एनएमओएस तर्क: Difference between revisions

From Vigyanwiki
m (23 revisions imported from alpha:एनएमओएस_तर्क)
(No difference)

Revision as of 17:10, 8 February 2023

एन-टाइप मेटल-ऑक्साइड-अर्धचालक लॉजिक एन-टाइप अर्धचालक एन-टाइप (-) एमओएसएफईटी (मेटल-ऑक्साइड-अर्धचालक फील्ड इफ़ेक्ट ट्रांजिस्टर) का उपयोग तर्क द्वार और अन्य डिजिटल सर्किट को प्रचलित करने के लिए करता है। ये एनएमओएस ट्रांजिस्टर पी-प्रकार अर्धचालक, पी-टाइप ट्रांजिस्टर बॉडी में इनवर्जन लेयर (अर्धचालक) बनाकर काम करते हैं। यह उलटा परत, जिसे एन-चैनल कहा जाता है, एन-टाइप अर्धचालक | एन-टाइप स्रोत और नाली टर्मिनलों के बीच इलेक्ट्रॉन का संचालन कर सकता है। तीसरे टर्मिनल, जिसे गेट कहा जाता है, पर वोल्टेज लगाकर एन-चैनल बनाया जाता है। अन्य एम्ओएसऍफ़इटीs की तरह, nMOS ट्रांजिस्टर के संचालन के चार तरीके हैं: कट-ऑफ (या सबथ्रेशोल्ड), ट्रायोड, संतृप्ति (कभी-कभी सक्रिय कहा जाता है), और वेग संतृप्ति है।

कई वर्षों के लिए, एनएमओएस सर्किट तुलनात्मक सीएमओएस तर्क और पीएमओएस तर्क की समानता में काफी तेज थे, जिन्हें बहुत धीमी पी-चैनल ट्रांजिस्टर का उपयोग करना पड़ा। सीएमओएस की समानता में एनएमओएस का निर्माण करना भी आसान था, क्योंकि बाद वाले को पी-सब्सट्रेट पर विशेष एन-वेल्स में पी-चैनल ट्रांजिस्टर प्रचलित करना पड़ता है। एनएम्ओएस (और अधिकांश अन्य लॉजिक परिवार) के साथ प्रमुख दोष यह है कि डीसी करंट को लॉजिक गेट के माध्यम से प्रवाहित होना चाहिए, भले ही आउटपुट स्थिर अवस्था में हो (एनएम्ओएस की स्थतियो में कम)। इसका तात्पर्य है कि सर्किट स्विचिंग न होने पर भी स्टेटिक पावर अपव्यय, अर्थात पावर ड्रेन।

इसके अतिरिक्त, डायोड-ट्रांजिस्टर लॉजिक, ट्रांजिस्टर-ट्रांजिस्टर लॉजिक, एमिटर-युग्मित लॉजिक आदि की तरह, असममित इनपुट लॉजिक स्तर एनएम्ओएस और पीएम्ओएस सर्किट को सीएम्ओएस की समानता में शोर के प्रति अधिक संवेदनशील बनाते हैं। इन हानियो के कारण सीएम्ओएस लॉजिक ने माइक्रोप्रोसेसर जैसे अधिकांश हाई-स्पीड डिजिटल सर्किट में इनमें से अधिकांश प्रकारों को हटा दिया है, इस तथ्य के अतिरिक्त कि सीएम्ओएस द्विध्रुवी ट्रांजिस्टर के साथ निर्मित लॉजिक गेट्स की समानता में मूल रूप से बहुत धीमा था।

सिंहावलोकन

एमओएस धातु-ऑक्साइड-अर्धचालक के लिए खड़ा है, जिस तरह से एमओएस-ट्रांजिस्टर मूल रूप से 1970 के दशक से पहले मुख्य रूप से धातु के द्वार, सामान्यतः अल्युमीनियम के साथ बनाए गए थे। 1970 के बाद से, चूंकि, अधिकांश एमओएस सर्किटों ने पॉलीक्रिस्टलाइन सिलिकॉन से बने स्व-संरेखित गेट का उपयोग किया है, जो फेयरचाइल्ड अर्धचालक में फेडेरिको फागिन द्वारा पहली बार विकसित की गई तकनीक है। इन सिलिकॉन गेट्स का उपयोग अभी भी अधिकांश प्रकार के एमओएसएफईटी आधारित एकीकृत सर्किट में किया जाता है, चूंकि मेटल गेट्स (एल्यूमीनियम या ताँबा ) कुछ प्रकार के हाई स्पीड सर्किट जैसे उच्च प्रदर्शन माइक्रोप्रोसेसरों के लिए 2000 के दशक के प्रारंभ में फिर से दिखने लगे।

