व्युत्क्रम वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 113: Line 113:
<math>\frac{\sqrt{2}}{\sigma} F \left(\frac{p-\mu}{\sqrt{2}\sigma}\right)</math>.
<math>\frac{\sqrt{2}}{\sigma} F \left(\frac{p-\mu}{\sqrt{2}\sigma}\right)</math>.


इसके विपरीत, यदि शिफ्ट <math>p-\mu</math> विशुद्ध रूप से जटिल है, मतलब मौजूद है और एक स्केल्ड [[फदीवा समारोह|फदीवा फलन]] है, जिसका सटीक अभिव्यक्ति काल्पनिक भाग के संकेत पर निर्भर करता है,<math>\operatorname{Im}(p-\mu)</math>. दोनों ही मामलों में, विचरण माध्य का एक साधारण कार्य है।<ref>{{Cite journal
इसके विपरीत, यदि विस्थापन <math>p-\mu</math> शुद्ध सम्मिश्र है, तो माध्य का अस्तित्व है और यह एक सोपानी [[फदीवा समारोह|फदीवा फलन]] है, जिसका यथार्थ व्यंजक काल्पनिक भाग के चिह्न पर निर्भर करता है। दोनों ही स्थितियों में, प्रसरण माध्य का एक साधारण फलन है।<ref>{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 123: Line 123:
| at = Section (4.1.1)
| at = Section (4.1.1)
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref> इसलिए, भिन्नता को एक प्रमुख मूल्य अर्थ में माना जाना चाहिए <math>p-\mu</math> वास्तविक है, जबकि यह काल्पनिक भाग मौजूद है <math>p-\mu</math> शून्य नहीं है। ध्यान दें कि ये साधन और प्रसरण सटीक हैं, क्योंकि वे अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों की एक जोड़ी के साथ दो अनुपातों का सटीक सहप्रसरण <math>p_1</math> और <math>p_2</math> समान रूप से उपलब्ध है।<ref>{{Cite journal
}}</ref> इसलिए यदि <math>p-\mu</math> वास्तविक है, तो प्रसरण को एक मुख्य मान अर्थ में माना जाना चाहिए, जबकि इसका अस्तित्व होता है यदि <math>p-\mu</math> का काल्पनिक भाग अशून्य है। ध्यान दें कि ये माध्य और प्रसरण यथार्थ हैं, क्योंकि ये अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों <math>p_1</math> और <math>p_2</math> के एक युग्म के साथ दो अनुपातों का यथार्थ सहप्रसरण समान रूप से उपलब्ध है।<ref>{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 133: Line 133:
| at = Eq.(39)-(40)
| at = Eq.(39)-(40)
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref> एक [[जटिल सामान्य चर|जटिल प्रसामान्य चर]] के व्युत्क्रम का मामला <math>B</math>, विस्थापित या नहीं, विभिन्न विशेषताओं को प्रदर्शित करता है।<ref name="lecomte2013exact" />
}}</ref> एक [[जटिल सामान्य चर|सम्मिश्र प्रसामान्य चर]] <math>B</math> के व्युत्क्रम की स्थिति (विस्थापित या नहीं) विभिन्न विशेषताओं को प्रदर्शित करती है।<ref name="lecomte2013exact" />
=== व्युत्क्रम घातीय बंटन ===
=== व्युत्क्रम चरघातांकीय बंटन ===
अगर <math>X</math> दर पैरामीटर के साथ एक घातीय रूप से वितरित यादृच्छिक चर है <math>\lambda</math>, तब <math>Y=1/X</math> निम्नलिखित संचयी बंटन फलन है: <math>F_Y(y) = e^{-\lambda/y}</math>के लिए <math>y> 0</math>. ध्यान दें कि इस यादृच्छिक चर का अपेक्षित मान मौजूद नहीं है। व्युत्क्रम घातीय बंटन लुप्त होती वायरलेस संचार प्रणालियों के विश्लेषण में उपयोग पाता है।
यदि <math>X</math>, दर पैमाने <math>\lambda</math> के साथ एक घातीय रूप से वितरित यादृच्छिक चर है , तब <math>Y=1/X</math> में निम्नलिखित संचयी बंटन फलन है: <math>F_Y(y) = e^{-\lambda/y}</math>, <math>y> 0</math> के लिए। ध्यान दें कि इस यादृच्छिक चर के अपेक्षित मान का अस्तित्व नहीं है। व्युत्क्रम चरघातांकीय बंटन का उपयोग मंदन तारहीन संचार प्रणालियों के विश्लेषण में देखा जा सकता है।


