निष्कर्षण धातुकर्म: Difference between revisions
No edit summary |
No edit summary |
||
Line 44: | Line 44: | ||
==== आयनोधातुकर्म द्वारा बहुमूल्य धातुओं की प्राप्ति ==== | ==== आयनोधातुकर्म द्वारा बहुमूल्य धातुओं की प्राप्ति ==== | ||
कीमती धातुएं उच्च आर्थिक मूल्य के दुर्लभ, प्राकृतिक रूप से पाए जाने वाले धात्विक रासायनिक तत्व हैं। रासायनिक रूप से, कीमती धातुएँ अधिकांश तत्वों की तुलना में कम प्रतिक्रियाशील होती हैं। इनमें सोना और चांदी सम्मिलित हैं, लेकिन तथाकथित प्लेटिनम समूह धातु भी सम्मिलित हैं: रुथेनियम, रोडियम, पैलेडियम, ऑस्मियम, इरिडियम और प्लैटिनम (कीमती धातु देखें)। इन धातुओं को उनके संबंधित होस्टिंग खनिजों से निकालने के लिए सामान्यतः पाइरोमेटालर्जी (जैसे, रोस्टिंग), हाइड्रोमेटालर्जी (सायनाइडेशन), या दोनों को प्रसंस्करण मार्गों के रूप में आवश्यक होगा। | कीमती धातुएं उच्च आर्थिक मूल्य के दुर्लभ, प्राकृतिक रूप से पाए जाने वाले धात्विक रासायनिक तत्व हैं। रासायनिक रूप से, कीमती धातुएँ अधिकांश तत्वों की तुलना में कम प्रतिक्रियाशील होती हैं। इनमें सोना और चांदी सम्मिलित हैं, लेकिन तथाकथित प्लेटिनम समूह धातु भी सम्मिलित हैं: रुथेनियम, रोडियम, पैलेडियम, ऑस्मियम, इरिडियम और प्लैटिनम (कीमती धातु देखें)। इन धातुओं को उनके संबंधित होस्टिंग खनिजों से निकालने के लिए सामान्यतः पाइरोमेटालर्जी (जैसे, रोस्टिंग), हाइड्रोमेटालर्जी (सायनाइडेशन), या दोनों को प्रसंस्करण मार्गों के रूप में आवश्यक होगा। | ||
प्रारंभिक अध्ययनों से पता चला है कि एथलीन में सोने के घुलने की दर सायनाइडेशन विधि से बहुत अनुकूल है, जो ऑक्सीकरण एजेंट के रूप में आयोडीन के योग से और बढ़ जाती है। एक औद्योगिक प्रक्रिया में आयोडीन में इलेक्ट्रोकैटलिस्ट के रूप में नियोजित होने की क्षमता होती है, जिससे इलेक्ट्रोकेमिकल सेल के एनोड पर इलेक्ट्रोकेमिकल ऑक्सीकरण द्वारा कम आयोडाइड से सीटू में लगातार पुनर्प्राप्त किया जाता है। इलेक्ट्रोड क्षमता को समायोजित करके भंग धातुओं को चुनिंदा रूप से कैथोड पर जमा किया जा सकता है। यह विधि | प्रारंभिक अध्ययनों से पता चला है कि एथलीन में सोने के घुलने की दर सायनाइडेशन विधि से बहुत अनुकूल है, जो ऑक्सीकरण एजेंट के रूप में आयोडीन के योग से और बढ़ जाती है। एक औद्योगिक प्रक्रिया में आयोडीन में इलेक्ट्रोकैटलिस्ट के रूप में नियोजित होने की क्षमता होती है, जिससे इलेक्ट्रोकेमिकल सेल के एनोड पर इलेक्ट्रोकेमिकल ऑक्सीकरण द्वारा कम आयोडाइड से सीटू में लगातार पुनर्प्राप्त किया जाता है। इलेक्ट्रोड क्षमता को समायोजित करके भंग धातुओं को चुनिंदा रूप से कैथोड पर जमा किया जा सकता है। यह विधि अधिक अच्छे चयनात्मकता की भी अनुमति देती है क्योंकि गैंग (जैसे, पाइराइट) के हिस्से को अधिक धीरे-धीरे भंग किया जाता है।<ref>{{cite journal |last1=Jenkin |first1=G.R.T. |last2=Al-Bassam |first2=A.Z.M. |last3=Harris |first3=R.C. |last4=Abbott |first4=A. |last5=Smith |first5=D.J. |last6=Holwell |first6=D.A. |last7=Chapman |first7=R.J. |last8=Stanley |first8=C.J. |title=पर्यावरण के अनुकूल विघटन और कीमती धातुओं की वसूली के लिए गहरे यूटेक्टिक सॉल्वेंट आयनिक तरल पदार्थों का अनुप्रयोग|journal=Minerals Engineering |date=2016 |volume=87 |pages=18–24 |doi=10.1016/j.mineng.2015.09.026 |url=https://doi.org/10.1016/j.mineng.2015.09.026}}</ref> | ||
स्पेरीलाइट (PtAs<sub>2</sub>) एंड मनचैते (पत्ते<sub>2</sub>), जो सामान्यतः | स्पेरीलाइट (PtAs<sub>2</sub>) एंड मनचैते (पत्ते<sub>2</sub>), जो सामान्यतः कई ऑर्थोमैग्मैटिक जमाओं में अधिक प्रचुर मात्रा में प्लैटिनम खनिज होते हैं, एथलीन में समान परिस्थितियों में प्रतिक्रिया नहीं करते हैं क्योंकि वे डाइसल्फ़ाइड (पाइराइट), डायरसेनाइड (स्पेरीलाइट) या डिटेल्यूराइड्स (कैलावेराइट और मोनचेइट) खनिज हैं, जो विशेष रूप से प्रतिरोधी हैं। आयोडीन ऑक्सीकरण। प्रतिक्रिया तंत्र जिसके द्वारा प्लेटिनम खनिजों का विघटन हो रहा है, अभी भी जांच के अधीन है। | ||
==== आयनोधातुकर्म के साथ सल्फाइड खनिजों से धातु की रिकवरी ==== | ==== आयनोधातुकर्म के साथ सल्फाइड खनिजों से धातु की रिकवरी ==== | ||