एम्ओएसऍफ़इटी s n-टाइप वृद्धि मोड ट्रांजिस्टर हैं, जो लॉजिक गेट आउटपुट और नेगेटिव सप्लाई वोल्टेज (सामान्यतः ग्राउंड) के बीच तथाकथित पुल-डाउन नेटवर्क (पीएनडी) में व्यवस्थित होते हैं। रोकनेवाला ऊपर खींचो (अर्थात लोड जिसे रेसिस्टर के रूप में माना जा सकता है, नीचे देखें) को पॉजिटिव सप्लाई वोल्टेज और प्रत्येक लॉजिक गेट आउटपुट के बीच रखा जाता है। लॉजिक गेट इन्वर्टर सहित कोई भी लॉजिक गेट, समानांतर और/या श्रृंखला सर्किट के नेटवर्क को डिजाइन करके कार्यान्वित किया जा सकता है, जैसे कि यदि बूलियन डेटा प्रकार इनपुट मानों के निश्चित संयोजन के लिए वांछित आउटपुट बूलियन तर्क (या बूलियन लॉजिक) है ), पीडीएन सक्रिय होगा, जिसका अर्थ है कि कम से कम ट्रांजिस्टर नकारात्मक आपूर्ति और आउटपुट के बीच वर्तमान पथ की अनुमति दे रहा है। यह लोड पर वोल्टेज ड्रॉप का कारण बनता है, और इस प्रकार आउटपुट पर कम वोल्टेज, शून्य का प्रतिनिधित्व करता है।

आर-खींचा गया सर्किट उल्टे एनओआर गेट की तरह काम करता है जो GND से बाहर निकल जाता है।

एक उदाहरण के रूप में, यहाँ तार्किक एनओआर गेट है जिसे योजनाबद्ध एनएम्ओएस में प्रचलित किया गया है। यदि इनपुट ए या इनपुट बी उच्च है (लॉजिक 1, = ट्रू), संबंधित एमओएस ट्रांजिस्टर आउटपुट और नकारात्मक आपूर्ति के बीच बहुत कम प्रतिरोध के रूप में कार्य करता है, जिससे आउटपुट कम हो जाता है (तर्क 0, = गलत)। जब ए और बी दोनों उच्च होते हैं, तो दोनों ट्रांजिस्टर प्रवाहकीय होते हैं, जो जमीन पर कम प्रतिरोध पथ बनाते हैं। एकमात्र स्थति जहां आउटपुट उच्च होता है, जब दोनों ट्रांजिस्टर बंद होते हैं, जो तब होता है जब ए और बी दोनों कम होते हैं, इस प्रकार एनओआर गेट की सत्य तालिका को संतुष्ट करते हैं:

बी ए एनओआर बी
0 0 1
0 1 0
1 0 0
1 1 0

एक एमओएसएफईटी को प्रतिरोधी के रूप में संचालित करने के लिए बनाया जा सकता है, इसलिए पूरे सर्किट को एन-चैनल एमओएसएफईटी के साथ ही बनाया जा सकता है। एनएम्ओएस परिपथ निम्न से उच्च की ओर संक्रमण के लिए धीमे होते हैं। उच्च से निम्न में संक्रमण करते समय, ट्रांजिस्टर कम प्रतिरोध प्रदान करते हैं, और आउटपुट पर कैपेसिटिव चार्ज बहुत तेज़ी से दूर हो जाता है (बहुत कम अवरोधक के माध्यम से संधारित्र को निर्वहन करने के समान)। किन्तु आउटपुट और सकारात्मक आपूर्ति रेल के बीच प्रतिरोध बहुत अधिक है, इसलिए निम्न से उच्च संक्रमण में अधिक समय लगता है (उच्च मूल्य अवरोधक के माध्यम से संधारित्र को चार्ज करने के समान)। कम मूल्य के प्रतिरोधक का उपयोग करने से प्रक्रिया में तेजी आएगी किन्तु स्थैतिक बिजली अपव्यय भी बढ़ेगा। चूंकि, फाटकों को तेजी से बनाने का श्रेष्ठ (और सबसे आम) उपाय है कमी-लोड एनएम्ओएस तर्क | एम्ओएसऍफ़इटी के अतिरिक्त डिप्लेशन-मोड ट्रांजिस्टर का उपयोग करना | एन्हांसमेंट-मोड ट्रांजिस्टर लोड के रूप में। इसे डिप्लेशन-लोड एनएम्ओएस लॉजिक कहा जाता है।

