पहली घात के अनिश्चित समीकरण: Difference between revisions
(New Hindi page created) |
No edit summary |
||
Line 1: | Line 1: | ||
आर्यभट प्रथम (476) <ref>Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). ''History of Hindu Mathematics''. Mumbai: Asia Publishing House.</ref>सबसे पहले हिंदू बीजगणित विज्ञानी थे जिन्होंने प्रथम | आर्यभट प्रथम (476) <ref>Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). ''History of Hindu Mathematics''. Mumbai: Asia Publishing House.</ref>सबसे पहले हिंदू बीजगणित विज्ञानी थे जिन्होंने प्रथम घात के अनिश्चित समीकरणों पर काम किया। उन्होंने सरल अनिश्चित समीकरण को हल करने के लिए एक विधि प्रदान की। | ||
<math>by-ax=c</math> | <math>by-ax=c</math> | ||
जहां a, b और c पूर्णांक हैं। उन्होंने यह भी बताया कि पहली | जहां a, b और c पूर्णांक हैं। उन्होंने यह भी बताया कि पहली घात के एक साथ अनिश्चित समीकरणों को हल करने के लिए इसे कैसे बढ़ाया जाए। | ||
आर्यभट प्रथम के शिष्य, भास्कर प्रथम (522) ने प्रदर्शित किया है कि समीकरण को हल करने के लिए उसी विधि को लागू किया जा सकता है। | आर्यभट प्रथम के शिष्य, भास्कर प्रथम (522) ने प्रदर्शित किया है कि समीकरण को हल करने के लिए उसी विधि को लागू किया जा सकता है। | ||
Line 17: | Line 17: | ||
ब्रह्मगुप्त और अन्य ने आर्यभट प्रथम और भास्कर प्रथम के तरीकों का पालन किया। | ब्रह्मगुप्त और अन्य ने आर्यभट प्रथम और भास्कर प्रथम के तरीकों का पालन किया। | ||
==महत्त्व== | ==महत्त्व== | ||
पहली | पहली घात के अनिश्चित विश्लेषण का विषय प्राचीन हिंदू बीजगणितविदों द्वारा इतना महत्वपूर्ण माना जाता था कि बीजगणित के पूरे विज्ञान का नाम एक बार इसके नाम पर रखा गया था। आर्यभट द्वितीय, भास्कर द्वितीय और अन्य में अंकगणित, बीजगणित और खगोल विज्ञान के विज्ञान के साथ-साथ सटीक उल्लेख है। | ||
इसके विशेष महत्व के कारण आर्यभट प्रथम के एक भाष्यकार देवराज द्वारा इस शीर्षक कुट्टाकार शिरोमणि पर विशेष कार्य किया गया है। | इसके विशेष महत्व के कारण आर्यभट प्रथम के एक भाष्यकार देवराज द्वारा इस शीर्षक कुट्टाकार शिरोमणि पर विशेष कार्य किया गया है। | ||
==समस्याओं के प्रकार== | ==समस्याओं के प्रकार== | ||
पहली | पहली घात के अनिश्चित समीकरणों से संबंधित तीन प्रकार की समस्याएं हैं। | ||
'''पहला प्रकार''': | '''पहला प्रकार''': | ||
Line 51: | Line 51: | ||
'''तीसरा प्रकार''': इस रूप के समीकरण <math>{\displaystyle by+ax=\pm c}</math> | '''तीसरा प्रकार''': इस रूप के समीकरण <math>{\displaystyle by+ax=\pm c}</math> | ||
==शब्दावली== | ==शब्दावली== | ||
हिंदुओं ने पहली | हिंदुओं ने पहली घात के अनिश्चित विश्लेषण के विषय को कुट्टाक, कुट्टाकार , कुट्टीकार या बस कुट्टा। कुट्टाकार और कुट्टा नाम भास्कर प्रथम (522) के महा-भास्कर्य के रूप लेकर प्रकट होते हैं। भास्कर प्रथम द्वारा आर्यभटिय के भाष्य में कुट्टाक और कुट्टाकार शब्द पाए जा सकते हैं। ब्रह्मगुप्त ने कुट्टाक, कुट्टाकार और कुट्टा शब्दों का प्रयोग किया था। महावीर को कुट्टीकार शब्द अधिक पसंद था। | ||
पहले प्रकार कि समस्या में मात्राओं a, b को "विभाजक" कहा जाता है, संस्कृत नाम ''भागहारा , भाजक'', ''क्षेदा'' आदि हैं और R1 और R2 "अनुस्मारक", संस्कृत नाम ''अग्रा , शेष'' आदि हैं। | |||