धातु सल्फाइड (जैसे, पाइराइट FeS<sub>2</sub>, आर्सेनोपाइराइट FeAsS, चॉकोपाइराइट CuFeS<sub>2</sub>) आम तौर पर या तो जलीय मीडिया में या उच्च तापमान पर रासायनिक ऑक्सीकरण द्वारा संसाधित होते हैं। वास्तव में, अधिकांश आधार धातुएं, जैसे, एल्यूमीनियम, क्रोमियम, को उच्च तापमान पर (इलेक्ट्रो) रासायनिक रूप से कम किया जाना चाहिए, जिससे प्रक्रिया में उच्च ऊर्जा की मांग होती है, और कभी-कभी बड़ी मात्रा में जलीय अपशिष्ट उत्पन्न होता है। उदाहरण के लिए, जलीय मीडिया च्लोकोपीराइट में, सतह के प्रभाव (पॉलीसल्फ़ाइड प्रजातियों के गठन, आदि) के कारण कोवेलाइट और च्लोकोसाइट की तुलना में रासायनिक रूप से भंग करना अधिक कठिन होता है।<ref>{{cite journal |last1=Ghahremaninezhad |first1=A. |last2=Dixon |first2=D.G. |last3=Asselin |first3=E. |title=सल्फ्यूरिक एसिड समाधान में च्लोकोपीराइट (CuFeS2) के विघटन का विद्युत रासायनिक और XPS विश्लेषण|journal=Electrochimica Acta |date=2013 |volume=87 |pages=97–112 |doi=10.1016/j.electacta.2012.07.119 |url=https://www.sciencedirect.com/science/article/pii/S0013468612012996}}</ref><ref>{{cite journal |last1=Dreisinger |first1=D. |last2=Abed |first2=N. |title=धात्विक लोहे के भाग I का उपयोग करके च्लोकोपीराइट के रिडक्टिव लीचिंग का एक मौलिक अध्ययन: गतिज विश्लेषण|journal=Hydrometallurgy |date=2002 |volume=60 |issue=1–3 |pages=293–296 |doi=10.1016/S0304-386X(02)00079-8 |url=https://www.sciencedirect.com/science/article/pii/S0304386X02000798}}</ref>). सीएल की उपस्थिति<sup>-</sup> आयनों को किसी भी गठित सल्फाइड सतह के आकारिकी को बदलने का सुझाव दिया गया है, जिससे सल्फाइड खनिज निष्क्रियता को रोककर अधिक आसानी से निक्षालन कर सके।<ref>{{cite journal |last1=Pikna |first1=L. |last2=Lux |first2=L. |last3=Grygar |first3=T. |title=इमोबिलाइज्ड माइक्रोपार्टिकल्स के वोल्टामेट्री द्वारा च्लोकोपीराइट के विद्युत रासायनिक विघटन का अध्ययन किया गया|journal=Chemical Papers |date=2006 |volume=60 |issue=4 |pages=293–296|doi=10.2478/s11696-006-0051-7 |s2cid=95349687 }}</ref> डीईएस एक उच्च सीएल प्रदान करते हैं<sup>−</sup> आयन सांद्रता और कम पानी की मात्रा, उच्च अतिरिक्त नमक या | धातु सल्फाइड (जैसे, पाइराइट FeS<sub>2</sub>, आर्सेनोपाइराइट FeAsS, चॉकोपाइराइट CuFeS<sub>2</sub>) आम तौर पर या तो जलीय मीडिया में या उच्च तापमान पर रासायनिक ऑक्सीकरण द्वारा संसाधित होते हैं। वास्तव में, अधिकांश आधार धातुएं, जैसे, एल्यूमीनियम, क्रोमियम, को उच्च तापमान पर (इलेक्ट्रो) रासायनिक रूप से कम किया जाना चाहिए, जिससे प्रक्रिया में उच्च ऊर्जा की मांग होती है, और कभी-कभी बड़ी मात्रा में जलीय अपशिष्ट उत्पन्न होता है। उदाहरण के लिए, जलीय मीडिया च्लोकोपीराइट में, सतह के प्रभाव (पॉलीसल्फ़ाइड प्रजातियों के गठन, आदि) के कारण कोवेलाइट और च्लोकोसाइट की तुलना में रासायनिक रूप से भंग करना अधिक कठिन होता है।<ref>{{cite journal |last1=Ghahremaninezhad |first1=A. |last2=Dixon |first2=D.G. |last3=Asselin |first3=E. |title=सल्फ्यूरिक एसिड समाधान में च्लोकोपीराइट (CuFeS2) के विघटन का विद्युत रासायनिक और XPS विश्लेषण|journal=Electrochimica Acta |date=2013 |volume=87 |pages=97–112 |doi=10.1016/j.electacta.2012.07.119 |url=https://www.sciencedirect.com/science/article/pii/S0013468612012996}}</ref><ref>{{cite journal |last1=Dreisinger |first1=D. |last2=Abed |first2=N. |title=धात्विक लोहे के भाग I का उपयोग करके च्लोकोपीराइट के रिडक्टिव लीचिंग का एक मौलिक अध्ययन: गतिज विश्लेषण|journal=Hydrometallurgy |date=2002 |volume=60 |issue=1–3 |pages=293–296 |doi=10.1016/S0304-386X(02)00079-8 |url=https://www.sciencedirect.com/science/article/pii/S0304386X02000798}}</ref>). सीएल की उपस्थिति<sup>-</sup> आयनों को किसी भी गठित सल्फाइड सतह के आकारिकी को बदलने का सुझाव दिया गया है, जिससे सल्फाइड खनिज निष्क्रियता को रोककर अधिक आसानी से निक्षालन कर सके।<ref>{{cite journal |last1=Pikna |first1=L. |last2=Lux |first2=L. |last3=Grygar |first3=T. |title=इमोबिलाइज्ड माइक्रोपार्टिकल्स के वोल्टामेट्री द्वारा च्लोकोपीराइट के विद्युत रासायनिक विघटन का अध्ययन किया गया|journal=Chemical Papers |date=2006 |volume=60 |issue=4 |pages=293–296|doi=10.2478/s11696-006-0051-7 |s2cid=95349687 }}</ref> डीईएस एक उच्च सीएल प्रदान करते हैं<sup>−</sup> आयन सांद्रता और कम पानी की मात्रा, उच्च अतिरिक्त नमक या अम्ल सांद्रता की आवश्यकता को कम करते हुए, अधिकांश ऑक्साइड रसायन को दूर करते हुए। इस प्रकार, धातु आयनों के समाधान में प्रकाशन के साथ सल्फाइड खनिजों के विद्युत् विघटन ने डीईएस मीडिया में निष्क्रियता परतों की अनुपस्थिति में आशाजनक परिणाम प्रदर्शित किए हैं, जिन्हें समाधान से पुनर्प्राप्त किया जा सकता है। | ||
