ऑक्सीजन मुक्त तांबा: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
सम्मिलित हैं। इनमें से तीन का विस्तृत रूप से उपयोग किया जाता है और दो को ऑक्सीजन रहित माना जाता है: | सम्मिलित हैं। इनमें से तीन का विस्तृत रूप से उपयोग किया जाता है और दो को ऑक्सीजन रहित माना जाता है: | ||
* {{anchor|C10100|OFE}}C10100 - ऑक्सीजन मुक्त इलेक्ट्रॉनिक (ओएफई) के रूप में भी जाना जाता है। यह 0.0005% ऑक्सीजन सामग्री के साथ 99.99% शुद्ध तांबा है। यह कम से कम 101% अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक चालकता मूल्यांकन प्राप्त करता है। यह तांबा सावधानी से विनियमित, ऑक्सीजन मुक्त वातावरण में अंतिम रूप में समाप्त हो गया है। चांदी (एजी) को ओएफई रासायनिक विनिर्देश में अशुद्धता माना जाता है। यह यहां सूची युक्त तीन श्रेणी में सबसे महंगा भी है। | * {{anchor|C10100|OFE}}C10100 - ऑक्सीजन मुक्त इलेक्ट्रॉनिक (ओएफई) के रूप में भी जाना जाता है। यह 0.0005% ऑक्सीजन सामग्री के साथ 99.99% शुद्ध तांबा है। यह कम से कम 101% अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक चालकता मूल्यांकन प्राप्त करता है। यह तांबा सावधानी से विनियमित(नियमित रूप से) ,ऑक्सीजन मुक्त वातावरण में अंतिम रूप में समाप्त हो गया है। चांदी (एजी) को ओएफई रासायनिक विनिर्देश (विशेष वर्णन) में अशुद्धता माना जाता है। यह यहां सूची युक्त तीन श्रेणी में सबसे महंगा भी है। | ||
* {{anchor|C10200|OF}}C10200 - ऑक्सीजन रहित (OF) के रूप में भी जाना जाता है। जबकि OF को ऑक्सीजन मुक्त माना जाता है, इसकी चालकता मूल्यांकन नीचे दिए गए अधिक सामान्य ETP (ईटीपी) श्रेणी से बेहतर नहीं है। इसमें 0.001% ऑक्सीजन सामग्री, 99.95% शुद्धता और कम से कम 100% आईएसीएस (इण्डियन एसोसियेशन फॉर द कल्टिवेशन ऑफ साईन्स ) चालकता है। शुद्धता प्रतिशत के मतलब के लिए, चांदी (एजी) सामग्री को तांबे (सीयू) के रूप में गिना जाता है। | * {{anchor|C10200|OF}}C10200 - ऑक्सीजन रहित (OF) के रूप में भी जाना जाता है। जबकि OF को ऑक्सीजन मुक्त माना जाता है, इसकी चालकता मूल्यांकन नीचे दिए गए अधिक सामान्य ETP (ईटीपी) श्रेणी से बेहतर नहीं है। इसमें 0.001% ऑक्सीजन सामग्री, 99.95% शुद्धता और कम से कम 100% आईएसीएस (इण्डियन एसोसियेशन फॉर द कल्टिवेशन ऑफ साईन्स ) चालकता है। शुद्धता प्रतिशत के मतलब के लिए, चांदी (एजी) सामग्री को तांबे (सीयू) के रूप में गिना जाता है। | ||
* {{anchor|C11000|ETP}}C11000 - इलेक्ट्रोलाइटिक-टफ-पिच (ईटीपी) के रूप में भी जाना जाता है। यह सबसे आम तांबा है। यह बिजली प्रयोग के लिए व्यापक है। ईटीपी की न्यूनतम चालकता रेटिंग 100% आईएसीएस है और इसे 99.9% शुद्ध होना आवश्यक है। इसमें 0.02% से 0.04% ऑक्सीजन सामग्री (विशेष) है। आज बेचे जाने वाले अधिकतर ETP (ईटीपी)101% को पूरा करते हैं या उससे अधिक हैं। तांबे के साथ के रूप में, चांदी (एजी) सामग्री को शुद्धता उद्देश्यों के लिए तांबे (सीयू) के रूप में गिना जाता है। | * {{anchor|C11000|ETP}}C11000 - इलेक्ट्रोलाइटिक-टफ-पिच (ईटीपी) के रूप में भी जाना जाता है। यह सबसे आम तांबा है। यह बिजली प्रयोग के लिए व्यापक है। ईटीपी की न्यूनतम चालकता रेटिंग 100% आईएसीएस है और इसे 99.9% शुद्ध होना आवश्यक है। इसमें 0.02% से 0.04% ऑक्सीजन सामग्री (विशेष) है। आज बेचे जाने वाले अधिकतर ETP (ईटीपी)101% को पूरा करते हैं या उससे अधिक हैं। तांबे के साथ के रूप में, चांदी (एजी) सामग्री को शुद्धता उद्देश्यों के लिए तांबे (सीयू) के रूप में गिना जाता है। | ||
Line 15: | Line 15: | ||
=== {{anchor|OFHC}}ऑक्सीजन मुक्त उच्च तापीय चालकता === | === {{anchor|OFHC}}ऑक्सीजन मुक्त उच्च तापीय चालकता === | ||
[[ क्रायोजेनिक्स ]](अत्यधिक निम्न ताप उत्पन्न करने व उसके प्रयोगों का अध्ययन करना ) में ऑक्सीजन रहित उच्च तापीय चालकता (ओएफएचसी) तांबे के फैले हुए रूप से उपयोग किया जाता है। OFHC (ओएफएचसी) प्रसंस्करण (प्रॉसेसिंग) के दौरान शुद्ध ऑक्सीजन मुक्त धातु के सं[[ दूषण]] (संपर्क प्रभाव) को रोकने के लिए सावधानीपूर्वक नियंत्रित स्थितियों के अंतर्गत चुने गए शुद्ध [[ कैथोड ]](इलेक्ट्रोड जिसमे सेल में करंट प्रवेश करता है ) और कास्टिंग के सीधे रूप में परिवर्तन द्वारा उत्पन्न किया जाता है। ओएफएचसी तांबे के उत्पादन की विधि 99.99% तांबे की सामग्री के साथ धातु का एक अतिरिक्त उच्च श्रेणी सुनिश्चित करती है। बाहरी तत्वों की बहुत कम सामग्री के साथ, वास्तविक तांबे के छिपे हुए गुणों को उच्च स्तर तक लाया जाता है। अभ्यास में ऑक्सीजन सामग्री आमतौर पर 0.03% की कुल अधिकतम अशुद्धता स्तर के साथ 0.001 से 0.003% होती है। ये विशेषताएँ उच्च [[ लचीलापन ]], उच्च [[ विद्युत चालकता ]] और तापीय चालकता, सामग्री की उच्च शक्ति # शक्ति की शर्तें, अच्छा [[ रेंगना (विरूपण) ]] प्रतिरोध, [[ वेल्डिंग ]] में आसानी और [[ अति उच्च वैक्यूम ]] के तहत कम [[ सापेक्ष अस्थिरता ]] हैं।<ref>{{cite web |url=http://www.anchorbronze.com/wroughtcopper.htm |title=Oxygen-Free Copper |publisher=Anchorbronze.com |access-date=2011-07-05}}</ref> | [[ क्रायोजेनिक्स ]](अत्यधिक निम्न ताप उत्पन्न करने व उसके प्रयोगों का अध्ययन करना ) में ऑक्सीजन रहित उच्च तापीय चालकता (ओएफएचसी) तांबे के फैले हुए रूप से उपयोग किया जाता है। OFHC (ओएफएचसी) प्रसंस्करण (प्रॉसेसिंग) के दौरान शुद्ध ऑक्सीजन मुक्त धातु के सं[[ दूषण]] (संपर्क प्रभाव) को रोकने के लिए सावधानीपूर्वक नियंत्रित स्थितियों के अंतर्गत चुने गए शुद्ध [[ कैथोड ]](इलेक्ट्रोड जिसमे सेल में करंट प्रवेश करता है ) और कास्टिंग के सीधे रूप में परिवर्तन द्वारा उत्पन्न किया जाता है। ओएफएचसी तांबे के उत्पादन की विधि 99.99% तांबे की सामग्री के साथ धातु का एक अतिरिक्त उच्च श्रेणी सुनिश्चित