व्युत्क्रम वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Distinguish|व्युत्क्रम वितरण फलन}}
{{Distinguish|व्युत्क्रम वितरण फलन}}


संभाव्यता सिद्धांत और सांख्यिकी में, एक '''व्युत्क्रम वितरण''' एक यादृच्छिक चर के व्युत्क्रम का वितरण है। व्युत्क्रम वितरण विशेष रूप से [[पूर्व वितरण]] के बायेसियन संदर्भ में और पैमाने के मापदंडों के लिए [[पश्च वितरण]] में उत्पन्न होता है। यादृच्छिक चर के बीजगणित में, व्युत्क्रम वितरण [[अनुपात वितरण]] के वर्ग के विशेष मामले हैं, जिसमें अंश यादृच्छिक चर का एक पतित वितरण होता है।
प्रायिकता सिद्धांत और सांख्यिकी में, '''व्युत्क्रम बंटन''' एक यादृच्छिक चर के व्युत्क्रम का बंटन है। व्युत्क्रम बंटन पैमाने के मापदंडों के लिए विशेष रूप से बेज़ संदर्भ में [[पूर्व वितरण|पूर्व बंटनों]] और [[पश्च वितरण|उत्तर बंटनों]] में उत्पन्न होता है। यादृच्छिक चरों के बीजगणित में व्युत्क्रम बंटन, [[अनुपात वितरण|अनुपात बंटन]] वर्ग की विशेष स्थितियाँ हैं, जिसमें अंश यादृच्छिक चर में एक अपभ्रष्ट बंटन होता है।


== मूल वितरण से संबंध ==
== मूल बंटन से संबंध ==


सामान्य तौर पर, कड़ाई से सकारात्मक समर्थन के साथ यादृच्छिक चर एक्स की संभावना वितरण को देखते हुए, पारस्परिक, वाई = 1 / एक्स के वितरण को ढूंढना संभव है। यदि एक्स का वितरण घनत्व फलन एफ (एक्स) और संचयी के साथ निरंतर है बंटन फलन F(x), तो व्युत्क्रम का संचयी बंटन फलन, G(y), यह देखते हुए पाया जाता है कि
प्रसामान्यतः पूर्णतः धनात्मक समर्थन वाले यादृच्छिक चर ''X'' के प्रायिकता बंटन के लिए, व्युत्क्रम ''Y'' = 1 / ''X'' के बंटन को प्राप्त करना संभव है। यदि ''X'' का बंटन, घनत्व फलन ''f''(''x'') और संचयी बंटन फलन ''F''(''x'') के साथ सतत है, तो व्युत्क्रम के संचयी बंटन फलन, G(y) को इस प्रकार प्राप्त किया जाता है कि


:<math> G(y) = \Pr(Y \leq y) = \Pr\left(X  \geq \frac{1}{y}\right) = 1-\Pr\left(X<\frac{1}{y}\right) = 1 - F\left( \frac{ 1 }{ y } \right).</math>
:<math> G(y) = \Pr(Y \leq y) = \Pr\left(X  \geq \frac{1}{y}\right) = 1-\Pr\left(X<\frac{1}{y}\right) = 1 - F\left( \frac{ 1 }{ y } \right).</math>
फिर वाई का घनत्व फलन संचयी वितरण फलन के व्युत्पन्न के रूप में पाया जाता है:
तब ''Y'' के घनत्व फलन को संचयी बंटन फलन के अवकलज के रूप में प्राप्त किया जाता है:


: <math> g(y) = \frac{ 1 }{ y^2 } f\left( \frac{ 1 }{ y } \right)  . </math>
: <math> g(y) = \frac{ 1 }{ y^2 } f\left( \frac{ 1 }{ y } \right)  . </math>
== उदाहरण ==
== उदाहरण ==