कॉपर सल्फाइड खनिजों से एथलीन, चेल्कोसाइट (Cu<sub>2</sub>S) और कोवेलिट (CuS) एक पीला घोल उत्पन्न करते हैं, जो दर्शाता है कि [CuCl<sub>4</sub>]<sup>2−</sup> संकुल बनते हैं। इस बीच, च्लोकोपीराइट से बने घोल में, Cu<sup>2+</sup> और Cu<sup>+</sup> प्रजातियां Fe को कम करने की पीढ़ी के कारण समाधान में सह-अस्तित्व में हैं<sup>कैथोड पर 2+</sup> प्रजातियां। च्लोकोपाइराइट से कॉपर (>97%) की सबसे अच्छी चुनिंदा | कॉपर सल्फाइड खनिजों से एथलीन, चेल्कोसाइट (Cu<sub>2</sub>S) और कोवेलिट (CuS) एक पीला घोल उत्पन्न करते हैं, जो दर्शाता है कि [CuCl<sub>4</sub>]<sup>2−</sup> संकुल बनते हैं। इस बीच, च्लोकोपीराइट से बने घोल में, Cu<sup>2+</sup> और Cu<sup>+</sup> प्रजातियां Fe को कम करने की पीढ़ी के कारण समाधान में सह-अस्तित्व में हैं<sup>कैथोड पर 2+</sup> प्रजातियां। च्लोकोपाइराइट से कॉपर (>97%) की सबसे अच्छी चुनिंदा पुनः प्राप्ति 20 wt.% ChCl-ऑक्सालिक अम्ल और 80 wt.% एथलीन के मिश्रित डेस से प्राप्त की जा सकती है।<ref>{{cite journal |last1=Abbott |first1=A. |last2=Al-Bassam |first2=A.Z.M. |last3=Goddard |first3=A. |last4=Harris |first4=R.C. |last5=Jenkin |first5=G.R.T. |last6=Nisbet |first6=J. |last7=Wieland |first7=M. |title=गहरे ईयूटेक्टिक सॉल्वैंट्स का उपयोग करके पाइराइट और अन्य Fe - S - खनिजों का विघटन|journal=Green Chemistry |date=2017 |volume=19 |issue=9 |pages=2225–2233 |doi=10.1039/C7GC00334J |url=https://pubs.rsc.org/en/content/articlelanding/2017/gc/c7gc00334j|hdl=2381/40192 |hdl-access=free }}</ref> | ||
==== आयनोधातुकर्म के साथ ऑक्साइड यौगिकों से धातु की रिकवरी ==== | ==== आयनोधातुकर्म के साथ ऑक्साइड यौगिकों से धातु की रिकवरी ==== | ||
ऑक्साइड | ऑक्साइड आव्यूह से धातुओं की पुनः प्राप्ति सामान्यतः खनिज अम्ल का उपयोग करके की जाती है। यद्यपि, डीईएस में धातु आक्साइड के इलेक्ट्रोकेमिकल विघटन पीएच तटस्थ समाधानों में 10 000 से अधिक बार विघटन को बढ़ाने की अनुमति दे सकता है।<ref>{{cite journal |last1=Pateli |first1=I.M. |last2=Abbott |first2=A. |last3=Hartley |first3=J. |last4=Jenkin |first4=G.R.T |title=गहरे ईयूटेक्टिक सॉल्वैंट्स में धातु ऑक्साइड के विघटन के विकल्प के रूप में विद्युत रासायनिक ऑक्सीकरण|journal=Green Chemistry |date=2020 |volume=22 |issue=23 |pages=8360–8368 |doi=10.1039/D0GC03491F |s2cid=229243585 |url=https://pubs.rsc.org/en/content/articlehtml/2020/gc/d0gc03491f}}</ref> | ||
अध्ययनों से पता चला है कि ZnO जैसे आयनिक ऑक्साइड में ChCl: मैलोनिक एसिड, ChCl: यूरिया और एथलीन में उच्च विलेयता होती है, जो जलीय अम्लीय समाधानों, जैसे, | अध्ययनों से पता चला है कि ZnO जैसे आयनिक ऑक्साइड में ChCl: मैलोनिक एसिड, ChCl: यूरिया और एथलीन में उच्च विलेयता होती है, जो जलीय अम्लीय समाधानों, जैसे, एचसीएल में विलेयता के समान हो सकती है। TiO जैसे सहसंयोजक ऑक्साइड<sub>2</sub> यद्यपि, लगभग कोई घुलनशीलता प्रदर्शित नहीं करता है। धातु ऑक्साइड का विद्युत् रसायन विघटन एचबीडी से प्रोटॉन गतिविधि पर दृढ़ता से निर्भर है, अर्थात प्रोटॉन की ऑक्सीजन स्वीकार्य के रूप में कार्य करने की क्षमता और तापमान पर। और यह बताया गया है कि कम पीएच-मानों के गलनक्रांतिक आयनिक तरल पदार्थ, जैसे कि सीएचसीएल: ऑक्सालिक अम्ल और सीएचसीएल: दुग्धाम्ल, उच्च पीएच (जैसे, सीएचसीएल: सिरका अम्ल ) की तुलना में अधिक अच्छे घुलनशीलता की अनुमति देते हैं।<ref>{{cite journal |last1=Pateli |first1=I.M. |last2=Thompson |first2=D. |last3=Alabdullah |first3=S.S.M |last4=Abbott |first4=A. |last5=Jenkin |first5=G.R.T. |last6=Hartley |first6=J. |title=डीप यूटेक्टिक सॉल्वैंट्स में धातु ऑक्साइड के विघटन पर पीएच और हाइड्रोजन बॉन्ड डोनर का प्रभाव|journal=Green Chemistry |date=2020 |volume=22 |issue=16 |pages=5476–5486 |doi=10.1039/D0GC02023K |s2cid=225401121 |url=https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc02023k}}</ref> इसलिए, उदाहरण के लिए, विभिन्न कार्बोक्जिलिक अम्ल को एचबीडी के रूप में उपयोग करके विभिन्न विलेयताएं प्राप्त की जा सकती हैं।<ref>{{cite journal |last1=Abbott |first1=A. |last2=Boothby |first2=D. |last3=Capper |first3=G. |last4=Davies |first4=D.L. |last5=Rasheed |first5=R.K. |title=कोलीन क्लोराइड और कार्बोक्जिलिक एसिड के बीच गठित डीप यूटेक्टिक सॉल्वेंट: आयनिक तरल पदार्थों के बहुमुखी विकल्प|journal=J. Am. Chem. Soc. |date=2004 |volume=126 |issue=29 |pages=9142–9147 |doi=10.1021/ja048266j |pmid=15264850 |url=https://pubs.acs.org/doi/10.1021/ja048266j}}</ref> | ||
=== आउटलुक === | === आउटलुक === | ||
वर्तमान में, व्यावहारिक विद्युत रासायनिक स्थितियों के | वर्तमान में, व्यावहारिक विद्युत रासायनिक स्थितियों के अधीन अधिकांश आयनिक तरल पदार्थों की स्थिरता अज्ञात है, और आयनिक द्रव का मौलिक विकल्प अभी भी अनुभवजन्य है क्योंकि धातु आयन ऊष्मप्रवैगिकी पर लगभग कोई विवरण नहीं है जो विलेयता और प्रजाति मॉडल में फीड हो। इसके अतिरिक्त, कोई पौरबाइक्स आरेख उपलब्ध नहीं हैं, कोई मानक रेडॉक्स क्षमता नहीं है, और प्रजाति या पीएच-मानों का ज्ञान नहीं है। और यह ध्यान दिया जाना चाहिए कि आयनिक तरल पदार्थों से जुड़े साहित्य में आख्या की गई अधिकांश प्रक्रियाओं में एक प्रौद्योगिकी तत्परता स्तर (टीआरएल) 3 (प्रयोगात्मक प्रमाण-अवधारणा) या 4 (प्रयोगशाला में मान्य तकनीक) है, जो अल्पकालिक कार्यान्वयन के लिए एक नुकसान है। यद्यपि, आयनोधातुविज्ञान में धातुओं को अधिक चयनात्मक और टिकाऊ ढंग से प्रभावी रूप से पुनर्प्राप्त करने की क्षमता है, क्योंकि यह पर्यावरणीय रूप से सौम्य विलेय, ग्रीनहाउस गैस उत्सर्जन में कमी और संक्षारक और हानिकारक अभिकर्मकों से बचने पर विचार करता है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 19:15, 12 December 2022
