आनुपातिक नेविगेशन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[image:Navigation Constant illustration.png|thumb|right|उदाहरण के लिए, यदि दृष्टि रेखा उत्तर से पूर्व की ओर धीरे-धीरे घूमती है, तो | [[image:Navigation Constant illustration.png|thumb|right|उदाहरण के लिए, यदि दृष्टि रेखा उत्तर से पूर्व की ओर धीरे-धीरे घूमती है, तो प्रक्षेपास्त्र को LOS-दर की तुलना में एक निश्चित कारक द्वारा दाईं ओर मुड़ना चाहिए। यह कारक एन. | ||
[[File:proportional_navigation_example.svg|thumb|एक | [[File:proportional_navigation_example.svg|thumb|एक प्रक्षेपास्त्र (नीला) एक लक्ष्य (लाल) को लगातार असर (हरा) बनाए रखकर इंटरसेप्ट करती है]]आनुपातिक नेविगेशन(पथ प्रदर्शन) (पीएन या प्रो-नेव के रूप में भी जाना जाता है) एक मार्गदर्शन, पथ प्रदर्शन और नियंत्रण ([[आनुपातिक नियंत्रण]] के अनुरूप) है जो किसी न किसी रूप में उपयोग किया जाता है या अधिकांश होमिंग वायु लक्ष्य [[Index.php?title=मिसाइलों(प्रक्षेपास्त्र)|प्रक्षेपास्त्रों(प्रक्षेपास्त्र)]] द्वारा किया जाता है।<ref>Yanushevsky, page 3.</ref> यह इस तथ्य पर आधारित है कि दो वाहन टकराव के रास्ते पर हैं जब उनकी सीधी [[Index.php?title=दर्शारेखा(लाइन-ऑफ़-विज़न) (मिसाइल)|दर्शारेखा(लाइन-ऑफ़-विज़न) (प्रक्षेपास्त्र)]] | दर्शारेखा दिशा नहीं बदलती है क्योंकि रेंज बंद हो जाती है। पीएन निर्देश देता है कि प्रक्षेपास्त्र वेग सदिश को दृष्टि की रेखा (लाइन-ऑफ़-साइट रेट या एलओएस-रेट) की रोटेशन दर के आनुपातिक दर पर और उसी दिशा में घूमना चाहिए। | ||
: <math> a_n = N\dot \lambda V</math> | : <math> a_n = N\dot \lambda V</math> | ||
कहाँ <math> a_n</math> प्रक्षेपास्त्र के तात्कालिक वेग सदिश के लंबवत त्वरण है, <math>N</math> समानुपाती स्थिरांक है जिसका आम तौर पर पूर्णांक मान 3-5 (आयाम रहित) होता है, <math>\dot \lambda</math> दृष्टि दर की रेखा है, और V समापन वेग है। | कहाँ <math> a_n</math> प्रक्षेपास्त्र के तात्कालिक वेग सदिश के लंबवत त्वरण है, <math>N</math> समानुपाती स्थिरांक है जिसका आम तौर पर पूर्णांक मान 3-5 (आयाम रहित) होता है, <math>\dot \lambda</math> दृष्टि दर की रेखा है, और V समापन वेग है। | ||
चूंकि दृष्टि की रेखा सामान्य रूप से प्रक्षेपास्त्र वेग सदिश के साथ सह-रैखिक नहीं है, इसलिए लागू त्वरण आवश्यक रूप से | चूंकि दृष्टि की रेखा सामान्य रूप से प्रक्षेपास्त्र वेग सदिश के साथ सह-रैखिक नहीं है, इसलिए लागू त्वरण आवश्यक रूप से प्रक्षेपास्त्र गतिज ऊर्जा को संरक्षित नहीं करता है। व्यवहार में, इंजन उपरोधन(थ्रॉटलिंग) क्षमता के अभाव में, इस प्रकार का नियंत्रण संभव नहीं हो सकता है। | ||
तात्कालिक वेग अंतर के सामान्य त्वरण का उपयोग करके आनुपातिक पथ प्रदर्शन भी प्राप्त किया जा सकता है: | तात्कालिक वेग अंतर के सामान्य त्वरण का उपयोग करके आनुपातिक पथ प्रदर्शन भी प्राप्त किया जा सकता है: | ||
: <math> \vec a = N\vec V_r \times \vec \Omega</math> | : <math> \vec a = N\vec V_r \times \vec \Omega</math> | ||