=== व्युत्क्रम वितरण ===
=== व्युत्क्रम बंटन ===
[[पारस्परिक वितरण|व्युत्क्रम वितरण]] में प्रपत्र का घनत्व कार्य होता है।<ref name=Hamming1970>[[Richard Hamming|Hamming R. W.]] (1970) [http://lucent.com/bstj/vol49-1970/articles/bstj49-8-1609.pdf "On the distribution of numbers"], ''The Bell System Technical Journal'' 49(8) 1609–1625</ref>
[[पारस्परिक वितरण|व्युत्क्रम बंटन]] में निम्न रूप का घनत्व फलन होता है।<ref name=Hamming1970>[[Richard Hamming|Hamming R. W.]] (1970) [http://lucent.com/bstj/vol49-1970/articles/bstj49-8-1609.pdf "On the distribution of numbers"], ''The Bell System Technical Journal'' 49(8) 1609–1625</ref>
:<math>f(x) \propto x^{-1} \quad \text{ for } 0<a<x<b,  </math>
:<math>f(x) \propto x^{-1} \quad \text{ for } 0<a<x<b,  </math>
कहाँ <math>\propto \!\,</math> मतलब आनुपातिकता (गणित) | के लिए आनुपातिक है ।
जहाँ <math>\propto \!\,</math> का अर्थ "समानुपाती" है। यह इस प्रकार है कि इस स्थिति में व्युत्क्रम बंटन निम्न रूप का है
यह इस प्रकार है कि इस मामले में व्युत्क्रम वितरण रूप का है
:<math>g(y) \propto y^{-1} \quad \text{ for } 0\le b^{-1}<y< a^{-1},  </math>
:<math>g(y) \propto y^{-1} \quad \text{ for } 0\le b^{-1}<y< a^{-1},  </math>
जो फिर से एक पारस्परिक वितरण है।
जो पुनः एक व्युत्क्रम बंटन है।


=== व्युत्क्रम समान वितरण ===
=== व्युत्क्रम समान बंटन ===
{{Probability distribution|
{{Probability distribution|
   name      =व्युत्क्रम समान वितरण|
   name      =व्युत्क्रम समान वितरण|
Line 43: Line 42:
}}
}}


यदि मूल यादृच्छिक चर X [[समान वितरण (निरंतर)|समान]] रूप से अंतराल (a,b) पर वितरित किया जाता है, जहां a>0, तो पारस्परिक चर Y = 1 / X में पारस्परिक वितरण होता है जो श्रेणी (''b<sup>−1</sup>'' ,''a<sup>−1</sup>'') में मान लेता है ), और इस श्रेणी में प्रायिकता घनत्व फ़ंक्शन है
यदि मूल यादृच्छिक चर ''X'' को अंतराल (''a'',''b''), जहाँ ''a''>''0'' पर [[समान वितरण (निरंतर)|एकसमान वितरित]] किया जाता है, तो व्युत्क्रम चर ''Y'' = 1 / ''X'' में ऐसा व्युत्क्रम बंटन होता है जो (''b<sup>−1</sup>'',''a<sup>−1</sup>'') सीमा से मान ग्रहण करता है, और इस सीमा में प्रायिकता घनत्व फलन निम्न है


: <math> g( y ) = y^{-2} \frac{ 1 }{ b-a } ,</math>
: <math> g( y ) = y^{-2} \frac{ 1 }{ b-a } ,</math>
और कहीं शून्य है।
और अन्य कहीं यह फलन शून्य है।


व्युत्क्रम का संचयी बंटन फलन, एक ही श्रेणी के भीतर, है
समान सीमा के भीतर व्युत्क्रम का संचयी बंटन फलन निम्न है


: <math> G( y ) = \frac{ b - y^{-1} }{  b -  a } .</math>
: <math> G( y ) = \frac{ b - y^{-1} }{  b -  a } .</math>
उदाहरण के लिए, यदि X समान रूप से अंतराल (0,1) पर वितरित किया जाता है, तो Y = 1 / X में घनत्व होता है <math> g( y ) = y^{-2} </math> और संचयी वितरण फलन <math> G( y ) = { 1 - y^{-1} }</math> कब <math>y > 1 .</math>
उदाहरण के लिए, यदि ''X'' को अंतराल (0,1) पर एकसमान वितरित किया गया है, तो ''Y'' = 1 / ''X'' में घनत्व <math> g( y ) = y^{-2} </math> और संचयी बंटन फलन <math> G( y ) = { 1 - y^{-1} }</math>, जब <math>y > 1 .</math> होता है।
=== व्युत्क्रम ''t'' वितरण ===
=== व्युत्क्रम ''t'' बंटन ===


