समूह का समुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:One5Root.svg|thumb|जटिल तल में एकता की 5वीं जड़ें गुणन के तहत एक [[समूह (गणित)]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[सार बीजगणित]] में, समूह का उत्पादक [[सबसेट|समुच्चय]] समूह समुच्चय का उपसमुच्चय होता है जैसे कि समूह के प्रत्येक तत्व (गणित) को उपसमुच्चय के बहुत से तत्वों और उनके व्युत्क्रम तत्व के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है। . | [[File:One5Root.svg|thumb|जटिल तल में एकता की 5वीं जड़ें गुणन के तहत एक [[समूह (गणित)]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[सार बीजगणित|अमूर्त बीजगणित]] में, समूह का उत्पादक [[सबसेट|समुच्चय]] '''समूह समुच्चय''' का उपसमुच्चय होता है जैसे कि समूह के प्रत्येक तत्व (गणित) को उपसमुच्चय के बहुत से तत्वों और उनके व्युत्क्रम तत्व के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है। . | ||
दूसरे शब्दों में, यदि ''S'' समूह ''G'' का उपसमुच्चय है, तब {{angbr|''S''}}, S द्वारा उत्पन्न [[उपसमूह]], G का सबसे छोटा उपसमूह है जिसमें S का प्रत्येक तत्व है, जो S के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समतुल्य रूप से, {{angbr|''S''}} ''G'' के सभी तत्वों का उपसमूह है जिसे S और उनके व्युत्क्रमों में तत्वों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; परिमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व के घात के रूप में व्यक्त किया जा सकता है।) | दूसरे शब्दों में, यदि ''S'' समूह ''G'' का उपसमुच्चय है, तब {{angbr|''S''}}, S द्वारा उत्पन्न [[उपसमूह]], G का सबसे छोटा उपसमूह है जिसमें S का प्रत्येक तत्व है, जो S के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समतुल्य रूप से, {{angbr|''S''}} ''G'' के सभी तत्वों का उपसमूह है जिसे S और उनके व्युत्क्रमों में तत्वों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; परिमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व के घात के रूप में व्यक्त किया जा सकता है।) | ||
Line 6: | Line 6: | ||
यदि G = {{angbr|''S''}}, तब हम कहते हैं कि S, G को उत्पन्न करता है, और S के तत्वों को उत्पादक या समूह उत्पादक कहा जाता है। यदि S रिक्त समुच्चय है, तो {{angbr|''S''}} [[तुच्छ समूह]] {e} है, क्योंकि हम रिक्त गुणनफल को तत्समक मानते हैं। | यदि G = {{angbr|''S''}}, तब हम कहते हैं कि S, G को उत्पन्न करता है, और S के तत्वों को उत्पादक या समूह उत्पादक कहा जाता है। यदि S रिक्त समुच्चय है, तो {{angbr|''S''}} [[तुच्छ समूह]] {e} है, क्योंकि हम रिक्त गुणनफल को तत्समक मानते हैं। | ||
जब S में केवल एक तत्व x होता है, तो ⟨S⟩ को | जब S में केवल एक तत्व x होता है, तो ⟨S⟩ को साधारणतया ⟨x⟩ के रूप में लिखा जाता है। इस मामले में, ⟨x⟩ x की घात का [[चक्रीय समूह]] है, और हम कहते हैं कि यह समूह x द्वारा उत्पन्न होता है। तत्व x एक समूह उत्पन्न करता है यह कहने के बराबर कि {{angbr|''x''}} पूरे समूह G के बराबर है। [[परिमित समूह|परिमित समूहों]] के लिए, यह कहने के भी बराबर है कि x का क्रम |G| है। | ||