=== व्युत्क्रम कॉची बंटन ===
=== व्युत्क्रम कैशी बंटन ===


यदि ''X'' एक कॉची वितरित (''μ'', ''σ'') यादृच्छिक चर है, तो 1 / ''X'' एक कॉची (''μ'' / ''C'', ''σ'' / ''C'' ) यादृच्छिक चर है जहाँ ''C'' = ''μ<sup>2</sup>'' + ''σ<sup>2</sup>'' है।
यदि ''X'' एक कैशी वितरित (''μ'', ''σ'') यादृच्छिक चर है, तो 1 / ''X'' एक कैशी (''μ'' / ''C'', ''σ'' / ''C'' ) यादृच्छिक चर होता है जहाँ ''C'' = ''μ<sup>2</sup>'' + ''σ<sup>2</sup>'' है।


=== व्युत्क्रम एफ बंटन ===
=== व्युत्क्रम F बंटन ===


यदि X एक F(ν''<sub>1</sub>'', ν<sub>2</sub> ) वितरित यादृच्छिक चर है तो 1 / X एक F(ν<sub>2</sub>, ν<sub>1</sub> ) यादृच्छिक चर है।
यदि ''X'' एक F(''ν<sub>1</sub>'', ''ν<sub>2</sub>'') वितरित यादृच्छिक चर है तो 1 / ''X'' एक F(''ν<sub>2</sub>'', ''ν<sub>1</sub>'') यादृच्छिक चर होता है।


=== द्विपद बंटन का व्युत्क्रम ===
=== द्विपद बंटन का व्युत्क्रम ===


इस बंटन के लिए कोई बंद रूप ज्ञात नहीं है। माध्य के लिए एक स्पर्शोन्मुख सन्निकटन ज्ञात है।<ref name="Cribari-Neto2000">Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
इस बंटन के लिए कोई संवृत रूप ज्ञात नहीं है। माध्य के लिए एक उपगामी सन्निकटन ज्ञात है।<ref name="Cribari-Neto2000">Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
</ref>
</ref>


<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>
<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>


जहां ई [] उम्मीद ऑपरेटर है, X एक यादृच्छिक चर है, () और () बड़े और छोटे [[बिग ओ नोटेशन]] हैं, एन नमूना आकार है, पी सफलता की संभावना है और एक चर है जो हो सकता है धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो।
जहाँ E[] प्रत्याशा संकारक है, ''X'' एक यादृच्छिक चर है, O() और o() बड़े और छोटे [[बिग ओ नोटेशन|o क्रम के फलन]] हैं, n प्रतिदर्श का आकार है, p सफलता की प्रायिकता है और a एक ऐसा चर है जो धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो सकता है।


===त्रिकोणीय बंटन का व्युत्क्रम===
===त्रिभुजाकार बंटन का व्युत्क्रम===


निचले सीमा a, ऊपरी सीमा b और मोड c के साथ [[त्रिकोणीय वितरण|त्रिकोणीय बंटन]] के लिए, जहां a < b और a ≤ c ≤ b, व्युत्क्रम का मतलब द्वारा दिया जाता है
निम्न सीमा ''a'', उच्च सीमा ''b'' और बहुलक ''c, जहाँ a < b और a ≤ c ≤ b,'' वाले [[त्रिकोणीय वितरण|त्रिभुजाकार बंटन]] के लिए व्युत्क्रम का माध्य


<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
और द्वारा भिन्नता
 
द्वारा और प्रसरण


<math> \sigma^2 = \frac{2 \left( \frac{ \mathrm{ln} \left(\frac{c}{a}\right) }{a-c} + \frac{ \mathrm{ln} \left(\frac{b}{c}\right) }{b-c} \right)}{a-b} - \mu^2</math>.
<math> \sigma^2 = \frac{2 \left( \frac{ \mathrm{ln} \left(\frac{c}{a}\right) }{a-c} + \frac{ \mathrm{ln} \left(\frac{b}{c}\right) }{b-c} \right)}{a-b} - \mu^2</math>.


व्युत्क्रम के दोनों क्षणों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात जब a, b, और c या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।
द्वारा दिया जाता है। व्युत्क्रम के दोनों आघूर्णों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात् जब ''a'', ''b'', और ''c,'' या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।


=== अन्य व्युत्क्रम बंटन ===
=== अन्य व्युत्क्रम बंटन ===


अन्य व्युत्क्रम बंटन में शामिल हैं
अन्य व्युत्क्रम बंटनों में निम्न सम्मिलित हैं
: व्युत्क्रम-चाई-वर्ग बंटन
: व्युत्क्रम-चाई-वर्ग बंटन
: [[उलटा-गामा वितरण|व्युत्क्रम-गामा बंटन]]
: [[उलटा-गामा वितरण|व्युत्क्रम-गामा बंटन]]
: [[उलटा-विशार्ट वितरण|व्युत्क्रम-विशार्ट बंटन]]
: [[उलटा-विशार्ट वितरण|व्युत्क्रम-विशार्ट बंटन]]
: [[उलटा मैट्रिक्स गामा वितरण|व्युत्क्रम मैट्रिक्स गामा बंटन]]
: [[उलटा मैट्रिक्स गामा वितरण|व्युत्क्रम आव्यूह गामा बंटन]]