करती है। बाहरी तत्वों की बहुत कम सामग्री के साथ, वास्तविक तांबे के छिपे हुए गुणों को उच्च स्तर तक लाया जाता है। अभ्यास में ऑक्सीजन सामग्री आमतौर पर 0.03% की कुल अधिकतम अशुद्धता स्तर के साथ 0.001 से 0.003% होती है। ये विशेषताएँ उच्च [[ लचीलापन ]],( लचक ) उच्च [[ विद्युत चालकता ]] और तापीय चालकता, सामग्री की उच्च शक्ति # शक्ति की शर्तें, अच्छा [[ रेंगना (विरूपण) ]] प्रतिरोध, [[ वेल्डिंग ]] में आसानी और [[ अति उच्च वैक्यूम ]] के तहत कम [[ सापेक्ष अस्थिरता ]] हैं।<ref>{{cite web |url=http://www.anchorbronze.com/wroughtcopper.htm |title=Oxygen-Free Copper |publisher=Anchorbronze.com |access-date=2011-07-05}}</ref> | ||
== मानक == | == मानक == | ||
चालकता आमतौर पर 1913 के अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक के सापेक्ष निर्दिष्ट की जाती है {{val|5.8|e=7}}[[ सीमेंस (यूनिट) ]] / [[ मीटर ]]। | चालकता आमतौर पर 1913 के अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक के सापेक्ष निर्दिष्ट(सामान्य तौर पर) की जाती है {{val|5.8|e=7}}[[ सीमेंस (यूनिट) ]] / [[ मीटर ]]। शुद्धिकरण प्रक्रिया में प्रगति से अब OF और ETP कॉपर का उत्पादन होता है जो इस मानक के 101% को पूरा या उससे अधिक कर सकता है। (अल्ट्रा-प्योर कॉपर की चालकता होती है {{val|5.865|e=7}}S/m, 102.75% IACS।) ध्यान दें कि OF और ETP कॉपर्स में समान चालकता आवश्यकताएं होती हैं।<ref>{{cite web |url=http://www.copper.org/innovations/2006/09/high_cu_alloys.html#electr |title=Innovations in Copper: Electrical and Metallurgy of Copper: High Copper Alloys |publisher=Copper.org |date=2010-08-25 |access-date=2011-07-05 |archive-url=https://web.archive.org/web/20081010113414/http://www.copper.org/innovations/2006/09/high_cu_alloys.html#electr |archive-date=2008-10-10 |url-status=dead }}</ref> | ||
तांबे की चालकता में सुधार के लिए ऑक्सीजन एक लाभकारी भूमिका निभाता है। तांबे की [[ गलाने ]] की प्रक्रिया के दौरान, अशुद्धियों को साफ करने के लिए ऑक्सीजन को जानबूझकर पिघल में इंजेक्ट किया जाता है जो अन्यथा चालकता को कम कर देगा।<ref>{{cite web |url=http://www.copper.org/innovations/1997/12/wiremetallurgy.html#xgncntnt |title=Innovations : The Metallurgy of Copper Wire |publisher=Copper.org |date=2010-08-25 |access-date=2011-07-05 |archive-url=https://web.archive.org/web/20071127125029/http://www.copper.org/innovations/1997/12/wiremetallurgy.html#xgncntnt |archive-date=2007-11-27 |url-status=dead }}</ref> | तांबे की चालकता में सुधार के लिए ऑक्सीजन एक लाभकारी भूमिका निभाता है। तांबे की [[ गलाने ]] की प्रक्रिया के दौरान, अशुद्धियों को साफ करने के लिए ऑक्सीजन को जानबूझकर पिघल में इंजेक्ट किया जाता है जो अन्यथा चालकता को कम कर देगा।