समूह को अनंत संख्या में उत्पादक की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योज्य समूह 'Q' परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन उत्पादकों की किसी भी परिमित संख्या को उत्पादक समुच्चय से हटाया जा सकता है, बिना उत्पादक समुच्चय के। इस तरह के मामले में, उत्पादक समुच्चय में सभी तत्व फिर भी गैर-उत्पादक तत्व होते हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे #फ्रैटिनी उपसमूह देखें। | समूह को अनंत संख्या में उत्पादक की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योज्य समूह 'Q' परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन उत्पादकों की किसी भी परिमित संख्या को उत्पादक समुच्चय से हटाया जा सकता है, बिना उत्पादक समुच्चय के। इस तरह के मामले में, उत्पादक समुच्चय में सभी तत्व फिर भी गैर-उत्पादक तत्व होते हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे #फ्रैटिनी उपसमूह देखें। | ||
Line 19: | Line 19: | ||
एक ही समूह के विभिन्न उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि ''p'' और ''q'' पूर्णांक हैं {{math|1=[[greatest common divisor|gcd]](''p'', ''q'') = 1}}, तब {{math|1={{mset|''p'', ''q''}}}} बेज़ाउट की पहचान के योग के तहत पूर्णांकों के समूह को भी उत्पन्न करता है। | एक ही समूह के विभिन्न उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि ''p'' और ''q'' पूर्णांक हैं {{math|1=[[greatest common divisor|gcd]](''p'', ''q'') = 1}}, तब {{math|1={{mset|''p'', ''q''}}}} बेज़ाउट की पहचान के योग के तहत पूर्णांकों के समूह को भी उत्पन्न करता है। | ||
हालांकि यह सच है कि परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह]] सूक्ष्म रूप से उत्पन्न होता है (भागफल में उत्पादक की छवियां परिमित उत्पादक समुच्चय देती हैं), सूक्ष्म रूप से उत्पन्न समूह के उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, G को दो उत्पादक, x और y में [[मुक्त समूह]] होने दें (जो स्पष्ट रूप से परिमित रूप से उत्पन्न होता है, क्योंकि G = {{angbr|{{mset|''x'',''y''}}}}), और S को G के सभी तत्वों से युक्त उपसमुच्चय होने दें जो ''y<sup>n</sup>xy''<sup>−''n''</sup> के रूप का है जहां n एक [[प्राकृतिक संख्या]] है। {{angbr|''S''}} असीमित रूप से कई उत्पादक में मुक्त समूह के लिए [[समाकृतिकता]] है, और इसलिए इसे परिमित तरह से उत्पन्न नहीं किया जा सकता है। हालाँकि, सूक्ष्म रूप से उत्पन्न [[एबेलियन समूह|आबेली समूह]] का प्रत्येक उपसमूह अपने आप में सूक्ष्म रूप से उत्पन्न होता है। वास्तव में, अधिक कहा जा सकता है: [[समूह विस्तार]] के तहत सभी परिमित रूप से उत्पन्न समूहों का वर्ग | हालांकि यह सच है कि परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह]] सूक्ष्म रूप से उत्पन्न होता है (भागफल में उत्पादक की छवियां परिमित उत्पादक समुच्चय देती हैं), सूक्ष्म रूप से उत्पन्न समूह के उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, G को दो उत्पादक, x और y में [[मुक्त समूह]] होने दें (जो स्पष्ट रूप से परिमित रूप से उत्पन्न होता है, क्योंकि G = {{angbr|{{mset|''x'',''y''}}}}), और S को G के सभी तत्वों से युक्त उपसमुच्चय होने दें जो ''y<sup>n</sup>xy''<sup>−''n''</sup> के रूप का है जहां n एक [[प्राकृतिक संख्या]] है। {{angbr|''S''}} असीमित रूप से कई उत्पादक में मुक्त समूह के लिए [[समाकृतिकता]] है, और इसलिए इसे परिमित तरह से उत्पन्न नहीं किया जा सकता है। हालाँकि, सूक्ष्म रूप से उत्पन्न [[एबेलियन समूह|आबेली समूह]] का प्रत्येक उपसमूह अपने आप में सूक्ष्म रूप से उत्पन्न होता है। वास्तव में, अधिक कहा जा सकता है: [[समूह विस्तार]] के तहत सभी परिमित रूप से उत्पन्न समूहों का वर्ग प्रअमूर्त के तहत बंद है। इसे देखने के लिए, (पूर्ण रूप से उत्पन्न) [[सामान्य उपसमूह]] और भागफल के लिए उत्पादक समुच्चय लें। फिर सामान्य उपसमूह के लिए उत्पादक, साथ में भागफल के लिए उत्पादक के पूर्वचित्रों के साथ, समूह उत्पन्न करते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
Line 31: | Line 31: | ||
:: (1 3 2) = (1 2)(1 2 3)(1 2) | :: (1 3 2) = (1 2)(1 2 3)(1 2) | ||
* अनंत समूहों में परिमित उत्पादक समुच्चय भी हो सकते हैं। पूर्णांकों के योज्य समूह में उत्पादक समुच्चय के रूप में 1 है। तत्व 2 उत्पादक समुच्चय नहीं है, क्योंकि विषम संख्याएँ | * अनंत समूहों में परिमित उत्पादक समुच्चय भी हो सकते हैं। पूर्णांकों के योज्य समूह में उत्पादक समुच्चय के रूप में 1 है। तत्व 2 उत्पादक समुच्चय नहीं है, क्योंकि विषम संख्याएँ लुप्त होंगी। दो-तत्व उपसमुच्चय {{math|1={{mset|3, 5}}}} उत्पादक समुच्चय है, क्योंकि {{math|1=(−5) + 3 + 3 = 1}} (वास्तव में, [[कोप्राइम पूर्णांक|सह अभाज्य पूर्णांक]] संख्याओं की कोई भी जोड़ी बेज़ाउट की पहचान के परिणामस्वरूप है)। | ||
* [[बहुभुज]] का [[डायहेड्रल समूह|द्वितल समूह]] (n-गॉन) (जिसका क्रम 2n है) {{math|1={{mset|{{var|r}}, {{var|s}}}}}} समुच्चय द्वारा उत्पन्न होता है, जहाँ {{mvar|r}} {{math|1=2''π''/{{var|n}}}} द्वारा घूर्णन का प्रतिनिधित्व करता है और {{mvar|s}} समरूपता की रेखा के पार कोई प्रतिबिंब है।<ref>{{Cite book|title=Abstract algebra|last=Dummit |first=David S.|date=2004|publisher=Wiley|last2=Foote |first2=Richard M. |isbn=9780471452348|edition=3rd |oclc=248917264|page=25}}</ref> | * [[बहुभुज]] का [[डायहेड्रल समूह|द्वितल समूह]] (n-गॉन) (जिसका क्रम 2n है) {{math|1={{mset|{{var|r}}, {{var|s}}}}}} समुच्चय द्वारा उत्पन्न होता है, जहाँ {{mvar|r}} {{math|1=2''π''/{{var|n}}}} द्वारा घूर्णन का प्रतिनिधित्व करता है और {{mvar|s}} समरूपता की रेखा के पार कोई प्रतिबिंब है।<ref>{{Cite book|title=Abstract algebra|last=Dummit |first=David S.|date=2004|publisher=Wiley|last2=Foote |first2=Richard M. |isbn=9780471452348|edition=3rd |oclc=248917264|page=25}}</ref> | ||
Line 42: | Line 42: | ||
== [[फ्रैटिनी उपसमूह]] == | == [[फ्रैटिनी उपसमूह]] == | ||
एक | एक रोचक सहचर विषय गैर-जेनरेटरों का है। समूह G का तत्व x गैर-उत्पादक है यदि प्रत्येक समुच्चय S जिसमें x है जो G उत्पन्न करता है, तब भी G उत्पन्न करता है जब x को S से हटा दिया जाता है। इसके अलावा पूर्णांक में, केवल गैर-उत्पादक 0 है। सभी गैर-उत्पादक का समुच्चय G का उपसमूह बनाता है, जिसे फ्रैटिनी उपसमूह कहा जाता है। | ||
== [[semigroup|अर्धसमूह]] और [[मोनोइड|मोनोइड्स]] == | == [[semigroup|अर्धसमूह]] और [[मोनोइड|मोनोइड्स]] == |
Revision as of 15:10, 8 February 2023
अमूर्त बीजगणित में, समूह का उत्पादक समुच्चय समूह समुच्चय का उपसमुच्चय होता है जैसे कि समूह के प्रत्येक तत्व (गणित) को उपसमुच्चय के बहुत से तत्वों और उनके व्युत्क्रम तत्व के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है। .