== अनुप्रयोग ==
== अनुप्रयोग ==


पैमाने के मापदंडों के लिए बायेसियन अनुमान में पूर्व बंटन के रूप में व्युत्क्रम बंटन का व्यापक रूप से उपयोग किया जाता है।
पैमाने के मापदंडों के लिए बेज़ निष्कर्ष में व्युत्क्रम बंटन का व्यापक रूप से उपयोग पूर्व बंटन के रूप में किया जाता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:37, 13 February 2023

प्रायिकता सिद्धांत और सांख्यिकी में, व्युत्क्रम बंटन एक यादृच्छिक चर के व्युत्क्रम का बंटन है। व्युत्क्रम बंटन पैमाने के मापदंडों के लिए विशेष रूप से बेज़ संदर्भ में पूर्व बंटनों और उत्तर बंटनों में उत्पन्न होता है। यादृच्छिक चरों के बीजगणित में व्युत्क्रम बंटन, अनुपात बंटन वर्ग की विशेष स्थितियाँ हैं, जिसमें अंश यादृच्छिक चर में एक अपभ्रष्ट बंटन होता है।

मूल बंटन से संबंध

प्रसामान्यतः पूर्णतः धनात्मक समर्थन वाले यादृच्छिक चर X के प्रायिकता बंटन के लिए, व्युत्क्रम Y = 1 / X के बंटन को प्राप्त करना संभव है। यदि X का बंटन, घनत्व फलन f(x) और संचयी बंटन फलन F(x) के साथ सतत है, तो व्युत्क्रम के संचयी बंटन फलन, G(y) को इस प्रकार प्राप्त किया जाता है कि

तब Y के घनत्व फलन को संचयी बंटन फलन के अवकलज के रूप में प्राप्त किया जाता है:

उदाहरण

व्युत्क्रम बंटन

व्युत्क्रम बंटन में निम्न रूप का घनत्व फलन होता है।[1]

जहाँ का अर्थ "समानुपाती" है। यह इस प्रकार है कि इस स्थिति में व्युत्क्रम बंटन निम्न रूप का है

जो पुनः एक व्युत्क्रम बंटन है।

व्युत्क्रम समान बंटन

व्युत्क्रम समान वितरण
Parameters
Support
PDF
CDF
Mean
Median
Variance

यदि मूल यादृच्छिक चर X को अंतराल (a,b), जहाँ a>0 पर एकसमान वितरित किया जाता है, तो व्युत्क्रम चर Y = 1 / X में ऐसा व्युत्क्रम बंटन होता है जो (b−1,a−1) सीमा से मान ग्रहण करता है, और इस सीमा में प्रायिकता घनत्व फलन निम्न है

और अन्य कहीं यह फलन शून्य है।

समान सीमा के भीतर व्युत्क्रम का संचयी बंटन फलन निम्न है

उदाहरण के लिए, यदि X को अंतराल (0,1) पर एकसमान वितरित किया गया है, तो Y = 1 / X में घनत्व और संचयी बंटन फलन , जब होता है।

व्युत्क्रम t बंटन

माना X, k स्वातंत्र्य कोटियों वाला t वितरित यादृच्छिक चर है। तब इसका घनत्व फलन निम्न है

Y = 1 / X का घनत्व निम्न है

k = 1 के साथ, X और 1 / X के बंटन समान हैं (X तब कैशी बंटन (0,1) है)। यदि k > 1, तो 1 / X का बंटन द्विबहुलक है।[citation needed]

व्युत्क्रम प्रसामान्य बंटन

यदि चर X एक प्रसामान्य बंटन का अनुसरण करता है, तो व्युत्क्रम Y=1/X, एक व्युत्क्रम प्रसामान्य बंटन का अनुसरण करता है:[2]

मानक प्रसामान्य बंटन के व्युत्क्रम का आलेख

यदि चर X एक मानक प्रसामान्य बंटन का अनुसरण करता है, तो Y = 1/X एक व्युत्क्रम पर बहुलक वाले हैवी-टेल्ड और द्विबहुलक बंटन,[2] व्युत्क्रम मानक प्रसामान्य बंटन का अनुसरण करता है, जिसका घनत्व निम्न है

और प्रथम एवं उच्च क्रम के आघूर्णों का अस्तित्व नहीं हैं।[2] ऐसे व्युत्क्रम बंटनों और अनुपात बंटनों के लिए, अभी भी ऐसे अंतरालों के लिए प्रायिकताएँ परिभाषित हो सकती हैं, जिनकी गणना या तो मॉन्टे कार्लो सिमुलेशन द्वारा या कुछ स्थितियों में गियरी-हिंकले रूपान्तरण का उपयोग करके की जा सकती है।[3]

हालाँकि, विस्थापित व्युत्क्रम फलन की अधिक सामान्य स्थिति में, एक सामान्य प्रसामान्य बंटन के बाद के लिए, माध्य और प्रसरण सांख्यिकी एक मुख्य मान अर्थ में अस्तित्व में होते हैं, यदि ध्रुव और माध्य के बीच का अंतर का मान वास्तविक है। इस रूपांतरित यादृच्छिक चर (व्युत्क्रम विस्थापित प्रसामान्य बंटन) का अर्थ वास्तव में सोपानी डॉसन का फलन है:[4]

.