<ref>{{cite web |url=http://www.copper.org/innovations/1997/12/wiremetallurgy.html#xgncntnt |title=Innovations : The Metallurgy of Copper Wire |publisher=Copper.org |date=2010-08-25 |access-date=2011-07-05 |archive-url=https://web.archive.org/web/20071127125029/http://www.copper.org/innovations/1997/12/wiremetallurgy.html#xgncntnt |archive-date=2007-11-27 |url-status=dead }}</ref> | ||
कॉपर ग्रेन डेंसिटी को कम करके C10100 विनिर्देश के नीचे अशुद्धता के स्तर को प्राप्त करने की तुलना में [[ Czochralski प्रक्रिया ]] जैसी उन्नत | कॉपर ग्रेन डेंसिटी को कम करके C10100 विनिर्देश(विशेष विवरण) के नीचे अशुद्धता के स्तर को प्राप्त करने की तुलना में [[ Czochralski प्रक्रिया ]] जैसी उन्नत शुद्धिकरण प्रक्रियाएँ हैं।<ref>{{cite journal|last1=Tanner|first1=B. K.|title=The perfection of Czochralski grown copper single crystals|journal=Journal of Crystal Growth|date=1972|volume=16|issue=1|pages=86–87|doi=10.1016/0022-0248(72)90094-2}}</ref><ref>{{cite journal|last1=Akita|first1=H.|last2=Sampar|first2=D. S.|last3=Fiore|first3=N. F.|title=Substructure control by solidification control in Cu crystals|journal=Metallurgical Transactions|date=1973|volume=4|issue=6|pages=15935–15937|doi=10.1007/BF02668013|s2cid=137114174 }}</ref><ref>{{cite journal|last1=Kato|first1=Masanori|title=The production of ultrahigh-purity copper for advanced applications|journal=JOM|date=1995|volume=47|issue=12|pages=44–46|doi=10.1007/BF03221340|s2cid=138140372 }}</ref><ref>{{cite web|last1=Isohara|title=Characteristics of Our 9N-Cu(99.9999999%)|url=http://www.nmm.jx-group.co.jp/english/products/08_metal/pdf/surface_catalog01.pdf|website=ACROTEC High Purity Metals|access-date=21 May 2016}}</ref> इस समय, इन विशिष्ट कॉपर्स के लिए वर्तमान में कोई UNS/ASTM वर्गीकरण नहीं है और इन कॉपर्स की IACS चालकता आसानी से उपलब्ध नहीं है। | ||
== औद्योगिक अनुप्रयोग == | == औद्योगिक अनुप्रयोग == |
Revision as of 21:16, 28 January 2023
ऑक्सीजन -रहित ताँबा(ओएफसी) या ऑक्सीजन-मुक्त उच्च तापीय चालकता (ओएफएचसी) तांबा गढ़ा उच्च-चालकता तांबा मिले हुए धातुओं का एक समूह है जो ऑक्सीजन के स्तर को 0.001% या उससे कम करने के लिए तांबा शुद्ध #इलेक्ट्रोरिफाइनिंग (विद्युत्-परिष्करण) किया गया है।[1][2]
विशिष्टता
ऑक्सीजन रहित कॉपर आमतौर पर एएसटीएम/एकीकृत संख्या प्रणाली डेटाबेस के अनुसार निर्दिष्ट किया जाता है।[3] यूएनएस डेटाबेस में तांबे के तार और केबल की कई अलग-अलग रचनाएँ
सम्मिलित हैं। इनमें से तीन का विस्तृत रूप से उपयोग किया जाता है और दो को ऑक्सीजन रहित माना जाता है:
- C10100 - ऑक्सीजन मुक्त इलेक्ट्रॉनिक (ओएफई) के रूप में भी जाना जाता है। यह 0.0005% ऑक्सीजन सामग्री के साथ 99.99% शुद्ध तांबा है। यह कम से कम 101% अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक चालकता मूल्यांकन प्राप्त करता है। यह तांबा सावधानी से विनियमित(नियमित रूप से) ,ऑक्सीजन मुक्त वातावरण में अंतिम रूप में समाप्त हो गया है। चांदी (एजी) को ओएफई रासायनिक विनिर्देश (विशेष वर्णन) में अशुद्धता माना जाता है। यह यहां सूची युक्त तीन श्रेणी में सबसे महंगा भी है।
- C10200 - ऑक्सीजन रहित (OF) के रूप में भी जाना जाता है। जबकि OF को ऑक्सीजन मुक्त माना जाता है, इसकी चालकता मूल्यांकन नीचे दिए गए अधिक सामान्य ETP (ईटीपी) श्रेणी से बेहतर नहीं है। इसमें 0.001% ऑक्सीजन सामग्री, 99.95% शुद्धता और कम से कम 100% आईएसीएस (इण्डियन एसोसियेशन फॉर द कल्टिवेशन ऑफ साईन्स ) चालकता है। शुद्धता प्रतिशत के मतलब के लिए, चांदी (एजी) सामग्री को तांबे (सीयू) के रूप में गिना जाता है।
- C11000 - इलेक्ट्रोलाइटिक-टफ-पिच (ईटीपी) के रूप में भी जाना जाता है। यह सबसे आम तांबा है। यह बिजली प्रयोग के लिए व्यापक है। ईटीपी की न्यूनतम चालकता रेटिंग 100% आईएसीएस है और इसे 99.9% शुद्ध होना आवश्यक है। इसमें 0.02% से 0.04% ऑक्सीजन सामग्री (विशेष) है। आज बेचे जाने वाले अधिकतर ETP (ईटीपी)101% को पूरा करते हैं या उससे अधिक हैं। तांबे के साथ के रूप में, चांदी (एजी) सामग्री को शुद्धता उद्देश्यों के लिए तांबे (सीयू) के रूप में गिना जाता है।
ऑक्सीजन मुक्त उच्च तापीय चालकता
क्रायोजेनिक्स (अत्यधिक निम्न ताप उत्पन्न करने व उसके प्रयोगों का अध्ययन करना ) में ऑक्सीजन रहित उच्च तापीय चालकता (ओएफएचसी) तांबे के फैले हुए रूप से उपयोग किया जाता है। OFHC (ओएफएचसी) प्रसंस्करण (प्रॉसेसिंग) के दौरान शुद्ध ऑक्सीजन मुक्त धातु के संदूषण (संपर्क प्रभाव) को रोकने के लिए सावधानीपूर्वक नियंत्रित स्थितियों के अंतर्गत चुने गए शुद्ध कैथोड (इलेक्ट्रोड जिसमे सेल में करंट प्रवेश करता है ) और कास्टिंग के सीधे रूप में परिवर्तन द्वारा उत्पन्न किया जाता है। ओएफएचसी तांबे के उत्पादन की विधि 99.99% तांबे की सामग्री के साथ धातु का एक अतिरिक्त उच्च श्रेणी सुनिश्चित करती है। बाहरी तत्वों की बहुत कम सामग्री के साथ, वास्तविक तांबे के छिपे हुए गुणों को उच्च स्तर तक लाया जाता है। अभ्यास में ऑक्सीजन सामग्री आमतौर पर 0.03% की कुल अधिकतम अशुद्धता स्तर के साथ 0.001 से 0.003% होती है। ये विशेषताएँ उच्च लचीलापन ,( लचक ) उच्च विद्युत चालकता और तापीय चालकता, सामग्री की उच्च शक्ति # शक्ति की शर्तें, अच्छा रेंगना (विरूपण) प्रतिरोध, वेल्डिंग में आसानी और अति उच्च वैक्यूम के तहत कम सापेक्ष अस्थिरता हैं।[4]
मानक