निष्कर्षण धातुकर्म धातुकर्म इंजीनियरिंग की एक शाखा है जिसमें धातुओं को उनके प्राकृतिक खनिज भंडार से निकालने की प्रक्रिया और विधियों का अध्ययन किया जाता है। क्षेत्र एक भौतिक विज्ञान है, जिसमें अयस्क के प्रकार, धुलाई, सघनता, पृथक्करण, रासायनिक प्रक्रियाओं और शुद्ध धातु के निष्कर्षण और उनके मिश्रधातु के सभी पहलुओं को सम्मिलित किया गया है, जो विभिन्न अनुप्रयोगों के अनुरूप है, कभी-कभी तैयार उत्पाद के रूप में प्रत्यक्ष उपयोग के लिए, लेकिन अधिक बार में एक फॉर्म जिसके लिए अनुप्रयोगों के अनुरूप दी गई संपत्तियों को प्राप्त करने के लिए और काम करने की आवश्यकता है।[1] लौह और गैर-लौह निकालने वाले धातु विज्ञान के क्षेत्र में विशिष्टताएं होती हैं जो सामान्य रूप से धातु निकालने के लिए अपनाई गई प्रक्रिया के आधार पर खनिज प्रसंस्करण, हाइड्रोमेटलर्जी , पाइरोमेटलर्जी और विद्युत धातु विज्ञान की श्रेणियों में समूहीकृत होती हैं। उपस्थिति और रासायनिक आवश्यकताओं के आधार पर एक ही धातु के निष्कर्षण के लिए कई प्रक्रियाओं का उपयोग किया जाता है।
खनिज प्रसंस्करण
This section does not cite any sources. (January 2021) (Learn how and when to remove this template message) |
खनिज प्रसंस्करण सफ़ाई के साथ शुरू होता है, जिसमें कुचलने, पीसने, छानने आदि द्वारा अपनाई जाने वाली सघनता प्रक्रिया के आधार पर अयस्क को आवश्यक आकार में तोड़ना सम्मिलित है। घटना और या आगे की प्रक्रिया सम्मिलित है। पृथक्करण प्रक्रिया सामग्री के भौतिक गुणों का लाभ उठाती है। और इन भौतिक गुणों में घनत्व, कण आकार और आकार, विद्युत और चुंबकीय गुण और सतह गुण सम्मिलित हो सकते हैं। प्रमुख भौतिक और रासायनिक विधियों में चुंबकीय पृथक्करण, झाग प्लवनशीलता, निक्षालन आदि सम्मिलित हैं, जिससे अयस्क से अशुद्धियों और अवांछित सामग्रियों को हटा दिया जाता है और धातु के आधार अयस्क को केंद्रित किया जाता है, जिसका अर्थ है कि अयस्क में धातु का प्रतिशत बढ़ जाता है। इस सांद्रण को या तो नमी को हटाने के लिए संसाधित किया जाता है या धातु के निष्कर्षण के लिए उपयोग किया जाता है या आकार और रूपों में बनाया जाता है जो हैंडलिंग में आसानी के साथ आगे की प्रक्रिया से गुजर सकता है।
अयस्क निकायों में प्रायः एक से अधिक मूल्यवान धातुएँ होती हैं। मूल अयस्क से एक द्वितीयक उत्पाद निकालने के लिए पिछली प्रक्रिया की पूंछ को दूसरी प्रक्रिया में फ़ीड के रूप में उपयोग किया जा सकता है। इसके अतिरिक्त, एक सांद्रण में एक से अधिक मूल्यवान धातु हो सकती है। उस सांद्रण को तब मूल्यवान धातुओं को भिन्न -भिन्न घटकों में भिन्न करने के लिए संसाधित किया जाएगा।
हाइड्रोमेटालर्जी
हाइड्रोमेटलर्जी अयस्कों से धातुओं को निकालने के लिए जलीय समाधानों से संबंधित प्रक्रियाओं से संबंधित है। हाइड्रोमेटालर्जिकल प्रक्रिया में पहला कदम निक्षालन (धातु विज्ञान) है, जिसमें मूल्यवान धातुओं को जलीय घोल और या एक उपयुक्त विलायक में घोलना सम्मिलित है। अयस्क के ठोस पदार्थों से घोल को अलग करने के बाद, मूल्यवान धातु को उसके धात्विक अवस्था में या रासायनिक यौगिक के रूप में पुनर्प्राप्त करने से पहले अर्क को प्रायः शुद्धिकरण और एकाग्रता की विभिन्न प्रक्रियाओं के अधीन किया जाता है। इसमें वर्षा (रसायन विज्ञान), आसवन, सोखना और विलायक निष्कर्षण सम्मिलित हो सकते हैं। अंतिम पुनर्प्राप्ति चरण में वर्षा, जोड़ना (धातु विज्ञान), या इलेक्ट्रोमेटालर्जिकल प्रक्रिया सम्मिलित हो सकती है। कभी-कभी, हाइड्रोमेटालर्जिकल प्रक्रियाओं को बिना किसी पूर्व उपचार चरणों के सीधे अयस्क सामग्री पर किया जा सकता है। अधिक बार, अयस्क को विभिन्न खनिज प्रसंस्करण चरणों और कभी-कभी पाइरोमेटालर्जिकल प्रक्रियाओं द्वारा पूर्व-उपचारित किया जाना चाहिए।[2]
पायरोमेटालर्जी
This section does not cite any sources. (January 2021) (Learn how and when to remove this template message) |