दूसरे शब्दों में, यदि S समूह G का उपसमुच्चय है, तब ⟨S⟩, S द्वारा उत्पन्न उपसमूह, G का सबसे छोटा उपसमूह है जिसमें S का प्रत्येक तत्व है, जो S के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समतुल्य रूप से, ⟨S⟩ G के सभी तत्वों का उपसमूह है जिसे S और उनके व्युत्क्रमों में तत्वों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; परिमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व के घात के रूप में व्यक्त किया जा सकता है।)
यदि G = ⟨S⟩, तब हम कहते हैं कि S, G को उत्पन्न करता है, और S के तत्वों को उत्पादक या समूह उत्पादक कहा जाता है। यदि S रिक्त समुच्चय है, तो ⟨S⟩ तुच्छ समूह {e} है, क्योंकि हम रिक्त गुणनफल को तत्समक मानते हैं।
जब S में केवल एक तत्व x होता है, तो ⟨S⟩ को साधारणतया ⟨x⟩ के रूप में लिखा जाता है। इस मामले में, ⟨x⟩ x की घात का चक्रीय समूह है, और हम कहते हैं कि यह समूह x द्वारा उत्पन्न होता है। तत्व x एक समूह उत्पन्न करता है यह कहने के बराबर कि ⟨x⟩ पूरे समूह G के बराबर है। परिमित समूहों के लिए, यह कहने के भी बराबर है कि x का क्रम |G| है।
समूह को अनंत संख्या में उत्पादक की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योज्य समूह 'Q' परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन उत्पादकों की किसी भी परिमित संख्या को उत्पादक समुच्चय से हटाया जा सकता है, बिना उत्पादक समुच्चय के। इस तरह के मामले में, उत्पादक समुच्चय में सभी तत्व फिर भी गैर-उत्पादक तत्व होते हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे #फ्रैटिनी उपसमूह देखें।
यदि G सांस्थितिक समूह है तो G के उपसमुच्चय S को सांस्थितिक उत्पादक का समुच्चय कहा जाता है यदि ⟨S⟩ G में सघन है, यानी ⟨S⟩ का समापन संपूर्ण समूह G है।।
परिमित रूप से उत्पन्न समूह
यदि S परिमित है, तो समूह G = ⟨S⟩ को परिमित रूप से उत्पन्न कहा जाता है। विशेष रूप से, सूक्ष्म रूप से उत्पन्न आबेली समूहों की संरचना का सरलता से वर्णन किया गया है। कई प्रमेय जो परिमित रूप से उत्पन्न समूहों के लिए सही हैं, सामान्य रूप से उत्पन्न समूहों के लिए विफल हो जाते हैं। यह साबित हो गया है कि यदि उपसमुच्चय S द्वारा परिमित समूह उत्पन्न किया जाता है, तब प्रत्येक समूह तत्व को समूह के क्रम से कम या उसके बराबर लंबाई के अक्षर S से एक शब्द के रूप में व्यक्त किया जा सकता है।
⟨G⟩ = G के बाद से हर परिमित समूह परिमित रूप से उत्पन्न होता है। जोड़ के तहत पूर्णांक अनंत समूह का उदाहरण है जो 1 और -1 दोनों के द्वारा परिमित रूप से उत्पन्न होता है, लेकिन योग के तहत परिमेय संख्या का समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। कोई अगणनीय समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। उदाहरण के लिए, योग के तहत वास्तविक संख्याओं का समूह, (R, +)।