चालकता आमतौर पर 1913 के अंतर्राष्ट्रीय एनीलेल्ड कॉपर मानक के सापेक्ष निर्दिष्ट(सामान्य तौर पर) की जाती है 5.8×107सीमेंस (यूनिट) / मीटर । शुद्धिकरण प्रक्रिया में प्रगति से अब OF और ETP कॉपर का उत्पादन होता है जो इस मानक के 101% को पूरा या उससे अधिक कर सकता है। (अल्ट्रा-प्योर कॉपर की चालकता होती है 5.865×107S/m, 102.75% IACS।) ध्यान दें कि OF और ETP कॉपर्स में समान चालकता आवश्यकताएं होती हैं।[5] तांबे की चालकता में सुधार के लिए ऑक्सीजन एक लाभकारी भूमिका निभाता है। तांबे की गलाने की प्रक्रिया के दौरान, अशुद्धियों को साफ करने के लिए ऑक्सीजन को जानबूझकर पिघल में इंजेक्ट किया जाता है जो अन्यथा चालकता को कम कर देगा।[6] कॉपर ग्रेन डेंसिटी को कम करके C10100 विनिर्देश(विशेष विवरण) के नीचे अशुद्धता के स्तर को प्राप्त करने की तुलना में Czochralski प्रक्रिया जैसी उन्नत शुद्धिकरण प्रक्रियाएँ हैं।[7][8][9][10] इस समय, इन विशिष्ट कॉपर्स के लिए वर्तमान में कोई UNS/ASTM वर्गीकरण नहीं है और इन कॉपर्स की IACS चालकता आसानी से उपलब्ध नहीं है।
औद्योगिक अनुप्रयोग
औद्योगिक अनुप्रयोगों के लिए, ऑक्सीजन रहित तांबे को इसकी विद्युत चालकता की तुलना में इसकी रासायनिक शुद्धता के लिए अधिक महत्व दिया जाता है। अर्धचालक और अतिचालकता घटकों के निर्माण के साथ-साथ कण त्वरक जैसे अन्य अति-उच्च वैक्यूम उपकरणों में प्लाज्मा जमाव (स्पटरिंग ) प्रक्रियाओं में ओएफ/ओएफई-ग्रेड तांबे का उपयोग किया जाता है। इनमें से किसी भी अनुप्रयोग में, ऑक्सीजन या अन्य अशुद्धियों के निकलने से स्थानीय वातावरण में अन्य सामग्रियों के साथ अवांछित रासायनिक प्रतिक्रिया हो सकती है।[11]
== होम ऑडियो == में प्रयोग करें
हाई-एंड वक्ता तार उद्योग ऑक्सीजन रहित तांबे का विपणन चालकता या अन्य विद्युत गुणों के रूप में करता है जो ऑडियो संकेत ट्रांसमिशन के लिए फायदेमंद माना जाता है। वास्तव में, सामान्य C11000 (ETP) और उच्च-लागत C10200 ऑक्सीजन-मुक्त (OF) कॉपर्स के लिए चालकता विनिर्देश समान हैं;[12] और इससे भी अधिक महंगे C10100 में केवल एक प्रतिशत उच्च चालकता है - ऑडियो अनुप्रयोगों में नगण्य।[12] ओएफसी फिर भी ऑडियो प्लेबैक सिस्टम और गृह सिनेमा में ऑडियो और वीडियो सिग्नल दोनों के लिए बेचा जाता है।[12]
ऑक्सीजन मुक्त फास्फोरस युक्त तांबा
गलाने की प्रक्रिया में फॉस्फोरस के अतिरिक्त डीऑक्सीडाइज़ किए गए कॉपर्स से उच्च-विद्युत-चालकता वाले कॉपर्स अलग होते हैं। ऑक्सीजन रहित फॉस्फोरस युक्त कॉपर (CuOFP) का उपयोग आमतौर पर संरचनात्मक और तापीय अनुप्रयोगों के लिए किया जाता है, जहाँ कॉपर सामग्री हाइड्रोजन उत्सर्जन या अधिक सटीक रूप से हाइड्रोजन उत्सर्जन#कॉपर पैदा करने के लिए पर्याप्त उच्च तापमान के अधीन होगी। उदाहरणों में वेल्डिंग/ब्रेज़िंग रॉड और उष्मा का आदान प्रदान करने वाला ट्यूबिंग शामिल हैं।