इसके विपरीत, यदि विस्थापन शुद्ध सम्मिश्र है, तो माध्य का अस्तित्व है और यह एक सोपानी फदीवा फलन है, जिसका यथार्थ व्यंजक काल्पनिक भाग के चिह्न पर निर्भर करता है। दोनों ही स्थितियों में, प्रसरण माध्य का एक साधारण फलन है।[5] इसलिए यदि वास्तविक है, तो प्रसरण को एक मुख्य मान अर्थ में माना जाना चाहिए, जबकि इसका अस्तित्व होता है यदि का काल्पनिक भाग अशून्य है। ध्यान दें कि ये माध्य और प्रसरण यथार्थ हैं, क्योंकि ये अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों और के एक युग्म के साथ दो अनुपातों का यथार्थ सहप्रसरण समान रूप से उपलब्ध है।[6] एक सम्मिश्र प्रसामान्य चर के व्युत्क्रम की स्थिति (विस्थापित या नहीं) विभिन्न विशेषताओं को प्रदर्शित करती है।[4]

व्युत्क्रम चरघातांकीय बंटन

यदि , दर पैमाने के साथ एक घातीय रूप से वितरित यादृच्छिक चर है , तब में निम्नलिखित संचयी बंटन फलन है: , के लिए। ध्यान दें कि इस यादृच्छिक चर के अपेक्षित मान का अस्तित्व नहीं है। व्युत्क्रम चरघातांकीय बंटन का उपयोग मंदन तारहीन संचार प्रणालियों के विश्लेषण में देखा जा सकता है।

व्युत्क्रम कैशी बंटन

यदि X एक कैशी वितरित (μ, σ) यादृच्छिक चर है, तो 1 / X एक कैशी (μ / C, σ / C ) यादृच्छिक चर होता है जहाँ C = μ2 + σ2 है।

व्युत्क्रम F बंटन

यदि X एक F(ν1, ν2) वितरित यादृच्छिक चर है तो 1 / X एक F(ν2, ν1) यादृच्छिक चर होता है।

द्विपद बंटन का व्युत्क्रम

इस बंटन के लिए कोई संवृत रूप ज्ञात नहीं है। माध्य के लिए एक उपगामी सन्निकटन ज्ञात है।[7]

जहाँ E[] प्रत्याशा संकारक है, X एक यादृच्छिक चर है, O() और o() बड़े और छोटे o क्रम के फलन हैं, n प्रतिदर्श का आकार है, p सफलता की प्रायिकता है और a एक ऐसा चर है जो धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो सकता है।

त्रिभुजाकार बंटन का व्युत्क्रम

निम्न सीमा a, उच्च सीमा b और बहुलक c, जहाँ a < b और a ≤ c ≤ b, वाले त्रिभुजाकार बंटन के लिए व्युत्क्रम का माध्य

द्वारा और प्रसरण

.

द्वारा दिया जाता है। व्युत्क्रम के दोनों आघूर्णों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात् जब a, b, और c, या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।

अन्य व्युत्क्रम बंटन

अन्य व्युत्क्रम बंटनों में निम्न सम्मिलित हैं

व्युत्क्रम-चाई-वर्ग बंटन
व्युत्क्रम-गामा बंटन
व्युत्क्रम-विशार्ट बंटन
व्युत्क्रम आव्यूह गामा बंटन

अनुप्रयोग

पैमाने के मापदंडों के लिए बेज़ निष्कर्ष में व्युत्क्रम बंटन का व्यापक रूप से उपयोग पूर्व बंटन के रूप में किया जाता है।

यह भी देखें

संदर्भ

  1. Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625
  2. 2.0 2.1 2.2 Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  3. Hayya, Jack; Armstrong, Donald; Gressis, Nicolas (July 1975). "A Note on the Ratio of Two Normally Distributed Variables". Management Science. 21 (11): 1338–1341. doi:10.1287/mnsc.21.11.1338. JSTOR 2629897.
  4. 4.0 4.1 Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  5. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Section (4.1.1). doi:10.1016/j.jsv.2012.12.009.
  6. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Eq.(39)-(40). doi:10.1016/j.jsv.2012.12.009.
  7. Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)