एक ही समूह के विभिन्न उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि p और q पूर्णांक हैं gcd(p, q) = 1, तब {p, q} बेज़ाउट की पहचान के योग के तहत पूर्णांकों के समूह को भी उत्पन्न करता है।
हालांकि यह सच है कि परिमित रूप से उत्पन्न समूह का प्रत्येक भागफल समूह सूक्ष्म रूप से उत्पन्न होता है (भागफल में उत्पादक की छवियां परिमित उत्पादक समुच्चय देती हैं), सूक्ष्म रूप से उत्पन्न समूह के उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, G को दो उत्पादक, x और y में मुक्त समूह होने दें (जो स्पष्ट रूप से परिमित रूप से उत्पन्न होता है, क्योंकि G = ⟨{x,y}⟩), और S को G के सभी तत्वों से युक्त उपसमुच्चय होने दें जो ynxy−n के रूप का है जहां n एक प्राकृतिक संख्या है। ⟨S⟩ असीमित रूप से कई उत्पादक में मुक्त समूह के लिए समाकृतिकता है, और इसलिए इसे परिमित तरह से उत्पन्न नहीं किया जा सकता है। हालाँकि, सूक्ष्म रूप से उत्पन्न आबेली समूह का प्रत्येक उपसमूह अपने आप में सूक्ष्म रूप से उत्पन्न होता है। वास्तव में, अधिक कहा जा सकता है: समूह विस्तार के तहत सभी परिमित रूप से उत्पन्न समूहों का वर्ग प्रअमूर्त के तहत बंद है। इसे देखने के लिए, (पूर्ण रूप से उत्पन्न) सामान्य उपसमूह और भागफल के लिए उत्पादक समुच्चय लें। फिर सामान्य उपसमूह के लिए उत्पादक, साथ में भागफल के लिए उत्पादक के पूर्वचित्रों के साथ, समूह उत्पन्न करते हैं।
उदाहरण
- पूर्णांक सापेक्ष 9, U9 = {1, 2, 4, 5, 7, 8} का गुणक समूह, सभी पूर्णांकों का समूह है जो गुणन सापेक्ष 9 के तहत 9 से अपेक्षाकृत प्रमुख है। ध्यान दें कि 7, U9 का उत्पादक नहीं है, क्योंकि,
जबकि 2 है, चूंकि
- दूसरी ओर, Sn, डिग्री n का सममित समूह, n> 2 होने पर किसी तत्व (चक्रीय नहीं है) द्वारा उत्पन्न नहीं होता है। हालाँकि, इन मामलों में Sn हमेशा दो क्रमपरिवर्तनों द्वारा उत्पन्न किया जा सकता है जो चक्र संकेतन में (1 2) और (1 2 3 ... n) के रूप में लिखे गए हैं। उदाहरण के लिए, S3 के 6 तत्व दो उत्पादक, (1 2) और (1 2 3) से उत्पन्न किया जा सकता है, जैसा कि निम्नलिखित समीकरणों के दाहिने हाथ से दिखाया गया है (दाहिने बाएं से दाएं है):
- e = (1 2)(1 2)
- (1 2) = (1 2)
- (1 3) = (1 2)(1 2 3)
- (2 3) = (1 2 3)(1 2)
- (1 2 3) = (1 2 3)
- (1 3 2) = (1 2)(1 2 3)(1 2)
- अनंत समूहों में परिमित उत्पादक समुच्चय भी हो सकते हैं। पूर्णांकों के योज्य समूह में उत्पादक समुच्चय के रूप में 1 है। तत्व 2 उत्पादक समुच्चय नहीं है, क्योंकि विषम संख्याएँ लुप्त होंगी। दो-तत्व उपसमुच्चय {3, 5} उत्पादक समुच्चय है, क्योंकि (−5) + 3 + 3 = 1 (वास्तव में, सह अभाज्य पूर्णांक संख्याओं की कोई भी जोड़ी बेज़ाउट की पहचान के परिणामस्वरूप है)।
- बहुभुज का द्वितल समूह (n-गॉन) (जिसका क्रम 2n है) {r, s} समुच्चय द्वारा उत्पन्न होता है, जहाँ r 2π/n द्वारा घूर्णन का प्रतिनिधित्व करता है और s समरूपता की रेखा के पार कोई प्रतिबिंब है।[1]
- क्रम n का चक्रीय समूह, , और एकता की nवीं जड़ें सभी एक ही तत्व द्वारा उत्पन्न होते हैं (वास्तव में, ये समूह एक दूसरे के लिए समरूप हैं)।[2]
