अवधारित प्रणाली: Difference between revisions
m (Sugatha moved page कमज़ोर प्रणाली to अवधारित प्रणाली without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{refimprove|date=February 2018}} | {{refimprove|date=February 2018}} | ||
[[गणित]] में, रैखिक समीकरणों की एक प्रणाली या बहुपद समीकरणों की एक प्रणाली को | [[गणित]] में, यदि अज्ञात की तुलना में कम समीकरण हैं तो रैखिक समीकरणों की एक प्रणाली या बहुपद समीकरणों की एक प्रणाली को अवधारित माना जाता है<ref name="Datta2010">{{cite book|author=Biswa Nath Datta|title=Numerical Linear Algebra and Applications, Second Edition|url=https://books.google.com/books?id=1V9PbyYGZIIC&q=%22underdetermined+system%22&pg=PA263|date=4 February 2010|publisher=SIAM|isbn=978-0-89871-685-6|pages=263–}}</ref> (एक अतिवृद्धि प्रणाली के विपरीत, जहां अज्ञात की तुलना में अधिक समीकरण हैं)। [[बाधा गिनती]] की अवधारणा का उपयोग करके शब्दों के समूह को समझाया जा सकता है। प्रत्येक चर (गणित) को स्वतंत्रता के उपलब्ध परिमाण के रूप में देखा जा सकता है। प्रणाली में प्रस्तुत किए गए प्रत्येक समीकरण को एक [[बाधा (गणित)]] के रूप में देखा जा सकता है जो स्वतंत्रता के एक परिमाण को प्रतिबंधित करता है। | ||
इसलिए, महत्वपूर्ण | इसलिए,यह महत्वपूर्ण विषय (अति निर्धारित और अवधारित के बीच) तब होता है जब समीकरणों की संख्या और मुक्त चर की संख्या समान होती है। स्वतंत्रता के एक परिमाण देने वाले प्रत्येक चर के लिए, स्वतंत्रता के एक परिमाण को हटाने वाली एक ऐसी बाधा मौजूद है। इसके विपरीत, अवधारित विषय तब होता है जब प्रणाली को कम कर दिया जाता है - यानी कि, जब अज्ञात समीकरणों को पछाड़ते हैं। | ||
== | == अवधारित प्रणाली के समाधान == | ||
एक | एक अवधारित रैखिक प्रणाली में या तो कोई समाधान या असीम रूप से कई समाधान नहीं हैं। | ||
उदाहरण के लिए, | उदाहरण के लिए, | ||
Line 13: | Line 13: | ||
x+y+z&=0 | x+y+z&=0 | ||
\end{align}</math> | \end{align}</math> | ||
बिना किसी समाधान के एक | बिना किसी समाधान के एक अवधारित प्रणाली है;कोई समाधान नहीं होने वाले समीकरणों की किसी भी प्रणाली को रैखिक समीकरणों को स्थिरता की प्रणाली कहा जाता है। दूसरी ओर, प्रणाली | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 19: | Line 19: | ||
x+y+2z&=3 | x+y+2z&=3 | ||
\end{align}</math> | \end{align}</math> | ||
सुसंगत है और इसमें समाधानों | सुसंगत है और इसमें समाधानों की एक अत्यंत अधिकता है, जैसे {{nowrap|1=(''x'', ''y'', ''z'') =}} {{nowrap|(1, −2, 2)}}, {{nowrap|(2, −3, 2)}}, और {{nowrap|(3, −4, 2)}}। इन सभी समाधानों को पहले समीकरण को दूसरे से घटाकर, यह दिखाने के लिए कि सभी समाधान आज्ञा मानते हैं {{nowrap|1=''z'' = 2}};या तो समीकरण में इसका उपयोग करने से पता चलता है कि y का कोई भी मूल्य {{nowrap|1=''x'' = −1 − ''y''}} के साथ संभव है। | ||