कहाँ पे <math>\Omega</math> कोणीय वेग है # दृष्टि की रेखा के फ्रेम के | कहाँ पे <math>\Omega</math> कोणीय वेग है # दृष्टि की रेखा के फ्रेम के सदिश से घटक: | ||
: <math> \vec \Omega = \frac {\vec R \times \vec V_r }{ \vec R \cdot \vec R } </math> | : <math> \vec \Omega = \frac {\vec R \times \vec V_r }{ \vec R \cdot \vec R } </math> | ||
और <math>\vec V_r = \vec V_t - \vec V_m</math> | और <math>\vec V_r = \vec V_t - \vec V_m</math> प्रक्षेपास्त्र के सापेक्ष लक्ष्य वेग है और <math>\vec R = \vec R_t- \vec R_m</math> प्रक्षेपास्त्र से लक्ष्य तक की सीमा है। यह त्वरण वेग अंतर सदिश पर स्पष्ट रूप से निर्भर करता है, जिसे अभ्यास में प्राप्त करना कठिन हो सकता है। इसके विपरीत, आने वाले भावों में, निर्भरता केवल दृष्टि की रेखा के परिवर्तन और समापन वेग के परिमाण पर होती है। यदि दृष्टि की तात्कालिक रेखा के सामान्य त्वरण वांछित है (जैसा कि प्रारंभिक विवरण में है), तो निम्नलिखित अभिव्यक्ति मान्य है: | ||
: <math> \vec a = -N|\vec V_r|\frac{\vec R}{|\vec R|} \times \vec \Omega</math> | : <math> \vec a = -N|\vec V_r|\frac{\vec R}{|\vec R|} \times \vec \Omega</math> | ||
यदि ऊर्जा संरक्षण नियंत्रण की आवश्यकता है (जैसा कि केवल नियंत्रण सतहों का उपयोग करते समय होता है), निम्नलिखित त्वरण, जो | यदि ऊर्जा संरक्षण नियंत्रण की आवश्यकता है (जैसा कि केवल नियंत्रण सतहों का उपयोग करते समय होता है), निम्नलिखित त्वरण, जो प्रक्षेपास्त्र वेग के लिए लंबकोणीय(ऑर्थोगोनल) है, का उपयोग किया जा सकता है: | ||
: <math> \vec a = -N|\vec V_r|\frac{\vec V_m}{|\vec V_m|} \times \vec \Omega</math> | : <math> \vec a = -N|\vec V_r|\frac{\vec V_m}{|\vec V_m|} \times \vec \Omega</math> | ||
इस मार्गदर्शन कानून का एक सरल हार्डवेयर कार्यान्वयन प्रारंभिक AIM-9 सिडविंडर | इस मार्गदर्शन कानून का एक सरल यंत्रोपादान(हार्डवेयर) कार्यान्वयन प्रारंभिक AIM-9 सिडविंडर प्रक्षेपास्त्र में पाया जा सकता है। ये प्रक्षेपास्त्र साधक के रूप में तेजी से घूमने वाले [[परवलयिक दर्पण]] का उपयोग करती हैं। सरल इलेक्ट्रॉनिक्स साधक के अपने लक्ष्य (एक [[अवरक्त]] स्रोत) के साथ दिशात्मक त्रुटि का पता लगाता है, और इस द्विघूर्णा(गिंबल) दर्पण को लक्ष्य पर इंगित रखने के लिए एक क्षण लागू करता है। चूँकि दर्पण वास्तव में एक [[Index.php?title=जाइरोस्कोप(घूर्णाक्षस्थापी)|जाइरोस्कोप(घूर्णाक्षस्थापी)]] है, यह उसी दिशा में इंगित करता रहेगा यदि कोई बाहरी बल या क्षण लागू नहीं किया जाता है, भले ही प्रक्षेपास्त्र की गति कुछ भी हो। लक्ष्य पर इंगित रखने के दौरान दर्पण पर लगाए गए [[Index.php?title=वोल्टेज(विद्युत संचालन शक्ति)|वोल्टेज(विद्युत संचालन शक्ति)]] का उपयोग तब भी किया जाता है (हालांकि प्रवर्धित) प्रक्षेपास्त्र को चलाने वाली नियंत्रण सतहों को विक्षेपित करने के लिए, जिससे प्रक्षेपास्त्र वेग सदिश आवर्तन को दृष्टि आवर्तन की रेखा के समानुपाती बना दिया जाता है। हालांकि इसका परिणाम आवर्तन दर नहीं होता है जो हमेशा एलओएस-दर (जिसके लिए निरंतर वायु वेग की आवश्यकता होती है) के समानुपाती होती है, यह कार्यान्वयन समान रूप से प्रभावी है। | ||