पायरोमेटलर्जी में उच्च तापमान प्रक्रियाएं सम्मिलित होती हैं जहां गैसों, ठोस पदार्थों और पिघली हुई सामग्री के बीच रासायनिक प्रतिक्रियाएं होती हैं। मूल्यवान धातुओं से युक्त ठोसों को आगे की प्रक्रिया के लिए मध्यवर्ती यौगिक बनाने के लिए उपचारित किया जाता है या उनके मौलिक या धात्विक अवस्था में परिवर्तित किया जाता है। गैसों और ठोस पदार्थों को सम्मिलित करने वाली पाइरोमेटालर्जिकल प्रक्रियाएं भस्म बनाने की क्रिया और भूनने का (धातु विज्ञान) संचालन द्वारा प्ररूपित की जाती हैं। पिघला हुआ उत्पाद बनाने वाली प्रक्रियाओं को सामूहिक रूप से प्रगलन संचालन कहा जाता है। उच्च तापमान पाइरोमेटालर्जिकल प्रक्रियाओं को बनाए रखने के लिए आवश्यक ऊर्जा होने वाली रासायनिक प्रतिक्रियाओं की ऊष्माक्षेपी प्रकृति से प्राप्त हो सकती है। सामान्यतः, ये प्रतिक्रियाएं ऑक्सीकरण होती हैं, उदाहरण । सल्फाइड से सल्फर डाइऑक्साइड। प्रायः, तथापि, ऊर्जा को ईंधन के दहन द्वारा या कुछ गलाने की प्रक्रियाओं के मामले में, विद्युत ऊर्जा के प्रत्यक्ष अनुप्रयोग द्वारा प्रक्रिया में जोड़ा जाना चाहिए।
एलिंघम आरेख संभावित प्रतिक्रियाओं का विश्लेषण करने का एक उपयोगी ढंग है, और इसलिए उनके परिणाम की भविष्यवाणी करता है।
विद्युतधातुकर्म
This section does not cite any sources. (January 2021) (Learn how and when to remove this template message) |
विद्युत धातु विज्ञान में धातु प्रक्रियाएं सम्मिलित होती हैं जो विद्युत् अपघटनी सेल के किसी रूप में होती हैं। सबसे सामान्य प्रकार की इलेक्ट्रोमेटालर्जिकल प्रक्रियाएं इलेक्ट्रोविनिंग और विद्युत शोधन हैं। इलेक्ट्रोविनिंग एक इलेक्ट्रोलिसिस प्रक्रिया है जिसका उपयोग जलीय घोल में धातुओं को पुनर्प्राप्त करने के लिए किया जाता है, सामान्यतः एक अयस्क के परिणाम के रूप में एक या एक से अधिक हाइड्रोमेटालर्जिकल प्रक्रियाएं होती हैं। ब्याज की धातु कैथोड पर चढ़ाया जाता है, जबकि एनोड एक अक्रिय विद्युत संवाहक है। विद्युत् शोधन का उपयोग अशुद्ध धातु एनोड (सामान्यतः गलाने की प्रक्रिया से) को भंग करने और उच्च शुद्धता कैथोड का उत्पादन करने के लिए किया जाता है। फ्यूज्ड नमक इलेक्ट्रोलिसिस एक अन्य इलेक्ट्रोमेटालर्जिकल प्रक्रिया है जिससे मूल्यवान धातु को पिघले हुए नमक में घोल दिया जाता है जो विद्युत अपघट्य के रूप में कार्य करता है, और मूल्यवान धातु सेल के कैथोड पर एकत्रित होती है। पिघली हुई अवस्था में उत्पादित होने वाले विद्युत अपघट्य और धातु दोनों को रखने के लिए फ्यूज्ड सॉल्ट इलेक्ट्रोलिसिस प्रक्रिया पर्याप्त तापमान पर आयोजित की जाती है। इलेक्ट्रोमेटालर्जी के क्षेत्र में हाइड्रोमेटालर्जी के क्षेत्रों और (फ्यूज्ड सॉल्ट इलेक्ट्रोलिसिस के मामले में) पाइरोमेटालर्जी के साथ महत्वपूर्ण आच्छादन है। इसके अतिरिक्त, विद्युत् रसायन घटनाएं कई खनिज प्रसंस्करण और हाइड्रोमेटालर्जिकल प्रक्रियाओं में महत्वपूर्ण भूमिका निभाती हैं।
आयनोधातुकर्म
धातुओं का खनिज प्रसंस्करण और निष्कर्षण बहुत ऊर्जा-गहन प्रक्रियाएँ हैं, जिन्हें बड़ी मात्रा में ठोस अवशेषों और अपशिष्ट जल के उत्पादन से छूट नहीं है, जिसके लिए आगे उपचार और निपटान के लिए ऊर्जा की भी आवश्यकता होती है। इसके अतिरिक्त , जैसे-जैसे धातुओं की मांग बढ़ती है, धातुकर्म उद्योग को प्राथमिक (जैसे, खनिज अयस्क) और/या द्वितीयक (जैसे, धातुमल, अवशेष, नगरपालिका अपशिष्ट) कच्चे माल दोनों से कम धातु सामग्री वाले सामग्रियों के स्रोतों पर निर्भर होना चाहिए। नतीजतन, खनन गतिविधियों और अपशिष्ट पुनर्चक्रण को अधिक चयनात्मक, कुशल और पर्यावरण के अनुकूल खनिज और धातु प्रसंस्करण मार्गों के विकास की दिशा में विकसित होना चाहिए।
खनिज प्रसंस्करण कार्यों को सबसे पहले ब्याज के खनिज चरणों पर ध्यान केंद्रित करने और परिभाषित कच्चे माल से जुड़े भौतिक या रासायनिक रूप से अवांछित सामग्री को अस्वीकार करने की आवश्यकता होती है। यद्यपि, इस प्रक्रिया में लगभग 30 GJ/टन धातु की माँग होती है, जो संयुक्त राज्य अमेरिका में खनन पर खर्च की गई कुल ऊर्जा का लगभग 29% है।[3] इस बीच, ताप धातुकर्म ग्रीनहाउस गैस उत्सर्जन और हानिकारक फ़्लू धूल का एक महत्वपूर्ण उत्पादक है। जल धातुविज्ञान में बड़ी मात्रा में लिक्विविएंट्स जैसे एच की खपत होती है2इसलिए4, एचसीएल, केसीएन, NaCN जिनमें खराब चयनात्मकता है।[4] इसके अतिरिक्त, पर्यावरणीय चिंता और कुछ देशों द्वारा लगाए गए उपयोग प्रतिबंध के अतिरिक्त, साइनाइडेशन को अभी भी अयस्कों से सोना पुनर्प्राप्त करने के लिए प्रमुख प्रक्रिया प्रौद्योगिकी माना जाता है। इसकी स्पष्ट विषाक्तता के अतिरिक्त, कम आर्थिक रूप से विकसित देशों में कारीगरों द्वारा पारा का उपयोग खनिजों से सोने और चांदी पर ध्यान केंद्रित करने के लिए किया जाता है। जैव -हाइड्रो-धातु विज्ञान जीवित जीवों का उपयोग करता है, जैसे बैक्टीरिया और कवक, और यद्यपि यह विधि केवल इनपुट की मांग करती है O2 तथा CO2 वातावरण से, इसे कम ठोस-से-तरल अनुपात और लंबे संपर्क समय की आवश्यकता होती है, जो अंतरिक्ष-समय की पैदावार को काफी कम कर देता है।