बता दें कि X स्वतंत्रता की k डिग्री के साथ ''t'' वितरित यादृच्छिक चर है। फिर इसका घनत्व कार्य है
माना ''X,''  ''k'' स्वातंत्र्य कोटियों वाला ''t'' वितरित यादृच्छिक चर है। तब इसका घनत्व फलन निम्न है


: <math> f( x ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ \left( 1 + \frac{ x^2 }{ k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
: <math> f( x ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ \left( 1 + \frac{ x^2 }{ k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
Y का घनत्व = 1/X है
''Y'' = 1 / ''X'' का घनत्व निम्न है


: <math> g( y ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ y^2 \left( 1 + \frac{ 1 }{ y^2 k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
: <math> g( y ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ y^2 \left( 1 + \frac{ 1 }{ y^2 k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
K = 1 के साथ, X और 1 / X के वितरण समान हैं (X तब [[कॉची वितरण]] (0,1) है)। यदि k > 1 तो 1 / X का बंटन द्विविध है।{{citation needed|date=April 2013}}
''k'' = 1 के साथ, ''X'' और 1 / ''X'' के बंटन समान हैं (''X'' तब [[कॉची वितरण|कैशी बंटन]] (0,1) है)। यदि ''k'' > 1, तो 1 / ''X'' का बंटन द्विबहुलक है।{{citation needed|date=April 2013}}
=== पारस्परिक सामान्य वितरण ===
=== व्युत्क्रम प्रसामान्य बंटन ===
{{see also|अनिश्चितता का प्रचार#व्युत्क्रम और स्थानांतरित व्युत्क्रम}}
{{see also|अनिश्चितता का संचरण#व्युत्क्रम और स्थानांतरित व्युत्क्रम}}
यदि चर X एक [[सामान्य वितरण]] का अनुसरण करता है <math>\mathcal{N}(\mu,\sigma^2)</math>,
 
तो व्युत्क्रम Y=1/X एक पारस्परिक सामान्य वितरण का अनुसरण करता है:<ref name=Johnson/>
यदि चर ''X'' एक [[सामान्य वितरण|प्रसामान्य बंटन]] <math>\mathcal{N}(\mu,\sigma^2)</math> का अनुसरण करता है, तो व्युत्क्रम ''Y''=1/''X'', एक व्युत्क्रम प्रसामान्य बंटन का अनुसरण करता है:<ref name=Johnson/>


: <math> f(y) = \frac{1}{\sqrt{2\pi} \sigma y^2} e^{-\frac{1}{2}\left(\frac{1/y-\mu}{\sigma}\right)^2} .</math>
: <math> f(y) = \frac{1}{\sqrt{2\pi} \sigma y^2} e^{-\frac{1}{2}\left(\frac{1/y-\mu}{\sigma}\right)^2} .</math>


[[File:Graph of inverse of the normal distribution.png|thumb|मानक प्रसामान्य वितरण के व्युत्क्रम का आलेख|217x217px]]यदि चर X एक [[मानक सामान्य वितरण]] का अनुसरण करता है <math>\mathcal{N}(0, 1)</math>, तो वाई = 1/एक्स एक पारस्परिक मानक सामान्य वितरण का पालन करता है,
[[File:Graph of inverse of the normal distribution.png|thumb|मानक प्रसामान्य बंटन के व्युत्क्रम का आलेख|217x217px]]यदि चर ''X'' एक [[मानक सामान्य वितरण|मानक प्रसामान्य बंटन]] <math>\mathcal{N}(0, 1)</math> का अनुसरण करता है, तो ''Y'' = 1/''X'' एक व्युत्क्रम <math>\pm\tfrac{1}{\sqrt{2}}</math> पर बहुलक वाले [[भारी पूंछ वाला वितरण|हैवी-टेल्ड]] और [[बिमोडल वितरण|द्विबहुलक बंटन]],<ref name="Johnson">{{cite book
[[भारी पूंछ वाला वितरण]]|हैवी-टेल्ड और [[बिमोडल वितरण]],<ref name="Johnson">{{cite book
   | last1 = Johnson | first1 = Norman L.
   | last1 = Johnson | first1 = Norman L.
   | last2 = Kotz    | first2 = Samuel
   | last2 = Kotz    | first2 = Samuel
Line 78: Line 76:
   | isbn=0-471-58495-9
   | isbn=0-471-58495-9
   | pages = 171
   | pages = 171
   }}</ref>
   }}</ref> ''व्युत्क्रम मानक प्रसामान्य बंटन'' का अनुसरण करता है, जिसका घनत्व निम्न है
मोड के साथ <math>\pm\tfrac{1}{\sqrt{2}}</math> और घनत्व