अधिक विशेष रूप से, Rouché -Capelli | अधिक विशेष रूप से, Rouché -Capelli प्रमेय के अनुसार, रैखिक समीकरणों की कोई भी प्रणाली (अवधारित या अन्यथा) असंगत है यदि [[संवर्धित मैट्रिक्स]] की [[रैंक (रैखिक बीजगणित)]] [[गुणांक मैट्रिक्स]] के रैंक से अधिक है। यदि, दूसरी ओर, इन दो मैट्रिक्स के रैंक समान हैं, तो प्रणाली में कम से कम एक समाधान होना चाहिए;चूंकि एक कमज़ोर प्रणाली में यह रैंक आवश्यक रूप से अज्ञात की संख्या से कम है, इसलिए वास्तव में समाधानों की एक अवधारित है, सामान्य समाधान के साथ k मुक्त पैरामीटर हैं जहां k चर और रैंक की संख्या के बीच अंतर है। | ||
यह | यह निश्चित करने के लिए [[कलन विधि]] हैं कि क्या एक अवधारित प्रणाली में समाधान हैं, और यदि कोई हो, तो सभी समाधानों को चर के k के रैखिक कार्यों के रूप में व्यक्त करने के लिए (ऊपर के समान k)। सबसे सरल एक गौसियन उन्मूलन है। अधिक विवरण के लिए रैखिक समीकरणों की प्रणाली देखें। | ||
== सजातीय | == सजातीय विषय == | ||
सजातीय (शून्य के बराबर सभी निरंतर शब्दों के साथ) | सजातीय (शून्य के बराबर सभी निरंतर शब्दों के साथ) अवधारित रैखिक प्रणाली में हमेशा गैर-तुच्छ समाधान होते हैं (तुच्छ समाधान के अलावा जहां सभी अज्ञात शून्य होते हैं)। इस तरह के समाधानों की एक अत्यंत अधिकता है, जो एक [[सदिश स्थल]] बनाते हैं, जिसका आयाम अज्ञात की संख्या और प्रणाली के मैट्रिक्स के रैंक (रैखिक बीजगणित) के बीच अंतर है। | ||
== | == अवधारित बहुपदीय प्रणाली == | ||
रैखिक कमज़ोर प्रणालियों की मुख्य संपत्ति, या तो कोई समाधान नहीं है | रैखिक कमज़ोर प्रणालियों की मुख्य संपत्ति,या असीम रूप से कई या तो कोई समाधान नहीं है , निम्नलिखित तरीके से बहुपद समीकरणों की प्रणालियों तक फैली हुई है। | ||
बहुपद समीकरणों की एक प्रणाली जिसमें अज्ञात की तुलना में कम समीकरण होते हैं, को | बहुपद समीकरणों की एक प्रणाली जिसमें अज्ञात की तुलना में कम समीकरण होते हैं, को अवधारित कहा जाता है। इसमें या तो असीम रूप से कई जटिल समाधान हैं (या, अधिक सामान्यत:, एक बीजगणितीय रूप से बंद क्षेत्र में समाधान) या असंगत है। यह असंगत है अगर और केवल अगर {{nowrap|1=0 = 1}} समीकरणों के एक रैखिक संयोजन (बहुपद गुणांक के साथ) है (यह हिल्बर्ट नलस्टेलेंसैट्ज़ है)। यदि n चर (t <n) में T समीकरणों की एक अवधारित प्रणाली में समाधान हैं, तो सभी जटिल समाधानों का सेट कम से कम एक बीजगणितीय प्रकार के आयाम का एक [[बीजगणितीय सेट|बीजगणितीय सेट {{nowrap|''n'' - ''t''}}]] है। यदि अवधारित प्रणाली को यादृच्छिक रूप से चुना जाता है तो आयाम {{nowrap|''n'' - ''t''}} संभावना के साथ एक बराबर होता है। | ||
== अन्य | == अन्य प्रतिबंध के साथ और अनुकूलन समस्याओं के साथ अवधारित प्रणाली == | ||
सामान्यत:, यदि कोई हो,तो रैखिक समीकरणों की एक अवधारित प्रणाली में अनंत संख्या में समाधान होते हैं। हालांकि, [[गणितीय अनुकूलन]] में जो रैखिक समानता की कमी के अधीन हैं, केवल समाधानों में से एक प्रासंगिक है, अर्थात् एक उद्देश्य कार्य का उच्चतम या निम्नतम मूल्य देने वाला है। | |||
कुछ समस्याएं निर्दिष्ट करती हैं कि एक या एक से अधिक चर पूर्णांक मूल्यों को लेने के लिए विवश | कुछ समस्याएं निर्दिष्ट करती हैं कि एक या एक से अधिक चर पूर्णांक मूल्यों को लेने के लिए विवश हैं। एक पूर्णांक बाधा पूर्णांक कार्य निर्माण और [[डायोफेंटाइन समीकरण]] समस्याओं की ओर ले जाती है, जिसमें केवल एक परिमित संख्या हो सकती है। | ||