इतिहास

एम्ओएसऍफ़इटी का आविष्कार 1959 में बेल लैब्स में मिस्र के इंजीनियर मोहम्मद एम. अटाला और कोरियाई इंजीनियर डॉन कहंग द्वारा किया गया था और 1960 में प्रदर्शित किया गया था।[1] अर्धचालक उपकरण पीएम्ओएस और एनएम्ओएस दोनों उपकरणों का 20 µm प्रक्रिया के साथ निर्माण | 20 माइक्रोन प्रक्रिया। चूंकि, एनएम्ओएस उपकरण अव्यावहारिक थे, और केवल पीएम्ओएस प्रकार व्यावहारिक उपकरण थे।[2]

1965 में, चिह-तांग साह , ओटो लिस्टिको और ए.एस. फेयरचाइल्ड अर्धचालक में ग्रोव ने 10 µm प्रक्रिया के बीच चैनल लंबाई के साथ कई एनएम्ओएस उपकरणों का निर्माण कियाI 8 माइक्रोन और 65 सुक्ष्ममापी।[3] आईबीएम में डेल एल. क्रिचलो और रॉबर्ट एच. डेनार्ड ने भी 1960 के दशक में एनएमओएस उपकरणों का निर्माण किया। पहला आईबीएम् एनएम्ओएस उत्पाद 1 के साथ मेमोरी चिप था kibibit डेटा और 50–100 nanosecond पहूंच समय , जिसने 1970 के दशक के आरंभ में बड़े पैमाने पर निर्माण में प्रवेश किया। इसने 1970 के दशक में पहले द्विध्रुवी जंक्शन ट्रांजिस्टर और फेराइट-कोर मेमोरी प्रौद्योगिकियों की जगह एमओएस अर्धचालक मेमोरी का नेतृत्व किया।[4]

1970 के दशक के आरंभ में माइक्रोप्रोसेसर कालक्रम पीएमओएस प्रोसेसर थे, जो प्रारंभ में प्रारंभिक माइक्रोप्रोसेसर उद्योग पर हावी थे।[5] 1973 में, एनइसी का μCOM-4 प्रारंभिक एनएम्ओएस माइक्रोप्रोसेसर था, जिसे एनइसी बड़े पैमाने पर एकीकरण टीम द्वारा निर्मित किया गया था, जिसमें सोहिची सुजुकी के नेतृत्व में पांच शोधकर्ता सम्मलित थे।[6][7] 1970 के दशक के अंत तक, एनएम्ओएस माइक्रोप्रोसेसरों ने पीएम्ओएस प्रोसेसरों को पीछे छोड़ दिया था।[5] सीएम्ओएस माइक्रोप्रोसेसरों को 1975 में प्रस्तुत किया गया था।[5][8][9] चूंकि, 1980 के दशक तक सीएम्ओएस प्रोसेसर हावी नहीं हुए थे।[5]

सीएम्ओएस प्रारंभ में एनएम्ओएस तर्क से धीमा था, इस प्रकार 1970 के दशक में कंप्यूटर के लिए एनएम्ओएस का अधिक व्यापक रूप से उपयोग किया जाने लगा।[10] इंटेल 5101 (1 किबिबिट स्टेटिक रैंडम-एक्सेस मेमोरी ) सीएम्ओएस मेमोरी चिप (1974) का एक्सेस टाइम 800 था नैनोसेकंड,[11][12] जबकि उस समय की सबसे तेज़ एनएम्ओएस चिप, Intel 2147 (4 kb एसआरएएम्) एचएम्ओएस मेमोरी चिप (1976), का एक्सेस टाइम 55/70 था एनएस।[10][12] 1978 में, तोशीकी मसुहारा के नेतृत्व में हिताची अनुसंधान दल ने अपने HM6147 (4 kb एसआरएएम्) मेमोरी चिप, 3 µm प्रक्रिया के साथ निर्मित।[10][13] हिताची HM6147 चिप प्रदर्शन (55/70 ns एक्सेस) Intel 2147 एचएम्ओएस चिप, जबकि HM6147 ने भी काफी कम बिजली की खपत की (15 मिलीएम्प ) 2147 (110 एमए)। तुलनीय प्रदर्शन और बहुत कम बिजली की खपत के साथ, ट्विन-वेल सीएमओएस प्रक्रिया ने अंततः 1980 के दशक में कंप्यूटरों के लिए सबसे आम अर्धचालक निर्माण प्रक्रिया के रूप में एनएमओएस को पीछे छोड़ दिया।[10]