<math>f(y)=\frac{e^{-\frac{1}{2y^2}}}{\sqrt{2\pi}y^2}</math>
<math>f(y)=\frac{e^{-\frac{1}{2y^2}}}{\sqrt{2\pi}y^2}</math>


और पहले और उच्च क्रम के क्षण मौजूद नहीं हैं।<ref name=Johnson/> ऐसे व्युत्क्रम वितरणों और अनुपात वितरणों के लिए, अभी भी अंतरालों के लिए परिभाषित संभावनाएँ हो सकती हैं, जिनकी गणना या तो [[मोंटे कार्लो सिमुलेशन]] द्वारा की जा सकती है या, कुछ मामलों में, गीरी-हिंकले परिवर्तन का उपयोग करके की जा सकती है।<ref name="HayyaJ1975On">{{Cite journal
और प्रथम एवं उच्च क्रम के आघूर्णों का अस्तित्व नहीं हैं।<ref name="Johnson" /> ऐसे व्युत्क्रम बंटनों और अनुपात बंटनों के लिए, अभी भी ऐसे अंतरालों के लिए प्रायिकताएँ परिभाषित हो सकती हैं, जिनकी गणना या तो [[मोंटे कार्लो सिमुलेशन|मॉन्टे कार्लो सिमुलेशन]] द्वारा या कुछ स्थितियों में गियरी-हिंकले रूपान्तरण का उपयोग करके की जा सकती है।<ref name="HayyaJ1975On">{{Cite journal
  | last1 = Hayya
  | last1 = Hayya
  | first1 = Jack
  | first1 = Jack
Line 102: Line 99:
  }}</ref>
  }}</ref>