एक अन्य प्रकार की बाधा, जो कोडिंग सिद्धांत में दिखाई देती है, विशेष रूप से कोड और [[संकेत प्रसंस्करण]] (उदाहरण के लिए [[संपीड़ित संवेदन]]) को सही करने में त्रुटि में, चर की संख्या पर एक ऊपरी सीमा होती है जो शून्य से अलग हो सकती | एक अन्य प्रकार की बाधा, जो कोडिंग सिद्धांत में दिखाई देती है, विशेष रूप से कोड और [[संकेत प्रसंस्करण]] (उदाहरण के लिए [[संपीड़ित संवेदन]]) को सही करने में त्रुटि में, चर की संख्या पर एक ऊपरी सीमा होती है जो शून्य से अलग हो सकती है। , यह सीमा उन त्रुटियों की अधिकतम संख्या से मेल खाती है जिन्हें एक साथ ठीक किया जा सकता है जैसे कोडो को सही करने मे। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | *अति निर्धारित प्रणाली | ||
*[[नियमितीकरण (गणित)]] | *[[नियमितीकरण (गणित)]] | ||
Revision as of 22:02, 8 February 2023
This article needs additional citations for verification. (February 2018) (Learn how and when to remove this template message) |
गणित में, यदि अज्ञात की तुलना में कम समीकरण हैं तो रैखिक समीकरणों की एक प्रणाली या बहुपद समीकरणों की एक प्रणाली को अवधारित माना जाता है[1] (एक अतिवृद्धि प्रणाली के विपरीत, जहां अज्ञात की तुलना में अधिक समीकरण हैं)। बाधा गिनती की अवधारणा का उपयोग करके शब्दों के समूह को समझाया जा सकता है। प्रत्येक चर (गणित) को स्वतंत्रता के उपलब्ध परिमाण के रूप में देखा जा सकता है। प्रणाली में प्रस्तुत किए गए प्रत्येक समीकरण को एक बाधा (गणित) के रूप में देखा जा सकता है जो स्वतंत्रता के एक परिमाण को प्रतिबंधित करता है।
इसलिए,यह महत्वपूर्ण विषय (अति निर्धारित और अवधारित के बीच) तब होता है जब समीकरणों की संख्या और मुक्त चर की संख्या समान होती है। स्वतंत्रता के एक परिमाण देने वाले प्रत्येक चर के लिए, स्वतंत्रता के एक परिमाण को हटाने वाली एक ऐसी बाधा मौजूद है। इसके विपरीत, अवधारित विषय तब होता है जब प्रणाली को कम कर दिया जाता है - यानी कि, जब अज्ञात समीकरणों को पछाड़ते हैं।
अवधारित प्रणाली के समाधान
एक अवधारित रैखिक प्रणाली में या तो कोई समाधान या असीम रूप से कई समाधान नहीं हैं।
उदाहरण के लिए,
बिना किसी समाधान के एक अवधारित प्रणाली है;कोई समाधान नहीं होने वाले समीकरणों की किसी भी प्रणाली को रैखिक समीकरणों को स्थिरता की प्रणाली कहा जाता है। दूसरी ओर, प्रणाली
सुसंगत है और इसमें समाधानों की एक अत्यंत अधिकता है, जैसे (x, y, z) = (1, −2, 2), (2, −3, 2), और (3, −4, 2)। इन सभी समाधानों को पहले समीकरण को दूसरे से घटाकर, यह दिखाने के लिए कि सभी समाधान आज्ञा मानते हैं z = 2;या तो समीकरण में इसका उपयोग करने से पता चलता है कि y का कोई भी मूल्य x = −1 − y के साथ संभव है।
अधिक विशेष रूप से, Rouché -Capelli प्रमेय के अनुसार, रैखिक समीकरणों की कोई भी प्रणाली (अवधारित या अन्यथा) असंगत है यदि संवर्धित मैट्रिक्स की रैंक (रैखिक बीजगणित) गुणांक मैट्रिक्स के रैंक से अधिक है। यदि, दूसरी ओर, इन दो मैट्रिक्स के रैंक समान हैं, तो प्रणाली में कम से कम एक समाधान होना चाहिए;चूंकि एक कमज़ोर प्रणाली में यह रैंक आवश्यक रूप से अज्ञात की संख्या से कम है, इसलिए वास्तव में समाधानों की एक अवधारित है, सामान्य समाधान के साथ k मुक्त पैरामीटर हैं जहां k चर और रैंक की संख्या के बीच अंतर है।
