत्येक एपिमोर्फिज्म के माध्यम से कारक ।इस प्रकार, परिभाषा के अनुसार, प्रक्षेपी मापांक ठीक से मापांक की श्रेणी में प्रक्षेप्य वस्तु हैं। आर-मापांक की श्रेणी में प्रक्षेपी वस्तुएं हैं।

विभाजित-त्रुटिहीन अनुक्रम

एक मापांक पी प्रक्षेपी है यदि और केवल यदि फॉर्म के मापांक के प्रत्येक छोटे त्रुटिहीन अनुक्रम

एक विभाजित त्रुटिहीन अनुक्रम है।अर्थात, प्रत्येक विशेषण मापांक समरूपता के लिए f : BP खंड मानचित्र उपस्थित है, अर्थात, मापांक समरूपतावाद h : PB ऐसा कि f & hairsp; h = idP& hairsp ;;उस स्थिति में, h(P) बी का एक सीधा सारांश है, एच पी से एकसमाकृतिकता है h(P), और hf सारांश पर एक प्रक्षेपण (रैखिक बीजगणित) है h(P)।समान रूप से,


मुक्त मापांक के प्रत्यक्ष सारांश

एक मापांक पी प्रक्षेपी है यदि और केवल यदि कोई अन्य मापांक क्यू है जैसे कि पी और क्यू के मापांक का प्रत्यक्ष योग एक मुक्त मापांक है।

त्रुटिहीन

एक आर-मापांक पी प्रक्षेपी है यदि और केवल यदि सहसंयोजक फंक्टर Hom(P, -): R-ModAb एक त्रुटिहीन फंक्टर है, जहां R-Mod बाएं आर-मापांक की श्रेणी है और 'एबी' एबेलियन समूहों की श्रेणी है।जब रिंग आर कम्यूटेटिव रिंग है, तो 'एबी' को लाभप्रद रूप से प्रतिस्थापित किया जाता है R-Mod पूर्ववर्ती लक्षण वर्णन में।यह फ़ंक्टर हमेशा सटीक फंक्शनर छोड़ दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह भी सही त्रुटिहीन होता है।इसका अर्थ यह है कि पी प्रक्षेपी है यदि और केवल यदि यह फंक्शनर उपदेशता (विशेषण समरूपता) को संरक्षित करता है, या यदि यह परिमित कोलिमिट्स को संरक्षित करता है।

दोहरी आधार

एक मापांक पी प्रक्षेपी है यदि और केवल यदि कोई समुच्चय उपस्थित है और एक समुच्चय जैसे कि पी, एफ में प्रत्येक एक्स के लिएi  (x) केवल कई के लिए अशून्य है, और

प्राथमिक उदाहरण और गुण

प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी जल्दी से घटाया जाता है:

  • प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी हैं।
  • यदि e = e2 वलय आर में एक वर्गसम (वलय सिद्धांत) है, तब आर,आर पर एक प्रक्षेपी बाएं मापांक है।

अन्य मापांक-सिद्धांत गुणों से संबंध

मुक्त और समतल मापांक के लिए प्रक्षेपी मापांक का संबंध मापांक गुणों के निम्नलिखित आरेख में प्रस्तुत किया गया है:

कम्यूटेटिव बीजगणित में मॉड्यूल गुणबाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल एक डोमेन (वलय सिद्धांत) पर मरोड़-मुक्त मापांक को परिभाषित करते हैं। दाएं-टू-बाएं के निहितार्थ उन्हें लेबल करने वाले वलय पर सही हैं। ऐसे अन्य वलय हो सकते हैं जिन पर वे सही हैं।उदाहरण के लिए, स्थानीय वलय या पीआईडी लेबल किए गए निहितार्थ एक क्षेत्र (गणित) पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है।

प्रक्षेपी विरुद्ध मुक्त मापांक

कोई भी मुक्त मापांक प्रक्षेपी है।निम्नलिखित स्थितियों में यह विपरीत सत्य है:

  • यदि आर एक क्षेत्र यातिरछा क्षेत्र है: इस स्थिति में कोई भी मापांक मुक्त है।
  • यदि वलय आर एक प्रमुख आदर्श डोमेन है।उदाहरण के लिए, यह लागू होता है R = Z (पूर्णांक), इसलिए एक एबेलियन समूह अनुमानित है यदि और केवल यदि यह एक मुक्त एबेलियन समूह है।कारण यह है कि एक प्रमुख आदर्श डोमेन पर एक मुक्त मापांक का कोई भी सबल मुक्त है।
  • यदि वलय आर एक स्थानीय वलय है।यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है।यह तथ्य सूक्ष्म रूप से उत्पन्न मापांक प्रक्षेपी मापांक के लिए गणितीय प्रमाण के लिए सरल है।सामान्यतः, यह होने के कारण है कपलान्स्की (1958);प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें।

सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है:

  • वलय के प्रत्यक्ष उत्पाद पर R × S जहां आर और एस शून्य वलय हैं, दोनों R × 0 और 0 × S गैर-मुक्त प्रक्षेपी मापांक हैं।
  • डेडेकिंड डोमेन पर एक गैर-प्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक है जो मुक्त मापांक नहीं है।
  • एक आव्यूह वलय एम परn(आर), प्राकृतिक मापांक आर& hairsp; n प्रक्षेपी है लेकिन मुक्त नहीं है।[dubious ] सामान्यतः, किसी भी अर्ध-सरल वलय पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिनशून्य आदर्श और वलय ही एकमात्र मुक्त आदर्श हैं।

मुक्त और प्रक्षेप्य मापांक के बीच का अंतर, एक अर्थ में, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। बीजगणितीय K-सिद्धांत समूह (गणित) k0(आर);नीचे देखें।

प्रक्षेपी विरुद्ध समतल मापांक

प्रत्येक प्रक्षेपी मापांक समतल मापांक है।[1] यह सामान्य रूप से सच नहीं है: एबेलियन समूह क्यू एक जेड-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।[2] इसके विपरीत, एक सूक्ष्म संबंधित मापांक समतल मापांक प्रक्षेपी है।[3]

गोवरोव (1965) और लाजार्ड (1969) यह सिद्ध किया कि मापांक एम समतल है यदि और केवल यदि यह सूक्ष्म रूप से उत्पन्न मापांक की एक सीधी सीमा है।

सामान्यतः, समतलता और प्रक्षेप्य के बीच त्रुटिहीन संबंध रेनॉड & ग्रुसन (1971) द्वारा स्थापित किया गया था (यह सभी देखें ड्रिनफेल्ड (2006) और ब्रौनलिंग, ग्रोचेनिग & वोल्फसन (2016)) जिन्होंने दिखाया कि एक मापांक एम प्रक्षेपी है यदि और केवल यदि यह निम्नलिखित शर्तों को संतुष्ट करता है:

  • एम समतल है,
  • एम गणनात्मक रूप से उत्पन्न मापांक का प्रत्यक्ष योग है,
  • एम एक निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है।

इस लक्षण वर्णन का उपयोग यह दिखाने के लिए किया जा सकता है कि यदि क्रमविनिमेय वलयों का एक ईमानदारी से समतल रूपांतरण मानचित्र है और एक -मापांक, तब यदि और केवल यदि प्रक्षेपी है।[4] दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति ईमानदारी से समतल वंश को संतुष्ट करती है।

प्रक्षेपी मापांक की श्रेणी

प्रक्षेपी मापांक के सबमॉड्यूल्स को प्रक्षेपी होने की आवश्यकता नहीं है; वलय आर जिसके लिए प्रक्षेपी बाएं मापांक के प्रत्येक सबमॉड्यूल के प्रक्षेपी होते है, उसे वंशानुगत वलय कहा जाता है।

प्रक्षेपी मापांक के भागफल मापांक को भी प्रक्षेपी होने की आवश्यकता नहीं है, उदाहरण के लिए 'z'/n 'z' का एक भागफल है, लेकिन मरोड़-मुक्त मापांक नहीं है। इसलिए समतल नहीं है, और इसलिए प्रक्षेपी नहीं है।

वलय पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक की श्रेणी एक त्रुटिहीन श्रेणी है।(बीजगणितीय के-सिद्धांत भी देखें)।

प्रक्षेपी संकल्प

मापांक एम,को देखते हुए, एम का एक 'प्रक्षेपी संकल्प (बीजगणित)' मापांक का एक अनंत त्रुटिहीन अनुक्रम है

··· → Pn → ··· → P2P1P0M → 0,

सभी पीi; प्रक्षेपी के साथ।प्रत्येक मापांक में एक अनुमानित संकल्प होता है।वास्तव में एक मुक्त संकल्प (मुक्त मापांक द्वारा संकल्प) उपस्थित है। प्रक्षेपी मापांक के त्रुटिहीन अनुक्रम को कभी -कभीP(M) → M → 0 या PM → 0 के रूप में संक्षिप्त किया जा सकता है। एक नियमित अनुक्रम के जटिल परिसर द्वारा प्रक्षेपी संकल्प का एक उत्कृष्ट उदाहरण दिया गया है, जो अनुक्रम द्वारा उत्पन्न आदर्श (वलय सिद्धांत) का एक मुक्त संकल्प है।