आनुपातिक | आनुपातिक पथ प्रदर्शन का आधार पहली बार समुद्र में खोजा गया था, और जहाजों पर नाविकों द्वारा टकराव से बचने के लिए इसका इस्तेमाल किया गया था। आमतौर पर [[निरंतर असर घटती सीमा]] (CBDR) के रूप में संदर्भित, यह अवधारणा ठग अधिकारियों (किसी भी समय जहाज को मार्गनिर्देशन करने के नियंत्रण में व्यक्ति) के लिए बहुत उपयोगी साबित होती रहती है क्योंकि CBDR के परिणामस्वरूप टक्कर या निकट चूक होगी यदि कार्रवाई की जाती है। शामिल दो जहाजों में से एक द्वारा नहीं लिया गया। आचरण में बदलाव (दिक्सूचक दृष्टि द्वारा प्राप्त) होने तक बस पाठ्यक्रम में बदलाव, टकराव से बचने का कुछ आश्वासन प्रदान करेगा, स्पष्ट रूप से सुस्पष्ट नहीं: पाठ्यक्रम परिवर्तन करने वाले जहाज के चालाक अधिकारी को लगातार असर की निगरानी करनी चाहिए, ऐसा न हो कि दूसरा जहाज ऐसा करे वैसा ही। मामूली परिवर्तन के बजाय महत्वपूर्ण पाठ्यक्रम परिवर्तन, विवेकपूर्ण है। समुद्र में टकराव को रोकने के लिए अंतर्राष्ट्रीय नियम निर्धारित करते हैं कि किस जहाज को रास्ता देना चाहिए लेकिन वे निश्चित रूप से इस बात की कोई गारंटी नहीं देते हैं कि उस जहाज द्वारा कार्रवाई की जाएगी। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 00:19, 1 February 2023
[[image:Navigation Constant illustration.png|thumb|right|उदाहरण के लिए, यदि दृष्टि रेखा उत्तर से पूर्व की ओर धीरे-धीरे घूमती है, तो प्रक्षेपास्त्र को LOS-दर की तुलना में एक निश्चित कारक द्वारा दाईं ओर मुड़ना चाहिए। यह कारक एन.
आनुपातिक नेविगेशन(पथ प्रदर्शन) (पीएन या प्रो-नेव के रूप में भी जाना जाता है) एक मार्गदर्शन, पथ प्रदर्शन और नियंत्रण (आनुपातिक नियंत्रण के अनुरूप) है जो किसी न किसी रूप में उपयोग किया जाता है या अधिकांश होमिंग वायु लक्ष्य प्रक्षेपास्त्रों(प्रक्षेपास्त्र) द्वारा किया जाता है।[1] यह इस तथ्य पर आधारित है कि दो वाहन टकराव के रास्ते पर हैं जब उनकी सीधी दर्शारेखा(लाइन-ऑफ़-विज़न) (प्रक्षेपास्त्र) | दर्शारेखा दिशा नहीं बदलती है क्योंकि रेंज बंद हो जाती है। पीएन निर्देश देता है कि प्रक्षेपास्त्र वेग सदिश को दृष्टि की रेखा (लाइन-ऑफ़-साइट रेट या एलओएस-रेट) की रोटेशन दर के आनुपातिक दर पर और उसी दिशा में घूमना चाहिए।
कहाँ प्रक्षेपास्त्र के तात्कालिक वेग सदिश के लंबवत त्वरण है, समानुपाती स्थिरांक है जिसका आम तौर पर पूर्णांक मान 3-5 (आयाम रहित) होता है, दृष्टि दर की रेखा है, और V समापन वेग है।
चूंकि दृष्टि की रेखा सामान्य रूप से प्रक्षेपास्त्र वेग सदिश के साथ सह-रैखिक नहीं है, इसलिए लागू त्वरण आवश्यक रूप से प्रक्षेपास्त्र गतिज ऊर्जा को संरक्षित नहीं करता है। व्यवहार में, इंजन उपरोधन(थ्रॉटलिंग) क्षमता के अभाव में, इस प्रकार का नियंत्रण संभव नहीं हो सकता है।
तात्कालिक वेग अंतर के सामान्य त्वरण का उपयोग करके आनुपातिक पथ प्रदर्शन भी प्राप्त किया जा सकता है:
कहाँ पे कोणीय वेग है # दृष्टि की रेखा के फ्रेम के सदिश से घटक:
और प्रक्षेपास्त्र के सापेक्ष लक्ष्य वेग है और प्रक्षेपास्त्र से लक्ष्य तक की सीमा है। यह त्वरण वेग अंतर सदिश पर स्पष्ट रूप से निर्भर करता है, जिसे अभ्यास में प्राप्त करना कठिन हो सकता है। इसके विपरीत, आने वाले भावों में, निर्भरता केवल दृष्टि की रेखा के परिवर्तन और समापन वेग के परिमाण पर होती है। यदि दृष्टि की तात्कालिक रेखा के सामान्य त्वरण वांछित है (जैसा कि प्रारंभिक विवरण में है), तो निम्नलिखित अभिव्यक्ति मान्य है:
यदि ऊर्जा संरक्षण नियंत्रण की आवश्यकता है (जैसा कि केवल नियंत्रण सतहों का उपयोग करते समय होता है), निम्नलिखित त्वरण, जो प्रक्षेपास्त्र वेग के लिए लंबकोणीय(ऑर्थोगोनल) है, का उपयोग किया जा सकता है:
इस मार्गदर्शन कानून का एक सरल यंत्रोपादान(हार्डवेयर) कार्यान्वयन प्रारंभिक AIM-9 सिडविंडर प्रक्षेपास्त्र में पाया जा सकता है। ये प्रक्षेपास्त्र साधक के रूप में तेजी से घूमने वाले परवलयिक दर्पण का उपयोग करती हैं। सरल इलेक्ट्रॉनिक्स साधक के अपने लक्ष्य (एक अवरक्त स्रोत) के साथ दिशात्मक त्रुटि का पता लगाता है, और इस द्विघूर्णा(गिंबल) दर्पण को लक्ष्य पर इंगित रखने के लिए एक क्षण लागू करता है। चूँकि दर्पण वास्तव में एक जाइरोस्कोप(घूर्णाक्षस्थापी) है, यह उसी दिशा में इंगित करता रहेगा यदि कोई बाहरी बल या क्षण लागू नहीं किया जाता है, भले ही प्रक्षेपास्त्र की गति कुछ भी हो। लक्ष्य पर इंगित रखने के दौरान दर्पण पर लगाए गए वोल्टेज(विद्युत संचालन शक्ति) का उपयोग तब भी किया जाता है (हालांकि प्रवर्धित) प्रक्षेपास्त्र को चलाने वाली नियंत्रण सतहों को विक्षेपित करने के लिए, जिससे प्रक्षेपास्त्र वेग सदिश आवर्तन को दृष्टि आवर्तन की रेखा के समानुपाती बना दिया जाता है। हालांकि इसका परिणाम आवर्तन दर नहीं होता है जो हमेशा एलओएस-दर (जिसके लिए निरंतर वायु वेग की आवश्यकता होती है) के समानुपाती होती है, यह कार्यान्वयन समान रूप से प्रभावी है।
आनुपातिक पथ प्रदर्शन का आधार पहली बार समुद्र में खोजा गया था, और जहाजों पर नाविकों द्वारा टकराव से बचने के लिए इसका इस्तेमाल किया गया था। आमतौर पर निरंतर असर घटती सीमा (CBDR) के रूप में संदर्भित, यह अवधारणा ठग अधिकारियों (किसी भी समय जहाज को मार्गनिर्देशन करने के नियंत्रण में व्यक्ति) के लिए बहुत उपयोगी साबित होती रहती है क्योंकि CBDR के परिणामस्वरूप टक्कर या निकट चूक होगी यदि कार्रवाई की जाती है। शामिल दो जहाजों में से एक द्वारा नहीं लिया गया। आचरण में बदलाव (दिक्सूचक दृष्टि द्वारा प्राप्त) होने तक बस पाठ्यक्रम में बदलाव, टकराव से बचने का कुछ आश्वासन प्रदान करेगा, स्पष्ट रूप से सुस्पष्ट नहीं: पाठ्यक्रम परिवर्तन करने वाले जहाज के चालाक अधिकारी को लगातार असर की निगरानी करनी चाहिए, ऐसा न हो कि दूसरा जहाज ऐसा करे वैसा ही। मामूली परिवर्तन के बजाय महत्वपूर्ण पाठ्यक्रम परिवर्तन, विवेकपूर्ण है। समुद्र में टकराव को रोकने के लिए अंतर्राष्ट्रीय नियम निर्धारित करते हैं कि किस जहाज को रास्ता देना चाहिए लेकिन वे निश्चित रूप से इस बात की कोई गारंटी नहीं देते हैं कि उस जहाज द्वारा कार्रवाई की जाएगी।
यह भी देखें
ग्रन्थसूची
- Yanushevsky, Rafael. Modern Missile Guidance. CRC Press, 2007. ISBN 978-1420062267.
संदर्भ
- ↑ Yanushevsky, page 3.