आयनोधातुकर्म गैर-जलीय आयनिक विलायक जैसे आयनिक तरल पदार्थ (आईएलएस) और गहरे यूटेक्टिक विलायक (डेस) का उपयोग करता है, जो बंद-लूप फ्लो शीट के विकास को प्रभावी ढंग से धातुओं को पुनर्प्राप्त करने की अनुमति देता है, उदाहरण के लिए, निक्षालन के धातुकर्म इकाई संचालन को एकीकृत करना और इलेक्ट्रोविनिंग। यह एक गैर-जलीय वातावरण में मध्यम तापमान पर धातुओं को संसाधित करने की अनुमति देता है जो धातु की अटकलों को नियंत्रित करने की अनुमति देता है, अशुद्धियों को सहन करता है और साथ ही उपयुक्त घुलनशीलता और वर्तमान क्षमता प्रदर्शित करता है। यह पारंपरिक प्रसंस्करण मार्गों को सरल करता है और धातु प्रसंस्करण संयंत्र के आकार में पर्याप्त कमी की अनुमति देता है।
आयनिक तरल पदार्थ के साथ धातु निष्कर्षण
डीईएस सामान्यतः दो या तीन सस्ते और सुरक्षित घटकों से बने तरल पदार्थ होते हैं जो स्व-संघ के लिए सक्षम होते हैं, प्रायः हाइड्रोजन आबंध पारस्परिक क्रिया के माध्यम से, प्रत्येक व्यक्तिगत घटक की तुलना में कम पिघलने बिंदु के साथ गलन क्रांतिक मिश्रण बनाने के लिए। डीईएस सामान्यतः 100 डिग्री सेल्सियस से कम तापमान पर तरल होते हैं, और वे बहुत सस्ते और पर्यावरण के अनुकूल होने के साथ-साथ पारंपरिक आईएल के समान भौतिक-रासायनिक गुण प्रदर्शित करते हैं। उनमें से अधिकांश कोलीन क्लोराइड और हाइड्रोजन-आबंध डोनर (जैसे, यूरिया, एथिलीन ग्लाइकॉल, मैलिक एसिड) या हाइड्रेटेड धातु नमक के साथ कोलीन क्लोराइड के मिश्रण हैं। अन्य कोलीन लवण (जैसे एसीटेट, साइट्रेट, नाइट्रेट) की लागत बहुत अधिक है या उन्हें संश्लेषित करने की आवश्यकता है,[5] और इन आयनों से तैयार किया गया डीईएस सामान्यतः बहुत अधिक चिपचिपा होता है और इसमें कोलीन क्लोराइड की तुलना में उच्च चालकता हो सकती है।[6] इसके परिणामस्वरूप कम चढ़ाना दर और खराब फेंकने की शक्ति होती है और इस कारण से क्लोराइड-आधारित डेस प्रणाली अभी भी इष्ट हैं। उदाहरण के लिए, रीलाइन (कोलीन क्लोराइड और यूरिया का 1:2 मिश्रण) का उपयोग मिश्रित धातु ऑक्साइड मैट्रिक्स से Zn और Pb को चुनिंदा रूप से पुनर्प्राप्त करने के लिए किया गया है।[7] इसी तरह, एथलीन (कोलीन क्लोराइड और एथिलीन ग्लाइकॉल का 1:2 मिश्रण) स्टील्स के इलेक्ट्रोपॉलिशिंग में धातु के विघटन की सुविधा प्रदान करता है।[8] डेस ने जटिल मिश्रणों जैसे Cu/Zn और Ga/As से धातुओं को पुनर्प्राप्त करने के लिए आशाजनक परिणाम भी प्रदर्शित किए हैं।[9] और खनिजों से कीमती धातुएँ।[10] यह भी प्रदर्शित किया गया है कि धातुओं को डीईएस के संयोजन के रूप में लिक्विविएंट्स और ऑक्सीकरण कर्मक के संयोजन का उपयोग करके इलेक्ट्रोकैटलिसिस द्वारा जटिल मिश्रण से पुनर्प्राप्त किया जा सकता है।[11] जबकि धातु के आयनों को एक साथ इलेक्ट्रोविनिंग द्वारा समाधान से अलग किया जा सकता है।[12]
आयनोधातुकर्म द्वारा बहुमूल्य धातुओं की प्राप्ति
कीमती धातुएं उच्च आर्थिक मूल्य के दुर्लभ, प्राकृतिक रूप से पाए जाने वाले धात्विक रासायनिक तत्व हैं। रासायनिक रूप से, कीमती धातुएँ अधिकांश तत्वों की तुलना में कम प्रतिक्रियाशील होती हैं। इनमें सोना और चांदी सम्मिलित हैं, लेकिन तथाकथित प्लेटिनम समूह धातु भी सम्मिलित हैं: रुथेनियम, रोडियम, पैलेडियम, ऑस्मियम, इरिडियम और प्लैटिनम (कीमती धातु देखें)। इन धातुओं को उनके संबंधित होस्टिंग खनिजों से निकालने के लिए सामान्यतः पाइरोमेटालर्जी (जैसे, रोस्टिंग), हाइड्रोमेटालर्जी (सायनाइडेशन), या दोनों को प्रसंस्करण मार्गों के रूप में आवश्यक होगा। प्रारंभिक अध्ययनों से पता चला है कि एथलीन में सोने के घुलने की दर सायनाइडेशन विधि से बहुत अनुकूल है, जो ऑक्सीकरण एजेंट के रूप में आयोडीन के योग से और बढ़ जाती है। एक औद्योगिक प्रक्रिया में आयोडीन में इलेक्ट्रोकैटलिस्ट के रूप में नियोजित होने की क्षमता होती है, जिससे इलेक्ट्रोकेमिकल सेल के एनोड पर इलेक्ट्रोकेमिकल ऑक्सीकरण द्वारा कम आयोडाइड से सीटू में लगातार पुनर्प्राप्त किया जाता है। इलेक्ट्रोड क्षमता को समायोजित करके भंग धातुओं को चुनिंदा रूप से कैथोड पर जमा किया जा सकता है। यह विधि अधिक अच्छे चयनात्मकता की भी अनुमति देती है क्योंकि गैंग (जैसे, पाइराइट) के हिस्से को अधिक धीरे-धीरे भंग किया जाता है।[13] स्पेरीलाइट (PtAs2) एंड मनचैते (पत्ते2), जो सामान्यतः कई ऑर्थोमैग्मैटिक जमाओं में अधिक प्रचुर मात्रा में प्लैटिनम खनिज होते हैं, एथलीन में समान परिस्थितियों में प्रतिक्रिया नहीं करते हैं क्योंकि वे डाइसल्फ़ाइड (पाइराइट), डायरसेनाइड (स्पेरीलाइट) या डिटेल्यूराइड्स (कैलावेराइट और मोनचेइट) खनिज हैं, जो विशेष रूप से प्रतिरोधी हैं। आयोडीन ऑक्सीकरण। प्रतिक्रिया तंत्र जिसके द्वारा प्लेटिनम खनिजों का विघटन हो रहा है, अभी भी जांच के अधीन है।
आयनोधातुकर्म के साथ सल्फाइड खनिजों से धातु की रिकवरी