[13] अशुद्धता (धातु मैट्रिक्स में मौजूद अवशिष्ट आक्साइड के रूप में) के रूप में ऑक्सीजन युक्त कॉपर मिश्र धातुओं को गर्म हाइड्रोजन के संपर्क में लाया जा सकता है। हाइड्रोजन तांबे के माध्यम से फैलता है और तांबे (I) ऑक्साइड | Cu के समावेशन के साथ प्रतिक्रिया करता है2ओ, एच बना रहा है2ओ (पानी ), जो तब अनाज की सीमाओं पर दबाव वाले पानी के भाप के बुलबुले बनाता है। यह प्रक्रिया अनाज को एक दूसरे से दूर करने के लिए मजबूर कर सकती है और इसे भाप उत्सर्जन के रूप में जाना जाता है (क्योंकि भाप का उत्पादन होता है, इसलिए नहीं कि भाप के संपर्क में आने से समस्या होती है)।
स्वीडन और फ़िनलैंड में विकसित KBS-3 अवधारणा में क्रिस्टलीय रॉक संरचनाओं में उच्च-स्तरीय रेडियोधर्मी कचरे के निपटान के लिए खर्च किए गए परमाणु ईंधन के ओवरपैक के लिए CuOFP को संक्षारण प्रतिरोधी सामग्री के रूप में चुना गया है।
यह भी देखें
- तांबे के तार और केबल
संदर्भ
- ↑ "Innovations: Introduction to Copper: Types of Copper". Copper.org. 2010-08-25. Archived from the original on 2007-11-02. Retrieved 2011-07-05.
- ↑ "ASTM Standard Designation for Wrought and Cast Copper and Copper Alloys". Resources: Standards & Properties. Copper.org. 2010-08-25. Retrieved 2011-07-05.
- ↑ "ASTM Standard Designation for Wrought and Cast Copper and Copper Alloys: Introduction". Copper.org. 2010-08-25. Retrieved 2011-07-05.
- ↑ "Oxygen-Free Copper". Anchorbronze.com. Retrieved 2011-07-05.
- ↑ "Innovations in Copper: Electrical and Metallurgy of Copper: High Copper Alloys". Copper.org. 2010-08-25. Archived from the original on 2008-10-10. Retrieved 2011-07-05.
- ↑ "Innovations : The Metallurgy of Copper Wire". Copper.org. 2010-08-25. Archived from the original on 2007-11-27. Retrieved 2011-07-05.
- ↑ Tanner, B. K. (1972). "The perfection of Czochralski grown copper single crystals". Journal of Crystal Growth. 16 (1): 86–87. doi:10.1016/0022-0248(72)90094-2.
- ↑ Akita, H.; Sampar, D. S.; Fiore, N. F. (1973). "Substructure control by solidification control in Cu crystals". Metallurgical Transactions. 4 (6): 15935–15937. doi:10.1007/BF02668013. S2CID 137114174.
- ↑ Kato, Masanori (1995). "The production of ultrahigh-purity copper for advanced applications". JOM. 47 (12): 44–46. doi:10.1007/BF03221340. S2CID 138140372.
- ↑ Isohara. "Characteristics of Our 9N-Cu(99.9999999%)" (PDF). ACROTEC High Purity Metals. Retrieved 2016-05-21.
- ↑ "Archived copy" (PDF). Archived from the original (PDF) on 2007-09-29. Retrieved 2007-05-26.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ 12.0 12.1 12.2 Russell, Roger. "Speaker Wire – A History". Retrieved 2011-08-25.
- ↑ "High Conductivity Copper for Electrical Engineering". Copper Development Association. 2016-02-01. Retrieved 2016-02-11.