हालांकि, स्थानांतरित पारस्परिक कार्य के अधिक सामान्य मामले में <math>1/(p-B)</math>, के लिए <math>B=N(\mu,\sigma)</math> एक सामान्य सामान्य वितरण के बाद, माध्य और विचरण आँकड़े एक [[प्रमुख मूल्य]] अर्थ में मौजूद होते हैं, यदि ध्रुव के बीच का अंतर <math>p</math> और माध्य <math>\mu</math> वास्तविक मूल्यवान है। इस परिवर्तित यादृच्छिक चर (पारस्परिक स्थानांतरित सामान्य वितरण) का मतलब वास्तव में डॉसन का कार्य है:<ref name="lecomte2013exact">{{Cite journal
हालाँकि, विस्थापित व्युत्क्रम फलन <math>1/(p-B)</math> की अधिक सामान्य स्थिति में, एक सामान्य प्रसामान्य बंटन के बाद <math>B=N(\mu,\sigma)</math> के लिए, माध्य और प्रसरण सांख्यिकी एक [[प्रमुख मूल्य|मुख्य मान]] अर्थ में अस्तित्व में होते हैं, यदि ध्रुव <math>p</math> और माध्य <math>\mu</math> के बीच का अंतर का मान वास्तविक है। इस रूपांतरित यादृच्छिक चर (''व्युत्क्रम विस्थापित प्रसामान्य बंटन'') का अर्थ वास्तव में सोपानी डॉसन का फलन है:<ref name="lecomte2013exact">{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 136: Line 133:
| at = Eq.(39)-(40)
| at = Eq.(39)-(40)
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref> एक [[जटिल सामान्य चर]] के व्युत्क्रम का मामला <math>B</math>, स्थानांतरित या नहीं, विभिन्न विशेषताओं को प्रदर्शित करता है।<ref name="lecomte2013exact" />
}}</ref> एक [[जटिल सामान्य चर|जटिल प्रसामान्य चर]] के व्युत्क्रम का मामला <math>B</math>, विस्थापित या नहीं, विभिन्न विशेषताओं को प्रदर्शित करता है।<ref name="lecomte2013exact" />
=== व्युत्क्रम घातीय वितरण ===
=== व्युत्क्रम घातीय बंटन ===
अगर <math>X</math> दर पैरामीटर के साथ एक घातीय रूप से वितरित यादृच्छिक चर है <math>\lambda</math>, तब <math>Y=1/X</math> निम्नलिखित संचयी वितरण फलन है: <math>F_Y(y) = e^{-\lambda/y}</math>के लिए <math>y> 0</math>. ध्यान दें कि इस यादृच्छिक चर का अपेक्षित मान मौजूद नहीं है। पारस्परिक घातीय वितरण लुप्त होती वायरलेस संचार प्रणालियों के विश्लेषण में उपयोग पाता है।
अगर <math>X</math> दर पैरामीटर के साथ एक घातीय रूप से वितरित यादृच्छिक चर है <math>\lambda</math>, तब <math>Y=1/X</math> निम्नलिखित संचयी बंटन फलन है: <math>F_Y(y) = e^{-\lambda/y}</math>के लिए <math>y> 0</math>. ध्यान दें कि इस यादृच्छिक चर का अपेक्षित मान मौजूद नहीं है। व्युत्क्रम घातीय बंटन लुप्त होती वायरलेस संचार प्रणालियों के विश्लेषण में उपयोग पाता है।


=== व्युत्क्रम कॉची वितरण ===
=== व्युत्क्रम कॉची बंटन ===


यदि ''X'' एक कॉची वितरित (''μ'', ''σ'') यादृच्छिक चर है, तो 1 / ''X'' एक कॉची (''μ'' / ''C'', ''σ'' / ''C'' ) यादृच्छिक चर है जहाँ ''C'' = ''μ<sup>2</sup>'' + ''σ<sup>2</sup>'' है।
यदि ''X'' एक कॉची वितरित (''μ'', ''σ'') यादृच्छिक चर है, तो 1 / ''X'' एक कॉची (''μ'' / ''C'', ''σ'' / ''C'' ) यादृच्छिक चर है जहाँ ''C'' = ''μ<sup>2</sup>'' + ''σ<sup>2</sup>'' है।


=== व्युत्क्रम एफ वितरण ===
=== व्युत्क्रम एफ बंटन ===


यदि X एक F(ν''<sub>1</sub>'', ν<sub>2</sub> ) वितरित यादृच्छिक चर है तो 1 / X एक F(ν<sub>2</sub>, ν<sub>1</sub> ) यादृच्छिक चर है।
यदि X एक F(ν''<sub>1</sub>'', ν<sub>2</sub> ) वितरित यादृच्छिक चर है तो 1 / X एक F(ν<sub>2</sub>, ν<sub>1</sub> ) यादृच्छिक चर है।
Line 150: Line 147:
=== द्विपद बंटन का व्युत्क्रम ===
=== द्विपद बंटन का व्युत्क्रम ===


इस वितरण के लिए कोई बंद रूप ज्ञात नहीं है। माध्य के लिए एक स्पर्शोन्मुख सन्निकटन ज्ञात है।<ref name="Cribari-Neto2000">Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
इस बंटन के लिए कोई बंद रूप ज्ञात नहीं है। माध्य के लिए एक स्पर्शोन्मुख सन्निकटन ज्ञात है।<ref name="Cribari-Neto2000">Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
</ref>
</ref>


<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>
<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>