एक परिमित संकल्प की लंबाई सूचकांक n है जैसे कि पीn शून्य मापांक है और Pi = 0 के लिए i n से अधिक है।यदि M एक परिमित प्रक्षेपी संकल्प को स्वीकार करता है, तो M के सभी परिमित प्रक्षेपी संकल्प के बीच न्यूनतम लंबाई को इसका 'प्रक्षेपी आयाम' कहा जाता है और पीडी (एम) को निरूपित किया जाता है।यदि M एक परिमित प्रक्षेपी संकल्प को स्वीकार नहीं करता है, तब परिपाटी द्वारा प्रक्षेप्य आयाम को अनंत कहा जाता है।एक उदाहरण के रूप में, एक मापांक एम पर विचार करें जैसे कि pd(M) = 0।इस स्थिति में, अनुक्रम की त्रुटिहीन 0 → पी0 → एम → 0 इंगित करता है कि केंद्र में तीर एक समरूपी है, और इसलिए एम स्वयं प्रक्षेपी है।

क्रमविनिमेय वलयों पर प्रक्षेपी मापांक

क्रमविनिमेय वलयों पर प्रक्षेपी मापांक में अच्छे गुण होते हैं।

प्रक्षेपी मापांक का स्थानीयकरण (क्रमविनिमेय बीजगणित) स्थानीयकृत वलय पर अनुमानित मापांक है।

स्थानीय वलय पर प्रक्षेपी मापांक निःशुल्क है।इस प्रकार एक प्रक्षेपी मापांक स्थानीय रूप से मुक्त है (इस अर्थ में कि प्रत्येक प्रमुख आदर्श पर इसका स्थानीयकरण वलय के संबंधित स्थानीयकरण पर मुक्त है)।

नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सच है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि और केवल यदि यह अनुमानित है।

चूंकि, एक नथियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं।उदाहरण के लिए, एक बूलियन वलय में दो तत्वों के क्षेत्र 'f'2, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन वलय पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु बूलियन के वलयों पर कुछ गैर-प्रक्षेप्य मापांक होते हैं।एक उदाहरण आर/आई है जहां आर 'एफ' की कई प्रतियों का एक प्रत्यक्ष उत्पाद है2 और आई आर के अंदर 'एफ' की कई प्रतियों का प्रत्यक्ष योग है2। आर-मापांक आर/आई स्थानीय रूप से मुक्त है क्योंकि आर बूलियन है (और यह आर-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के एक फैले हुए सेट के साथ), लेकिन आर/आई प्रक्षेपी नहीं है क्योंकि आई एक प्रमुख आदर्श नहीं है।(यदि एक भागफल मापांक r/i, किसी भी क्रमविनिमेय रिंग R और आदर्श I के लिए, एक अनुमानित R-मापांक है तब आई प्रमुख है।)

चूंकि, यह सच है कि क्रमविनिमेय वलय आर (विशेष रूप से यदि एम एक सूक्ष्म रूप से उत्पन्न आर-मापांक है और आर नूथेरियन है) पर सूक्ष्म रूप से प्रस्तुत मापांक के लिए, निम्नलिखित समतुल्य हैं।[5]

  1. सपाट है।
  2. प्रक्षेपी है।
  3. इस रूप में स्वतंत्र है प्रत्येक अधिकतम आदर्श के लिए -मापांक आर।
  4. इस रूप में स्वतंत्र है -मिड्यूल हर प्राइम आदर्श के लिए आर।
  5. वहां है यूनिट आदर्श को उत्पन्न करना जैसे कि के रूप में स्वतंत्र है प्रत्येक के लिए -मापांक।
  6. एक स्थानीय रूप से मुक्त शीफ है (जहां एक मापांक एम से जुड़ा शीफ है)

इसके अतिरिक्त, यदि आर एक नॉटेथियन अभिन्न डोमेन है, तो, नाकायमा के लेम्मा द्वारा,ये स्थितियाँ समतुल्य हैं

  • का आयाम (सदिश स्थान) -सदिश स्थल सभी प्रमुख आदर्शों के लिए समान है आर, जहां पर अवशेष क्षेत्र .[6]है कहने का अर्थ यह है कि, एम में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)।

माना A एक क्रमविनिमेय वलय है।यदि B वलय पर (संभवतः गैर-क्रमविनिमेय) ए-बीजगणित है, जो एक सबरिंग के रूप में एक सूक्ष्म रूप से उत्पन्न प्रक्षेप्य ए-मापांक है, तो ए बी का प्रत्यक्ष कारक है।।[7]