धातु सल्फाइड (जैसे, पाइराइट FeS2, आर्सेनोपाइराइट FeAsS, चॉकोपाइराइट CuFeS2) आम तौर पर या तो जलीय मीडिया में या उच्च तापमान पर रासायनिक ऑक्सीकरण द्वारा संसाधित होते हैं। वास्तव में, अधिकांश आधार धातुएं, जैसे, एल्यूमीनियम, क्रोमियम, को उच्च तापमान पर (इलेक्ट्रो) रासायनिक रूप से कम किया जाना चाहिए, जिससे प्रक्रिया में उच्च ऊर्जा की मांग होती है, और कभी-कभी बड़ी मात्रा में जलीय अपशिष्ट उत्पन्न होता है। उदाहरण के लिए, जलीय मीडिया च्लोकोपीराइट में, सतह के प्रभाव (पॉलीसल्फ़ाइड प्रजातियों के गठन, आदि) के कारण कोवेलाइट और च्लोकोसाइट की तुलना में रासायनिक रूप से भंग करना अधिक कठिन होता है।[14][15]). सीएल की उपस्थिति- आयनों को किसी भी गठित सल्फाइड सतह के आकारिकी को बदलने का सुझाव दिया गया है, जिससे सल्फाइड खनिज निष्क्रियता को रोककर अधिक आसानी से निक्षालन कर सके।[16] डीईएस एक उच्च सीएल प्रदान करते हैं− आयन सांद्रता और कम पानी की मात्रा, उच्च अतिरिक्त नमक या अम्ल सांद्रता की आवश्यकता को कम करते हुए, अधिकांश ऑक्साइड रसायन को दूर करते हुए। इस प्रकार, धातु आयनों के समाधान में प्रकाशन के साथ सल्फाइड खनिजों के विद्युत् विघटन ने डीईएस मीडिया में निष्क्रियता परतों की अनुपस्थिति में आशाजनक परिणाम प्रदर्शित किए हैं, जिन्हें समाधान से पुनर्प्राप्त किया जा सकता है।
कॉपर सल्फाइड खनिजों से एथलीन, चेल्कोसाइट (Cu2S) और कोवेलिट (CuS) एक पीला घोल उत्पन्न करते हैं, जो दर्शाता है कि [CuCl4]2− संकुल बनते हैं। इस बीच, च्लोकोपीराइट से बने घोल में, Cu2+ और Cu+ प्रजातियां Fe को कम करने की पीढ़ी के कारण समाधान में सह-अस्तित्व में हैंकैथोड पर 2+ प्रजातियां। च्लोकोपाइराइट से कॉपर (>97%) की सबसे अच्छी चुनिंदा पुनः प्राप्ति 20 wt.% ChCl-ऑक्सालिक अम्ल और 80 wt.% एथलीन के मिश्रित डेस से प्राप्त की जा सकती है।[17]
आयनोधातुकर्म के साथ ऑक्साइड यौगिकों से धातु की रिकवरी
ऑक्साइड आव्यूह से धातुओं की पुनः प्राप्ति सामान्यतः खनिज अम्ल का उपयोग करके की जाती है। यद्यपि, डीईएस में धातु आक्साइड के इलेक्ट्रोकेमिकल विघटन पीएच तटस्थ समाधानों में 10 000 से अधिक बार विघटन को बढ़ाने की अनुमति दे सकता है।[18] अध्ययनों से पता चला है कि ZnO जैसे आयनिक ऑक्साइड में ChCl: मैलोनिक एसिड, ChCl: यूरिया और एथलीन में उच्च विलेयता होती है, जो जलीय अम्लीय समाधानों, जैसे, एचसीएल में विलेयता के समान हो सकती है। TiO जैसे सहसंयोजक ऑक्साइड2 यद्यपि, लगभग कोई घुलनशीलता प्रदर्शित नहीं करता है। धातु ऑक्साइड का विद्युत् रसायन विघटन एचबीडी से प्रोटॉन गतिविधि पर दृढ़ता से निर्भर है, अर्थात प्रोटॉन की ऑक्सीजन स्वीकार्य के रूप में कार्य करने की क्षमता और तापमान पर। और यह बताया गया है कि कम पीएच-मानों के गलनक्रांतिक आयनिक तरल पदार्थ, जैसे कि सीएचसीएल: ऑक्सालिक अम्ल और सीएचसीएल: दुग्धाम्ल, उच्च पीएच (जैसे, सीएचसीएल: सिरका अम्ल ) की तुलना में अधिक अच्छे घुलनशीलता की अनुमति देते हैं।[19] इसलिए, उदाहरण के लिए, विभिन्न कार्बोक्जिलिक अम्ल को एचबीडी के रूप में उपयोग करके विभिन्न विलेयताएं प्राप्त की जा सकती हैं।[20]
आउटलुक
वर्तमान में, व्यावहारिक विद्युत रासायनिक स्थितियों के अधीन अधिकांश आयनिक तरल पदार्थों की स्थिरता अज्ञात है, और आयनिक द्रव का मौलिक विकल्प अभी भी अनुभवजन्य है क्योंकि धातु आयन ऊष्मप्रवैगिकी पर लगभग कोई विवरण नहीं है जो विलेयता और प्रजाति मॉडल में फीड हो। इसके अतिरिक्त, कोई पौरबाइक्स आरेख उपलब्ध नहीं हैं, कोई मानक रेडॉक्स क्षमता नहीं है, और प्रजाति या पीएच-मानों का ज्ञान नहीं है। और यह ध्यान दिया जाना चाहिए कि आयनिक तरल पदार्थों से जुड़े साहित्य में आख्या की गई अधिकांश प्रक्रियाओं में एक प्रौद्योगिकी तत्परता स्तर (टीआरएल) 3 (प्रयोगात्मक प्रमाण-अवधारणा) या 4 (प्रयोगशाला में मान्य तकनीक) है, जो अल्पकालिक कार्यान्वयन के लिए एक नुकसान है। यद्यपि, आयनोधातुविज्ञान में धातुओं को अधिक चयनात्मक और टिकाऊ ढंग से प्रभावी रूप से पुनर्प्राप्त करने की क्षमता है, क्योंकि यह पर्यावरणीय रूप से सौम्य विलेय, ग्रीनहाउस गैस उत्सर्जन में कमी और संक्षारक और हानिकारक अभिकर्मकों से बचने पर विचार करता है।
संदर्भ
- ↑ Brent Hiskey "Metallurgy, Survey" in Kirk-Othmer Encyclopedia of Chemical Technology, 2000, Wiley-VCH, Weinheim. doi:10.1002/0471238961.1921182208091911.a01
- ↑ "असीम। "निष्कर्षण धातु विज्ञान।" असीम रसायन विज्ञान। असीम, 21 जुलाई 2015। 18 मार्च 2016 को लिया गया". Archived from the original on October 12, 2016. Retrieved March 18, 2016.
- ↑ Norgate (2010). "खनन और खनिज प्रसंस्करण कार्यों के ऊर्जा और ग्रीनहाउस गैस प्रभाव". Journal of Cleaner Production. 18 (3): 266–274. doi:10.1016/j.jclepro.2009.09.020.
- ↑ Binnemans, Koen (2017). "सोलवोमेटलर्जी: एक्सट्रैक्टिव मेटलर्जी की एक उभरती हुई शाखा". Journal of Sustainable Metallurgy. 3 (3): 571–600. doi:10.1007/s40831-017-0128-2. S2CID 52203805.
- ↑ Endres, F; MacFarlane, D; Abbott, A (2017). आयनिक तरल पदार्थ से इलेक्ट्रोडोडिशन. Wiley-VCH.
- ↑ Bernasconi, R.; Zebarjadi, Z.; Magagnin, L. (2015). "एक क्लोराइड मुक्त गहरे यूटेक्टिक विलायक से कॉपर इलेक्ट्रोडपोजिशन". Journal of Electroanalytical Chemistry. 758 (1): 163–169. doi:10.1016/j.jelechem.2015.10.024. hdl:11311/987216.