जहां ई [] उम्मीद ऑपरेटर है, एक्स एक यादृच्छिक चर है, ओ () और ओ () बड़े और छोटे [[बिग ओ नोटेशन]] हैं, एन नमूना आकार है, पी सफलता की संभावना है और एक चर है जो हो सकता है धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो।
जहां ई [] उम्मीद ऑपरेटर है, X एक यादृच्छिक चर है, ओ () और ओ () बड़े और छोटे [[बिग ओ नोटेशन]] हैं, एन नमूना आकार है, पी सफलता की संभावना है और एक चर है जो हो सकता है धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो।


===त्रिकोणीय बंटन का व्युत्क्रम===
===त्रिकोणीय बंटन का व्युत्क्रम===


निचले सीमा a, ऊपरी सीमा b और मोड c के साथ [[त्रिकोणीय वितरण]] के लिए, जहां a < b और a ≤ c ≤ b, व्युत्क्रम का मतलब द्वारा दिया जाता है
निचले सीमा a, ऊपरी सीमा b और मोड c के साथ [[त्रिकोणीय वितरण|त्रिकोणीय बंटन]] के लिए, जहां a < b और a ≤ c ≤ b, व्युत्क्रम का मतलब द्वारा दिया जाता है


<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
Line 168: Line 165:
व्युत्क्रम के दोनों क्षणों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात जब a, b, और c या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।
व्युत्क्रम के दोनों क्षणों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात जब a, b, और c या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।


=== अन्य व्युत्क्रम वितरण ===
=== अन्य व्युत्क्रम बंटन ===


अन्य व्युत्क्रम वितरण में शामिल हैं
अन्य व्युत्क्रम बंटन में शामिल हैं
: व्युत्क्रम-चाई-वर्ग वितरण
: व्युत्क्रम-चाई-वर्ग बंटन
: [[उलटा-गामा वितरण|व्युत्क्रम-गामा वितरण]]
: [[उलटा-गामा वितरण|व्युत्क्रम-गामा बंटन]]
: [[उलटा-विशार्ट वितरण|व्युत्क्रम-विशार्ट वितरण]]
: [[उलटा-विशार्ट वितरण|व्युत्क्रम-विशार्ट बंटन]]
: [[उलटा मैट्रिक्स गामा वितरण|व्युत्क्रम मैट्रिक्स गामा वितरण]]
: [[उलटा मैट्रिक्स गामा वितरण|व्युत्क्रम मैट्रिक्स गामा बंटन]]


== अनुप्रयोग ==
== अनुप्रयोग ==


पैमाने के मापदंडों के लिए बायेसियन अनुमान में पूर्व वितरण के रूप में व्युत्क्रम वितरण का व्यापक रूप से उपयोग किया जाता है।
पैमाने के मापदंडों के लिए बायेसियन अनुमान में पूर्व बंटन के रूप में व्युत्क्रम बंटन का व्यापक रूप से उपयोग किया जाता है।


== यह भी देखें ==
== यह भी देखें ==


*[[अनुकूल माध्य|हरात्मक माध्य]]
*[[अनुकूल माध्य|हरात्मक माध्य]]
* अनुपात वितरण
* अनुपात बंटन
*स्व-व्युत्क्रम वितरण
*स्व-व्युत्क्रम बंटन


==संदर्भ==
==संदर्भ==

Revision as of 12:54, 13 February 2023

प्रायिकता सिद्धांत और सांख्यिकी में, व्युत्क्रम बंटन एक यादृच्छिक चर के व्युत्क्रम का बंटन है। व्युत्क्रम बंटन पैमाने के मापदंडों के लिए विशेष रूप से बेज़ संदर्भ में पूर्व बंटनों और उत्तर बंटनों में उत्पन्न होता है। यादृच्छिक चरों के बीजगणित में व्युत्क्रम बंटन, अनुपात बंटन वर्ग की विशेष स्थितियाँ हैं, जिसमें अंश यादृच्छिक चर में एक अपभ्रष्ट बंटन होता है।