दूसरे प्रकार कि समस्या में β को "भाजक" कहा जाता है और γ को "प्रक्षेप्ता" कहा जाता है, संस्कृत नाम ''क्षेप, क्षेप''का आदि। α को 'लाभांश' (भाज्य), अज्ञात मात्रा (x) "गुणक" कहा जाता है। संस्कृत नाम ''गुणक, गुणकारा'' आदि और y "भागफल" संस्कृत नाम ''फला''। महावीर के अनुसार,अज्ञात (x) जिसे कभी-कभी ''राशी'' द्वारा जाना जाता है जिसका अर्थ है "अज्ञात संख्या"। | |||
'''नाम की उत्पत्ति:''' | '''नाम की उत्पत्ति:''' | ||
संस्कृत शब्द | संस्कृत शब्द कुट्टा, कुट्टाक, कुट्टाकार , कुट्टीकार सभी मूल कू से व्युत्पन्न हैं जिसका अर्थ है "कुचलना", "पीसना", "चूर्ण करना"। इन सभी का अर्थ है "ब्रेकिंग", "पीसने", "पल्सवरिज़िंग" के साथ-साथ उसकी प्रक्रिया के लिए एक उपकरण, यानी "ग्राइंडर", "पुलवराइज़र" की क्रिया । | ||
गणेश (1545) कहते हैं: " | ''गणेश'' (1545) कहते हैं: "कुट्टाकार गुणक के लिए एक शब्द है, गुणन के लिए स्वीकार्य रूप से 'घायल', 'हत्या' को आयात करने वाले शब्दों से कहा जाता है। एक निश्चित दी गई संख्या को किसी अन्य (अज्ञात मात्रा) से गुणा किया जाता है, किसी दिए गए प्रक्षेप्ता(इंटरपोलेटर) द्वारा जोड़ा या घटाया जाता है और फिर किसी दिए गए भाजक द्वारा विभाजित किया जाता है, जिस कारण कुछ शेष नहीं रहता है; वह गुणक कुट्टाक है। इसलिए यह पूर्वजों द्वारा कहा गया है, यह एक विशेष तकनीकी शब्द है।" | ||
इसलिए पहली | इसलिए पहली घात के अनिश्चित विश्लेषण का विषय कुट्टाक शब्द द्वारा निर्दिष्ट किया जाने लगा। | ||
समीकरण को हल करने की हिंदू विधि के अनुसार | समीकरण को हल करने की हिंदू विधि के अनुसार | ||
Line 69: | Line 69: | ||
<math>by-ax= \pm c</math> | <math>by-ax= \pm c</math> | ||
इससे क्रमिक रूप से अन्य समान समीकरण प्राप्त करने की प्रक्रिया पर आधारित है जिसमें गुणांक | इससे क्रमिक रूप से अन्य समान समीकरण प्राप्त करने की प्रक्रिया पर आधारित है जिसमें गुणांक a, b के मान छोटे और छोटे हो जाते हैं। इसलिए प्रक्रिया वही है जो एक पूरी चीज़ को छोटे-छोटे टुकड़ों में तोड़ने की है। इसलिए प्राचीन गणितज्ञों ने ऑपरेशन के लिए कुट्टाक नाम अपनाया। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 12:56, 2 March 2022
आर्यभट प्रथम (476) [1]सबसे पहले हिंदू बीजगणित विज्ञानी थे जिन्होंने प्रथम घात के अनिश्चित समीकरणों पर काम किया। उन्होंने सरल अनिश्चित समीकरण को हल करने के लिए एक विधि प्रदान की।
जहां a, b और c पूर्णांक हैं। उन्होंने यह भी बताया कि पहली घात के एक साथ अनिश्चित समीकरणों को हल करने के लिए इसे कैसे बढ़ाया जाए।
आर्यभट प्रथम के शिष्य, भास्कर प्रथम (522) ने प्रदर्शित किया है कि समीकरण को हल करने के लिए उसी विधि को लागू किया जा सकता है।
और आगे यह कि इस समीकरण का हल उस से होगा
ब्रह्मगुप्त और अन्य ने आर्यभट प्रथम और भास्कर प्रथम के तरीकों का पालन किया।
महत्त्व
पहली घात के अनिश्चित विश्लेषण का विषय प्राचीन हिंदू बीजगणितविदों द्वारा इतना महत्वपूर्ण माना जाता था कि बीजगणित के पूरे विज्ञान का नाम एक बार इसके नाम पर रखा गया था। आर्यभट द्वितीय, भास्कर द्वितीय और अन्य में अंकगणित, बीजगणित और खगोल विज्ञान के विज्ञान के साथ-साथ सटीक उल्लेख है।