- समूह की प्रस्तुति को उत्पादक के समुच्चय और उनके बीच संबंधों के संग्रह के रूप में परिभाषित किया गया है, इसलिए उस पृष्ठ पर सूचीबद्ध किसी भी उदाहरण में उत्पादक समुच्चय के उदाहरण सम्मिलित हैं।[3]
मुक्त समूह
समुच्चय S द्वारा उत्पन्न सबसे सामान्य समूह S द्वारा मुक्त रूप से उत्पन्न समूह है। S द्वारा उत्पन्न प्रत्येक समूह इस समूह के भागफल समूह के लिए समरूप है, एक विशेषता जिसका उपयोग समूह की प्रस्तुति की अभिव्यक्ति में किया जाता है।
फ्रैटिनी उपसमूह
एक रोचक सहचर विषय गैर-जेनरेटरों का है। समूह G का तत्व x गैर-उत्पादक है यदि प्रत्येक समुच्चय S जिसमें x है जो G उत्पन्न करता है, तब भी G उत्पन्न करता है जब x को S से हटा दिया जाता है। इसके अलावा पूर्णांक में, केवल गैर-उत्पादक 0 है। सभी गैर-उत्पादक का समुच्चय G का उपसमूह बनाता है, जिसे फ्रैटिनी उपसमूह कहा जाता है।
अर्धसमूह और मोनोइड्स
यदि G एक अर्धसमूह या मोनॉइड है, तो कोई भी G के उत्पादक समुच्चय S की धारणा का उपयोग कर सकता है। S, G का अर्धसमूह / मोनॉइड उत्पादक समुच्चय है यदि G सबसे छोटा अर्धसमूह / मोनोइड है जिसमें S है।
जब कोई अर्धसमूह या मोनॉयड से संबंधित हो, तो ऊपर दी गई परिमित राशियों का उपयोग करते हुए समूह के समुच्चय को उत्पन्न करने की परिभाषा को थोड़ा संशोधित किया जाना चाहिए। दरअसल, इस परिभाषा को अब व्युत्क्रम संचालन की धारणा का उपयोग नहीं करना चाहिए। समुच्चय S को G का अर्धसमूह उत्पादक समुच्चय कहा जाता है यदि G का प्रत्येक तत्व S के तत्वों का परिमित योग है। इसी तरह, समुच्चय S को 'G' का मोनोइड उत्पादक समुच्चय कहा जाता है यदि G का प्रत्येक गैर-शून्य तत्व S के तत्वों का परिमित योग है।
उदाहरण के लिए {1} गैर-ऋणात्मक प्राकृतिक संख्याओं के समुच्चय का मोनोइड उत्पादक है। समुच्चय {1} धनात्मक प्राकृतिक संख्याओं का अर्धसमूह जनक भी है। हालाँकि, पूर्णांक 0 को 1s के (गैर-खाली) योग के रूप में व्यक्त नहीं किया जा सकता है, इस प्रकार {1} गैर-ऋणात्मक प्राकृतिक संख्याओं का अर्धसमूह उत्पादक नहीं है।
इसी प्रकार, जबकि {1} पूर्णांकों के समुच्चय का समूह उत्पादक है, {1} पूर्णांकों के समुच्चय का मोनोइड उत्पादक नहीं है। दरअसल, पूर्णांक -1 को 1s के परिमित योग के रूप में व्यक्त नहीं किया जा सकता है।
यह भी देखें
- अन्य संरचनाओं में संबंधित अर्थों के लिए उत्पादक समुच्चय
- समूह की प्रस्तुति
- आदिम तत्व (परिमित क्षेत्र)
- केली ग्राफ
टिप्पणियाँ
- ↑ Dummit, David S.; Foote, Richard M. (2004). Abstract algebra (3rd ed.). Wiley. p. 25. ISBN 9780471452348. OCLC 248917264.
- ↑ Dummit & Foote 2004, p. 54
- ↑ Dummit & Foote 2004, p. 26
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
- Coxeter, H.S.M.; Moser, W.O.J. (1980). Generators and Relations for Discrete Groups. Springer. ISBN 0-387-09212-9.