श्रेणी

क्रमविनिमेय छल्ले आर और एक्स पर एक सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक हो। आर। छल्ले का स्पेक्ट्रम हो। एक प्रमुख आदर्श पर पी की श्रेणी एक्स में मुक्त की श्रेणी -मापांक है।यह X पर एक स्थानीय रूप से निरंतर कार्य है। विशेष रूप से, यदि X जुड़ा हुआ है (अर्थात यदि R में 0 और 1 से कोई अन्य वर्गसम नहीं है), तो P में निरंतर श्रेणी है।

सदिश बंडलों और स्थानीय रूप से मुक्त मापांक

सिद्धांत की मूल प्रेरणा यह है कि प्रक्षेपी मापांक (कम से कम कुछ क्रमविनिमेय छल्लों से अधिक) सदिश बंडलों के अनुरूप हैं।इसे कॉम्पैक्ट स्पेस हौसडॉर्फ स्पेस पर रिंग ऑफ सतत कार्य (टोपोलॉजी) रिंग ऑफ़ कंटीन्यूअस फंक्शन (टोपोलॉजी) के लिए सटीक बनाया जा सकता है, साथ ही साथ एक गुना पर चिकनी कार्यों की अंगूठी के लिए (सेर्रे-वैन प्रमेय देखें जो एक बारीक रूप से उत्पन्न प्रक्षेप्य कहता हैएक कॉम्पैक्ट विविध पर चिकनी कार्यों के स्थान पर मापांक एक चिकनी सदिश बंडल के चिकनी वर्गों का स्थान है)।

सदिश बंडल स्थानीय रूप से मुक्त हैं।यदि स्थानीयकरण की कुछ धारणा है, जिसे मापांक पर ले जाया जा सकता है, जैसे कि एक छल्ले के सामान्य स्थानीयकरण, कोई स्थानीय रूप से मुक्त मापांक को परिभाषित कर सकता है, और प्रक्षेप्य मापांक तब सामान्यतः स्थानीय रूप से मुक्त मापांक के साथ मेल खाते हैं।

एक बहुपद छल्ले पर प्रक्षेपी मापांक

क्विलन -सुस्लिन प्रमेय, जो सेरे की समस्या को हल करता है, एक और गहरा परिणाम है: यदि k एक क्षेत्र है, या सामान्यतः एक प्रमुख आदर्श डोमेन है, और R = K[X1,...,Xn] K के ऊपर एक बहुपद छल्ला है, तब R पर प्रत्येक प्रक्षेपी मापांक मुक्त है। इस समस्या को पहले सेरे द्वारा K A क्षेत्र (और मापांक को बारीक रूप से उत्पन्न किया जा रहा है) के साथ उठाया गया था।बास ने इसे गैर-फिनती उत्पन्न मापांक के लिए बसाया,[8] और क्विलन और सुज़लिन ने स्वतंत्र रूप से और साथ ही साथ बारीक रूप से उत्पन्न मापांक की स्थिति का इलाज किया।

चूंकि एक प्रमुख आदर्श डोमेन पर प्रत्येक प्रक्षेपी मापांक स्वतंत्र है, कोई भी यह सवाल पूछ सकता है: यदि आर एक कम्यूटेटिव रिंग है जैसे कि हर (बारीक रूप से उत्पन्न) प्रक्षेपी आर-मापांक स्वतंत्र है, तो हर (बारीक रूप से उत्पन्न) प्रक्षेपी आर [एक्स] है।-मापांक मुक्त?जवाब न है।वक्र के स्थानीय रिंग के बराबर आर के साथ एक प्रतिवाद होता है y2 = x3 मूल में।इस प्रकार क्विलन-सुस्लिन प्रमेय कभी भी चर की संख्या पर एक साधारण गणितीय प्रेरण द्वारा साबित नहीं किया जा सकता है।

यह भी देखें


टिप्पणियाँ

  1. Hazewinkel; et al. (2004). "Corollary 5.4.5". Algebras, Rings and Modules, Part 1. p. 131.
  2. Hazewinkel; et al. (2004). "Remark after Corollary 5.4.5". Algebras, Rings and Modules, Part 1. pp. 131–132.
  3. Cohn 2003, Corollary 4.6.4
  4. "Section 10.95 (05A4): Descending properties of modules—The Stacks project". stacks.math.columbia.edu (in English). Retrieved 2022-11-03.
  5. Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, GTM 150, Springer-Verlag, 1995. Also, Milne 1980
  6. That is, is the residue field of the local ring .
  7. Bourbaki, Algèbre commutative 1989, Ch II, §5, Exercise 4
  8. Bass, Hyman (1963). "Big projective modules are free". Illinois Journal of Mathematics. Duke University Press. 7 (1). Corollary 4.5. doi:10.1215/ijm/1255637479.


संदर्भ

श्रेणी: होमोलॉजिकल बीजगणित श्रेणी: मॉड्यूल सिद्धांत]