मूल बंटन से संबंध

प्रसामान्यतः पूर्णतः धनात्मक समर्थन वाले यादृच्छिक चर X के प्रायिकता बंटन के लिए, व्युत्क्रम Y = 1 / X के बंटन को प्राप्त करना संभव है। यदि X का बंटन, घनत्व फलन f(x) और संचयी बंटन फलन F(x) के साथ सतत है, तो व्युत्क्रम के संचयी बंटन फलन, G(y) को इस प्रकार प्राप्त किया जाता है कि

तब Y के घनत्व फलन को संचयी बंटन फलन के अवकलज के रूप में प्राप्त किया जाता है:

उदाहरण

व्युत्क्रम बंटन

व्युत्क्रम बंटन में निम्न रूप का घनत्व फलन होता है।[1]

जहाँ का अर्थ "समानुपाती" है। यह इस प्रकार है कि इस स्थिति में व्युत्क्रम बंटन निम्न रूप का है

जो पुनः एक व्युत्क्रम बंटन है।

व्युत्क्रम समान बंटन

व्युत्क्रम समान वितरण
Parameters
Support
PDF
CDF
Mean
Median
Variance

यदि मूल यादृच्छिक चर X को अंतराल (a,b), जहाँ a>0 पर एकसमान वितरित किया जाता है, तो व्युत्क्रम चर Y = 1 / X में ऐसा व्युत्क्रम बंटन होता है जो (b−1,a−1) सीमा से मान ग्रहण करता है, और इस सीमा में प्रायिकता घनत्व फलन निम्न है

और अन्य कहीं यह फलन शून्य है।

समान सीमा के भीतर व्युत्क्रम का संचयी बंटन फलन निम्न है

उदाहरण के लिए, यदि X को अंतराल (0,1) पर एकसमान वितरित किया गया है, तो Y = 1 / X में घनत्व और संचयी बंटन फलन , जब होता है।

व्युत्क्रम t बंटन

माना X, k स्वातंत्र्य कोटियों वाला t वितरित यादृच्छिक चर है। तब इसका घनत्व फलन निम्न है

Y = 1 / X का घनत्व निम्न है

k = 1 के साथ, X और 1 / X के बंटन समान हैं (X तब कैशी बंटन (0,1) है)। यदि k > 1, तो 1 / X का बंटन द्विबहुलक है।[citation needed]

व्युत्क्रम प्रसामान्य बंटन

यदि चर X एक प्रसामान्य बंटन का अनुसरण करता है, तो व्युत्क्रम Y=1/X, एक व्युत्क्रम प्रसामान्य बंटन का अनुसरण करता है:[2]

मानक प्रसामान्य बंटन के व्युत्क्रम का आलेख

यदि चर X एक मानक प्रसामान्य बंटन का अनुसरण करता है, तो Y = 1/X एक व्युत्क्रम पर बहुलक वाले हैवी-टेल्ड और द्विबहुलक बंटन,[2] व्युत्क्रम मानक प्रसामान्य बंटन का अनुसरण करता है, जिसका घनत्व निम्न है

और प्रथम एवं उच्च क्रम के आघूर्णों का अस्तित्व नहीं हैं।[2] ऐसे व्युत्क्रम बंटनों और अनुपात बंटनों के लिए, अभी भी ऐसे अंतरालों के लिए प्रायिकताएँ परिभाषित हो सकती हैं, जिनकी गणना या तो मॉन्टे कार्लो सिमुलेशन द्वारा या कुछ स्थितियों में गियरी-हिंकले रूपान्तरण का उपयोग करके की जा सकती है।[3]

हालाँकि, विस्थापित व्युत्क्रम फलन की अधिक सामान्य स्थिति में, एक सामान्य प्रसामान्य बंटन के बाद के लिए, माध्य और प्रसरण सांख्यिकी एक मुख्य मान अर्थ में अस्तित्व में होते हैं, यदि ध्रुव और माध्य के बीच का अंतर का मान वास्तविक है। इस रूपांतरित यादृच्छिक चर (व्युत्क्रम विस्थापित प्रसामान्य बंटन) का अर्थ वास्तव में सोपानी डॉसन का फलन है:[4]

.