1980 के दशक में, सीएम्ओएस माइक्रोप्रोसेसरों ने एनएम्ओएस माइक्रोप्रोसेसरों को पीछे छोड़ दिया।[5]

यह भी देखें

  • पीएमओएस तर्क
  • डिप्लेशन-लोड एनएम्ओएस लॉजिक (एचएम्ओएस (हाई डेंसिटी, शॉर्ट चैनल एम्ओएस), एचएम्ओएस -II, एचएम्ओएस -III, आदि कहलाने वाली प्रक्रियाओं सहित, डिप्लेशन-लोड एनएम्ओएस लॉजिक सर्किट के लिए उच्च प्रदर्शन निर्माण प्रक्रियाओं का परिवार जो इंटेल द्वारा विकसित किया गया था 1970 के दशक के अंत में और कई वर्षों तक उपयोग किया गया। कई सीएम्ओएस निर्माण प्रक्रियाएँ जैसे सीएचएम्ओएस , सीएचएम्ओएस -II, सीएचएम्ओएस -III, आदि, इन एनएम्ओएस -प्रक्रियाओं से सीधे उतरीं।

संदर्भ

  1. "1960 - मेटल ऑक्साइड सेमीकंडक्टर (MOS) ट्रांजिस्टर का प्रदर्शन". The Silicon Engine. Computer History Museum.
  2. Lojek, Bo (2007). सेमीकंडक्टर इंजीनियरिंग का इतिहास. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  3. Sah, Chih-Tang; Leistiko, Otto; Grove, A. S. (May 1965). "थर्मल ऑक्सीकृत सिलिकॉन सतहों पर उलटा परतों में इलेक्ट्रॉन और छिद्र गतिशीलता". IEEE Transactions on Electron Devices. 12 (5): 248–254. Bibcode:1965ITED...12..248L. doi:10.1109/T-ED.1965.15489.
  4. Critchlow, D. L. (2007). "MOSFET स्केलिंग पर स्मरण". IEEE Solid-State Circuits Society Newsletter. 12 (1): 19–22. doi:10.1109/N-SSC.2007.4785536.
  5. 5.0 5.1 5.2 5.3 5.4 Kuhn, Kelin (2018). "CMOS and Beyond CMOS: Scaling Challenges". सीएमओएस अनुप्रयोगों के लिए उच्च गतिशीलता सामग्री. Woodhead Publishing. p. 1. ISBN 9780081020623.
  6. "1970 का दशक: माइक्रोप्रोसेसरों का विकास और विकास" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  7. "एनईसी 751 (यूकॉम-4)". The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  8. Cushman, Robert H. (20 September 1975). "2-1/2-जेनरेशन μP's-$10 पार्ट जो लो-एंड मिनी की तरह परफॉर्म करते हैं" (PDF). EDN. Archived from the original (PDF) on 24 April 2016. Retrieved 15 September 2019.
  9. "CDP 1800 μP व्यावसायिक रूप से उपलब्ध है" (PDF). Microcomputer Digest. 2 (4): 1–3. October 1975.
  10. 10.0 10.1 10.2 10.3 "1978: डबल वेल फास्ट सीएमओएस एसआरएएम (हिताची)" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on 5 July 2019. Retrieved 5 July 2019.
  11. "सिलिकॉन गेट MOS 2102A". Intel. Retrieved 27 June 2019.
  12. 12.0 12.1 "इंटेल उत्पादों की कालानुक्रमिक सूची। उत्पादों को तिथि के अनुसार क्रमबद्ध किया जाता है।" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  13. Masuhara, Toshiaki; Minato, O.; Sasaki, T.; Sakai, Y.; Kubo, M.; Yasui, T. (1978). एक हाई-स्पीड, लो-पॉवर Hi-CMOS 4K स्टैटिक रैम. 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXI. pp. 110–111. doi:10.1109/ISSCC.1978.1155749.

बाहरी कड़ियाँ

श्रेणी:तर्क परिवार श्रेणी:एम्ओएसऍफ़इटी s

श्रेणी: अरब आविष्कार श्रेणी: मिस्र के आविष्कार श्रेणी: दक्षिण कोरियाई आविष्कार