- ↑ Abbott, A.; Collins, J.; Dalrymple, I.; Harris, R.C.; Mistry, R.; Qiu, F.; Scheirer, J.; Wise, W.R. (2009). "डीप यूटेक्टिक सॉल्वैंट्स का उपयोग करके इलेक्ट्रिक आर्क फर्नेस डस्ट का प्रसंस्करण". Australian Journal of Chemistry. 62 (4): 341–347. doi:10.1071/CH08476.
- ↑ Abbott, A.; Capper, G.; McKenzie, K.J.; Glidle, A.; Ryder, K.S. (2006). "कोलीन क्लोराइड आधारित आयनिक तरल में स्टेनलेस स्टील्स की इलेक्ट्रोपॉलिशिंग: एसईएम और परमाणु बल माइक्रोस्कोपी का उपयोग करके सतह के लक्षण वर्णन के साथ एक विद्युत रासायनिक अध्ययन". Phys. Chem. Chem. Phys. 8 (36): 4214–4221. Bibcode:2006PCCP....8.4214A. doi:10.1039/B607763N. hdl:2381/628. PMID 16971989.
- ↑ Abbott, A.; Harris, R.C.; Holyoak, F.; Frisch, G.; Hartley, J.; Jenkin, G.R.T. (2015). "डीप यूटेक्टिक सॉल्वैंट्स का उपयोग करके जटिल मिश्रण से तत्वों की इलेक्ट्रोकैटलिटिक रिकवरी". Green Chem. 17 (4): 2172–2179. doi:10.1039/C4GC02246G. hdl:2381/31850.
- ↑ Jenkin, G.R.T.; Al-Bassam, A.Z.M.; Harris, R.C.; Abbott, A.; Smith, D.J.; Holwell, D.A.; Chapman, R.J.; Stanley, C.J. (2016). "पर्यावरण के अनुकूल विघटन और कीमती धातुओं की वसूली के लिए गहरे यूटेक्टिक सॉल्वेंट आयनिक तरल पदार्थों का अनुप्रयोग". Minerals Engineering. 87: 18–24. doi:10.1016/j.mineng.2015.09.026.
- ↑ Abbott, A.; Harris, R.C.; Holyoak, F.; Frisch, G.; Hartley, J.; Jenkin, G.R.T. (2015). "डीप यूटेक्टिक सॉल्वैंट्स का उपयोग करके जटिल मिश्रण से तत्वों की इलेक्ट्रोकैटलिटिक रिकवरी". Green Chemistry. 17 (4): 2172–2179. doi:10.1039/C4GC02246G. hdl:2381/31850.
- ↑ Anggara, S.; Bevan, F.; Harris, R.C.; Hartley, J.; Frisch, G.; Jenkin, G.R.T.; Abbot, A. (2019). "गहरे यूटेक्टिक सॉल्वैंट्स का उपयोग करके कॉपर सल्फाइड खनिजों से तांबे का प्रत्यक्ष निष्कर्षण". Green Chemistry. 21 (23): 6502–6512. doi:10.1039/C9GC03213D. S2CID 209704861.
- ↑ Jenkin, G.R.T.; Al-Bassam, A.Z.M.; Harris, R.C.; Abbott, A.; Smith, D.J.; Holwell, D.A.; Chapman, R.J.; Stanley, C.J. (2016). "पर्यावरण के अनुकूल विघटन और कीमती धातुओं की वसूली के लिए गहरे यूटेक्टिक सॉल्वेंट आयनिक तरल पदार्थों का अनुप्रयोग". Minerals Engineering. 87: 18–24. doi:10.1016/j.mineng.2015.09.026.
- ↑ Ghahremaninezhad, A.; Dixon, D.G.; Asselin, E. (2013). "सल्फ्यूरिक एसिड समाधान में च्लोकोपीराइट (CuFeS2) के विघटन का विद्युत रासायनिक और XPS विश्लेषण". Electrochimica Acta. 87: 97–112. doi:10.1016/j.electacta.2012.07.119.
- ↑ Dreisinger, D.; Abed, N. (2002). "धात्विक लोहे के भाग I का उपयोग करके च्लोकोपीराइट के रिडक्टिव लीचिंग का एक मौलिक अध्ययन: गतिज विश्लेषण". Hydrometallurgy. 60 (1–3): 293–296. doi:10.1016/S0304-386X(02)00079-8.
- ↑ Pikna, L.; Lux, L.; Grygar, T. (2006). "इमोबिलाइज्ड माइक्रोपार्टिकल्स के वोल्टामेट्री द्वारा च्लोकोपीराइट के विद्युत रासायनिक विघटन का अध्ययन किया गया". Chemical Papers. 60 (4): 293–296. doi:10.2478/s11696-006-0051-7. S2CID 95349687.
- ↑ Abbott, A.; Al-Bassam, A.Z.M.; Goddard, A.; Harris, R.C.; Jenkin, G.R.T.; Nisbet, J.; Wieland, M. (2017). "गहरे ईयूटेक्टिक सॉल्वैंट्स का उपयोग करके पाइराइट और अन्य Fe - S - खनिजों का विघटन". Green Chemistry. 19 (9): 2225–2233. doi:10.1039/C7GC00334J. hdl:2381/40192.
- ↑ Pateli, I.M.; Abbott, A.; Hartley, J.; Jenkin, G.R.T (2020). "गहरे ईयूटेक्टिक सॉल्वैंट्स में धातु ऑक्साइड के विघटन के विकल्प के रूप में विद्युत रासायनिक ऑक्सीकरण". Green Chemistry. 22 (23): 8360–8368. doi:10.1039/D0GC03491F. S2CID 229243585.
- ↑ Pateli, I.M.; Thompson, D.; Alabdullah, S.S.M; Abbott, A.; Jenkin, G.R.T.; Hartley, J. (2020). "डीप यूटेक्टिक सॉल्वैंट्स में धातु ऑक्साइड के विघटन पर पीएच और हाइड्रोजन बॉन्ड डोनर का प्रभाव". Green Chemistry. 22 (16): 5476–5486. doi:10.1039/D0GC02023K. S2CID 225401121.
- ↑ Abbott, A.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. (2004). "कोलीन क्लोराइड और कार्बोक्जिलिक एसिड के बीच गठित डीप यूटेक्टिक सॉल्वेंट: आयनिक तरल पदार्थों के बहुमुखी विकल्प". J. Am. Chem. Soc. 126 (29): 9142–9147. doi:10.1021/ja048266j. PMID 15264850.
इस पेज में लापता आंतरिक लिंक की सूची
- खनिज जमा होना
- मिश्र धातु
- पदार्थ विज्ञान
- अलौह निष्कर्षण धातु विज्ञान
- सॉल्वेंट एक्सट्रैक्शन
- भूनना (धातु विज्ञान)
अग्रिम पठन
- Gilchrist, J.D. (1989). Extraction Metallurgy, Pergamon Press.[ISBN missing]
- Mailoo Selvaratnam, (1996): Guided Approach to Learning Chemistry.[ISBN missing]