इसके विशेष महत्व के कारण आर्यभट प्रथम के एक भाष्यकार देवराज द्वारा इस शीर्षक कुट्टाकार शिरोमणि पर विशेष कार्य किया गया है।
समस्याओं के प्रकार
पहली घात के अनिश्चित समीकरणों से संबंधित तीन प्रकार की समस्याएं हैं।
पहला प्रकार:
एक संख्या N ज्ञात कीजिए जिसे दो दी गई संख्याओं a और b से विभाजित करने पर दो शेषफल R1 और R2 बचेंगे।
अब हमारे पास है
इसलिए
रखने पर
R1 के अनुसार माना जाने वाला धनात्मक या ऋणात्मक चिह्न R2 से बड़ा या कम होता है।
दूसरा प्रकार :
एक संख्या 'x' इस प्रकार ज्ञात कीजिए कि दी गई संख्या 'α' के गुणनफल को किसी अन्य दी गई संख्या 'γ' से बढ़ाया या घटाया जाए और फिर एक तिहाई से विभाजित किया जाए
दी गई संख्या 'β' कोई शेष नहीं छोड़ेगी। दूसरे शब्दों में हमें हल करना होगा
सकारात्मक पूर्णांकों में।
तीसरा प्रकार: इस रूप के समीकरण
शब्दावली
हिंदुओं ने पहली घात के अनिश्चित विश्लेषण के विषय को कुट्टाक, कुट्टाकार , कुट्टीकार या बस कुट्टा। कुट्टाकार और कुट्टा नाम भास्कर प्रथम (522) के महा-भास्कर्य के रूप लेकर प्रकट होते हैं। भास्कर प्रथम द्वारा आर्यभटिय के भाष्य में कुट्टाक और कुट्टाकार शब्द पाए जा सकते हैं। ब्रह्मगुप्त ने कुट्टाक, कुट्टाकार और कुट्टा शब्दों का प्रयोग किया था। महावीर को कुट्टीकार शब्द अधिक पसंद था।
पहले प्रकार कि समस्या में मात्राओं a, b को "विभाजक" कहा जाता है, संस्कृत नाम भागहारा , भाजक, क्षेदा आदि हैं और R1 और R2 "अनुस्मारक", संस्कृत नाम अग्रा , शेष आदि हैं।
दूसरे प्रकार कि समस्या में β को "भाजक" कहा जाता है और γ को "प्रक्षेप्ता" कहा जाता है, संस्कृत नाम क्षेप, क्षेपका आदि। α को 'लाभांश' (भाज्य), अज्ञात मात्रा (x) "गुणक" कहा जाता है। संस्कृत नाम गुणक, गुणकारा आदि और y "भागफल" संस्कृत नाम फला। महावीर के अनुसार,अज्ञात (x) जिसे कभी-कभी राशी द्वारा जाना जाता है जिसका अर्थ है "अज्ञात संख्या"।
नाम की उत्पत्ति:
संस्कृत शब्द कुट्टा, कुट्टाक, कुट्टाकार , कुट्टीकार सभी मूल कू से व्युत्पन्न हैं जिसका अर्थ है "कुचलना", "पीसना", "चूर्ण करना"। इन सभी का अर्थ है "ब्रेकिंग", "पीसने", "पल्सवरिज़िंग" के साथ-साथ उसकी प्रक्रिया के लिए एक उपकरण, यानी "ग्राइंडर", "पुलवराइज़र" की क्रिया ।
गणेश (1545) कहते हैं: "कुट्टाकार गुणक के लिए एक शब्द है, गुणन के लिए स्वीकार्य रूप से 'घायल', 'हत्या' को आयात करने वाले शब्दों से कहा जाता है। एक निश्चित दी गई संख्या को किसी अन्य (अज्ञात मात्रा) से गुणा किया जाता है, किसी दिए गए प्रक्षेप्ता(इंटरपोलेटर) द्वारा जोड़ा या घटाया जाता है और फिर किसी दिए गए भाजक द्वारा विभाजित किया जाता है, जिस कारण कुछ शेष नहीं रहता है; वह गुणक कुट्टाक है। इसलिए यह पूर्वजों द्वारा कहा गया है, यह एक विशेष तकनीकी शब्द है।"
इसलिए पहली घात के अनिश्चित विश्लेषण का विषय कुट्टाक शब्द द्वारा निर्दिष्ट किया जाने लगा।
समीकरण को हल करने की हिंदू विधि के अनुसार
इससे क्रमिक रूप से अन्य समान समीकरण प्राप्त करने की प्रक्रिया पर आधारित है जिसमें गुणांक a, b के मान छोटे और छोटे हो जाते हैं। इसलिए प्रक्रिया वही है जो एक पूरी चीज़ को छोटे-छोटे टुकड़ों में तोड़ने की है। इसलिए प्राचीन गणितज्ञों ने ऑपरेशन के लिए कुट्टाक नाम अपनाया।
संदर्भ
- ↑ Datta, Bibhutibhusan; Narayan Singh, Avadhesh (1962). History of Hindu Mathematics. Mumbai: Asia Publishing House.