इसके विपरीत, यदि शिफ्ट विशुद्ध रूप से जटिल है, मतलब मौजूद है और एक स्केल्ड फदीवा फलन है, जिसका सटीक अभिव्यक्ति काल्पनिक भाग के संकेत पर निर्भर करता है,. दोनों ही मामलों में, विचरण माध्य का एक साधारण कार्य है।[5] इसलिए, भिन्नता को एक प्रमुख मूल्य अर्थ में माना जाना चाहिए वास्तविक है, जबकि यह काल्पनिक भाग मौजूद है शून्य नहीं है। ध्यान दें कि ये साधन और प्रसरण सटीक हैं, क्योंकि वे अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों की एक जोड़ी के साथ दो अनुपातों का सटीक सहप्रसरण और समान रूप से उपलब्ध है।[6] एक जटिल प्रसामान्य चर के व्युत्क्रम का मामला , विस्थापित या नहीं, विभिन्न विशेषताओं को प्रदर्शित करता है।[4]

व्युत्क्रम घातीय बंटन

अगर दर पैरामीटर के साथ एक घातीय रूप से वितरित यादृच्छिक चर है , तब निम्नलिखित संचयी बंटन फलन है: के लिए . ध्यान दें कि इस यादृच्छिक चर का अपेक्षित मान मौजूद नहीं है। व्युत्क्रम घातीय बंटन लुप्त होती वायरलेस संचार प्रणालियों के विश्लेषण में उपयोग पाता है।

व्युत्क्रम कॉची बंटन

यदि X एक कॉची वितरित (μ, σ) यादृच्छिक चर है, तो 1 / X एक कॉची (μ / C, σ / C ) यादृच्छिक चर है जहाँ C = μ2 + σ2 है।

व्युत्क्रम एफ बंटन

यदि X एक F(ν1, ν2 ) वितरित यादृच्छिक चर है तो 1 / X एक F(ν2, ν1 ) यादृच्छिक चर है।

द्विपद बंटन का व्युत्क्रम

इस बंटन के लिए कोई बंद रूप ज्ञात नहीं है। माध्य के लिए एक स्पर्शोन्मुख सन्निकटन ज्ञात है।[7]

जहां ई [] उम्मीद ऑपरेटर है, X एक यादृच्छिक चर है, ओ () और ओ () बड़े और छोटे बिग ओ नोटेशन हैं, एन नमूना आकार है, पी सफलता की संभावना है और एक चर है जो हो सकता है धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो।

त्रिकोणीय बंटन का व्युत्क्रम

निचले सीमा a, ऊपरी सीमा b और मोड c के साथ त्रिकोणीय बंटन के लिए, जहां a < b और a ≤ c ≤ b, व्युत्क्रम का मतलब द्वारा दिया जाता है

और द्वारा भिन्नता

.

व्युत्क्रम के दोनों क्षणों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात जब a, b, और c या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।

अन्य व्युत्क्रम बंटन

अन्य व्युत्क्रम बंटन में शामिल हैं

व्युत्क्रम-चाई-वर्ग बंटन
व्युत्क्रम-गामा बंटन
व्युत्क्रम-विशार्ट बंटन
व्युत्क्रम मैट्रिक्स गामा बंटन

अनुप्रयोग

पैमाने के मापदंडों के लिए बायेसियन अनुमान में पूर्व बंटन के रूप में व्युत्क्रम बंटन का व्यापक रूप से उपयोग किया जाता है।

यह भी देखें

संदर्भ

  1. Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625
  2. 2.0 2.1 2.2 Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  3. Hayya, Jack; Armstrong, Donald; Gressis, Nicolas (July 1975). "A Note on the Ratio of Two Normally Distributed Variables". Management Science. 21 (11): 1338–1341. doi:10.1287/mnsc.21.11.1338. JSTOR 2629897.
  4. 4.0 4.1 Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  5. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Section (4.1.1). doi:10.1016/j.jsv.2012.12.009.
  6. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Eq.(39)-(40). doi:10.1016/j.jsv.2012.12.009.
  7. Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)