पूर्णतः असंबद्ध: Difference between revisions
(→गुण) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 54: | Line 54: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:54, 14 February 2023
संस्थितिविज्ञान और गणित की संबंधित शाखाओं में, पूर्णतः वियोजित अंतर एक टोपोलॉजिकल स्थान है जिसमें उपसमुच्चय के रूप में जुड़ा हुआ स्थान, एकल होता है। प्रत्येक टोपोलॉजिकल स्थान में, एकल समुच्चय सदैव जुड़े होते हैं और पूर्णतः वियोजित अंतर में, ये एकमात्र सम्बद्ध उपसमुच्चय होता हैं।
पूर्णतः वियोजित अंतर का एक महत्वपूर्ण उदाहरण कैंटर समुच्चय है, जो पी-एडिक पूर्णांकों के समुच्चय के समरूपी है। अन्य उदाहरण, बीजगणितीय संख्या सिद्धांत में पी-एडिक पूर्णांकों Qp का क्षेत्र है।
परिभाषा
टोपोलॉजिकल स्थान X पूर्णतः वियोजित अंतर है यदि सम्बद्ध घटक X एकल-बिन्दु समुच्चय के भीतर हैं। तुलनात्मक रूप से यदि सभी घटक पथ एक-बिंदु समुच्चय हैं तो टोपोलॉजिकल स्थान पूर्णतः असंबद्ध हों जाएगा।
पूर्णतया अलग स्थान की एक और निकट संबंधित धारणा की है, यानी एक ऐसा स्थान जहां अर्ध-घटक एकल हैं। टोपोलॉजिकल स्थान X पूर्णतः वियोजित अंतर है यदि सभी के लिए एकल है समान रूप से, अलग-अलग बिंदुओं के प्रत्येक युग्मों के लिए , निकटवर्ती का ऐसा युग्म है कि .
सभी पूर्णतया अलग स्थान स्पष्ट रूप से पूरी तरह से वियोजित है,परंतु इसका विपरीत मीट्रिक स्थान के लिए भी असंगत है। उदाहरण के लिए, यदि को कैंटर टीपी मान लिया जाए जो कि नस्टर-कुराटोस्की पंखा है, जिसके शीर्ष को हटा दिया गया है। तब पूरी तरह से वियोजित हो गया है, परंतु इसके अर्ध-घटक एकल नहीं हैं। स्थानीय रूप से संक्षिप्त हौसडॉर्फ रिक्त स्थान के लिए दो धारणाएं समकक्ष हैं।
दुर्भाग्य से साहित्य में [1], पूर्णतः वियोजित अंतर को कभी-कभी वंशानुगत रूप से वियोजित किया जाता है, जबकि 'पूर्णतः वियोजित अंतर' शब्दावली का उपयोग पूरी तरह से वियोजित स्थानों के लिए किया जाता है।
उदाहरण
निम्नलिखित पूरी तरह से वियोजित किए गए रिक्त स्थान के उदाहरण हैं:
- असतत रिक्त स्थान
- परिमेय संख्याएँ
- अपरिमेय संख्याएँ
- पी-एडिक नंबर; सामान्यतः, सभी अनंत समूह पूरी तरह से वियोजित हो जाते हैं।
- कैंटर समुच्चय और कैंटर स्थान
- बायर स्थान (समुच्चय सिद्धांत)
- सोरगेनफ्रे रेखा
- छोटे आगमनात्मक आयाम 0 का प्रत्येक हॉसडॉर्फ स्थान पूरी तरह से वियोजित हो गया है
- एर्डोस स्थान
- पूर्णतः वियोजित अंतर, हौसडॉर्फ रिक्त स्थान
- पाषाण स्थान
- नास्टर-कुराटोस्की पंखा जुड़े हुए स्थान का उदाहरण प्रदान करता है, जैसे कि एक बिंदु को हटाने से पूर्णतः वियोजित अंतर उत्पन्न होता है।
गुण
- पूर्णतः वियोजित अंतर का उपसमष्टि, उत्पाद , और विसंधित संघ पूरी तरह से वियोजित हो गए हैं।
- पूर्णतः वियोजित अंतर T1 स्थान हैं चूंकि एकल समुच्चय बंद हैं।
- पूर्णतः वियोजित अंतर की निरंतर छवियां पूरी तरह से वियोजित नहीं होती हैं, वास्तव में, प्रत्येक संक्षिप्त मीट्रिक स्थान, कैंटर समुच्चय की निरंतर छवि होती है।
- स्थानीय रूप से संक्षिप्त हौसडॉर्फ स्थान में छोटा आगमनात्मक आयाम 0 है यदि यह पूरी तरह से वियोजित हो।
- सभी पूर्णतः वियोजित संक्षिप्त मीट्रिक स्थान असतत रिक्त स्थान के एक गणनीय उत्पाद के उप समुच्चय के लिए समरूपी है।
- यह सामान्यतः सत्य नहीं है कि पूर्णतः वियोजित अंतर में हर खुला समुच्चय भी बंद है।
- यह सामान्यतः सत्य नहीं है कि पूर्णतः वियोजित अंतर में हर खुले समुच्चय का बंद होना संभव है, यानी हर पूर्णतः वियोजित हौसडॉर्फ, अत्यधिक वियोजित स्थान नहीं है।
किसी दिए गए स्थान के पूर्णतः वियोजित भागफल स्थान का निर्माण करना
मान लीजिए की एक यादृच्छिक टोपोलॉजिकल स्थान है। मान लीजिए है यदि जहाँ सबसे बड़े युग्मक उप समुच्चय को दर्शाता है। यह स्पष्ट रूप से एक तुल्यता संबंध है जिसके तुल्यता वर्ग के युग्मक घटक हैं . दिया गया है की भागफल टोपोलॉजी के लिए निरंतर है। थोड़े से प्रयास से हम इसे देख सकते हैं पूरी तरह से वियोजित हो गया है।
वास्तव में यह स्थान न केवल पूर्णतः असंबद्ध भागफल है बल्कि निश्चित अर्थ में सबसे बड़ा है और निम्नलिखित सार्वभौमिक गुण धारण करता है: किसी भी पूर्णत असंबद्ध स्थान के लिए और , के लिए अनूठा सतत मानचित्र उपलब्ध है जहाँ साथ .निरंतर है।
यह भी देखें
- अत्यधिक वियोजित किया गया स्थान
- पूरी तरह से अलग समूह
संदर्भ
- ↑ Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Sigma Series in Pure Mathematics. ISBN 3-88538-006-4.
- Willard, Stephen (2004), General topology, Dover Publications, ISBN 978-0-486-43479-7, MR 2048350 (reprint of the 1970 original, MR0264581)