यह निश्चित करने के लिए कलन विधि हैं कि क्या एक अवधारित प्रणाली में समाधान हैं, और यदि कोई हो, तो सभी समाधानों को चर के k के रैखिक कार्यों के रूप में व्यक्त करने के लिए (ऊपर के समान k)। सबसे सरल एक गौसियन उन्मूलन है। अधिक विवरण के लिए रैखिक समीकरणों की प्रणाली देखें।
सजातीय विषय
सजातीय (शून्य के बराबर सभी निरंतर शब्दों के साथ) अवधारित रैखिक प्रणाली में हमेशा गैर-तुच्छ समाधान होते हैं (तुच्छ समाधान के अलावा जहां सभी अज्ञात शून्य होते हैं)। इस तरह के समाधानों की एक अत्यंत अधिकता है, जो एक सदिश स्थल बनाते हैं, जिसका आयाम अज्ञात की संख्या और प्रणाली के मैट्रिक्स के रैंक (रैखिक बीजगणित) के बीच अंतर है।
अवधारित बहुपदीय प्रणाली
रैखिक कमज़ोर प्रणालियों की मुख्य संपत्ति,या असीम रूप से कई या तो कोई समाधान नहीं है , निम्नलिखित तरीके से बहुपद समीकरणों की प्रणालियों तक फैली हुई है।
बहुपद समीकरणों की एक प्रणाली जिसमें अज्ञात की तुलना में कम समीकरण होते हैं, को अवधारित कहा जाता है। इसमें या तो असीम रूप से कई जटिल समाधान हैं (या, अधिक सामान्यत:, एक बीजगणितीय रूप से बंद क्षेत्र में समाधान) या असंगत है। यह असंगत है अगर और केवल अगर 0 = 1 समीकरणों के एक रैखिक संयोजन (बहुपद गुणांक के साथ) है (यह हिल्बर्ट नलस्टेलेंसैट्ज़ है)। यदि n चर (t <n) में T समीकरणों की एक अवधारित प्रणाली में समाधान हैं, तो सभी जटिल समाधानों का सेट कम से कम एक बीजगणितीय प्रकार के आयाम का एक [[बीजगणितीय सेट|बीजगणितीय सेट n - t]] है। यदि अवधारित प्रणाली को यादृच्छिक रूप से चुना जाता है तो आयाम n - t संभावना के साथ एक बराबर होता है।
अन्य प्रतिबंध के साथ और अनुकूलन समस्याओं के साथ अवधारित प्रणाली
सामान्यत:, यदि कोई हो,तो रैखिक समीकरणों की एक अवधारित प्रणाली में अनंत संख्या में समाधान होते हैं। हालांकि, गणितीय अनुकूलन में जो रैखिक समानता की कमी के अधीन हैं, केवल समाधानों में से एक प्रासंगिक है, अर्थात् एक उद्देश्य कार्य का उच्चतम या निम्नतम मूल्य देने वाला है।
कुछ समस्याएं निर्दिष्ट करती हैं कि एक या एक से अधिक चर पूर्णांक मूल्यों को लेने के लिए विवश हैं। एक पूर्णांक बाधा पूर्णांक कार्य निर्माण और डायोफेंटाइन समीकरण समस्याओं की ओर ले जाती है, जिसमें केवल एक परिमित संख्या हो सकती है।
एक अन्य प्रकार की बाधा, जो कोडिंग सिद्धांत में दिखाई देती है, विशेष रूप से कोड और संकेत प्रसंस्करण (उदाहरण के लिए संपीड़ित संवेदन) को सही करने में त्रुटि में, चर की संख्या पर एक ऊपरी सीमा होती है जो शून्य से अलग हो सकती है। , यह सीमा उन त्रुटियों की अधिकतम संख्या से मेल खाती है जिन्हें एक साथ ठीक किया जा सकता है जैसे कोडो को सही करने मे।
यह भी देखें
- अति निर्धारित प्रणाली
- नियमितीकरण (गणित)
संदर्भ
- ↑ Biswa Nath Datta (4 February 2010). Numerical Linear Algebra and Applications, Second Edition. SIAM. pp. 263–. ISBN 978-0-89871-685-6.