संधारित्र के अनुप्रयोग: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Uses Of Capacitors In Daily Life.}} File:Verschiedene Kondensatoren 2.JPG|thumb|right|इलेक्ट्रॉनिक उपकरणों के...")
 
No edit summary
Line 1: Line 1:
{{short description|Uses Of Capacitors In Daily Life.}}
{{short description|Uses Of Capacitors In Daily Life.}}
[[File:Verschiedene Kondensatoren 2.JPG|thumb|right|इलेक्ट्रॉनिक उपकरणों के लिए कुछ अलग कैपेसिटर]][[संधारित्र]] के इलेक्ट्रॉनिक और इलेक्ट्रिकल सिस्टम में कई उपयोग हैं। वे इतने सर्वव्यापी हैं कि यह दुर्लभ है कि किसी विद्युत उत्पाद में किसी उद्देश्य के लिए कम से कम एक शामिल न हो।
[[File:Verschiedene Kondensatoren 2.JPG|thumb|right|विद्युतीय उपकरणों के लिए कुछ अलग संधारित्र]][[संधारित्र]] के विद्युतीय और विद्युतकीय प्रणाली में कई उपयोग हैं। वे इतने सर्वव्यापी हैं कि यह दुर्लभ है कि किसी विद्युत उत्पाद में किसी उद्देश्य के लिए कम से कम एक शामिल न हो।


== ऊर्जा भंडारण ==
== ऊर्जा भंडारण ==
[[File:Flash.JPG|thumb|right|विंटेज [[तत्काल कैमरा]] में [[कैमरा फ़्लैश]] के लिए [[ऊर्जा भंडारण]] कैपेसिटर]]एक संधारित्र विद्युत ऊर्जा को तब संग्रहीत कर सकता है जब वह अपने चार्जिंग सर्किट से जुड़ा होता है और जब इसे अपने चार्जिंग सर्किट से डिस्कनेक्ट किया जाता है, तो यह उस संग्रहित ऊर्जा को नष्ट कर सकता है, इसलिए इसे एक अस्थायी [[बैटरी (बिजली)]] के रूप में इस्तेमाल किया जा सकता है। कैपेसिटर आमतौर पर बिजली की आपूर्ति बनाए रखने के लिए इलेक्ट्रॉनिक उपकरणों में उपयोग किया जाता है, जबकि बैटरी बदली जा रही है। (यह वाष्पशील स्मृति में सूचना के नुकसान को रोकता है।)
[[File:Flash.JPG|thumb|right|विंटेज [[तत्काल कैमरा]] में [[कैमरा फ़्लैश]] के लिए [[ऊर्जा भंडारण]] संधारित्र]]एक संधारित्र विद्युत ऊर्जा को तब संग्रहीत कर सकता है जब वह अपने आवेशित परिपथ से जुड़ा होता है और जब इसे अपने आवेशित परिपथ से विच्छेदित किया जाता है, तो यह उस संग्रहित ऊर्जा को नष्ट कर सकता है, इसलिए इसे एक अस्थायी [[बैटरी (बिजली)|बैटरी]] के रूप में प्रयोग किया जा सकता है। संधारित्र सामान्यतः विद्युत की आपूर्ति बनाए रखने के लिए विद्युतीय उपकरणों में उपयोग किया जाता है, जबकि बैटरी बदली जा रही है। यह वाष्पशील स्मृति में सूचना के नुकसान को रोकता है।


पारंपरिक इलेक्ट्रोस्टैटिक कैपेसिटर 360 जूल प्रति किलोग्राम ऊर्जा घनत्व से कम प्रदान करते हैं, जबकि विकासशील तकनीक का उपयोग करने वाले कैपेसिटर 2.52 [[किलो-]]जूल प्रति किलोग्राम से अधिक प्रदान कर सकते हैं।<ref>[http://cleantech.com/news/4278/next-gen-car-solution-capacitor Next-gen car solution? Scientists expand uses for electrostatic capacitor] {{webarchive |url=https://web.archive.org/web/20090429070618/http://cleantech.com/news/4278/next-gen-car-solution-capacitor |date=April 29, 2009 }}</ref>
पारंपरिक इलेक्ट्रोस्टैटिक संधारित्र 360 जूल प्रति किलोग्राम ऊर्जा घनत्व से कम प्रदान करते हैं, जबकि विकासशील तकनीक का उपयोग करने वाले संधारित्र 2.52 [[किलो-]]जूल प्रति किलोग्राम से अधिक प्रदान कर सकते हैं।<ref>[http://cleantech.com/news/4278/next-gen-car-solution-capacitor Next-gen car solution? Scientists expand uses for electrostatic capacitor] {{webarchive |url=https://web.archive.org/web/20090429070618/http://cleantech.com/news/4278/next-gen-car-solution-capacitor |date=April 29, 2009 }}</ref>
[[कार ऑडियो]] सिस्टम में, बड़े कैपेसिटर मांग पर उपयोग करने के लिए [[एम्पलीफायर]] के लिए ऊर्जा संग्रहित करते हैं।
[[कार ऑडियो]] सिस्टम में, बड़े संधारित्र मांग पर उपयोग करने के लिए [[एम्पलीफायर]] के लिए ऊर्जा संग्रहित करते हैं।


[[सेवा जीवन]] का विस्तार करने के लिए एक निर्बाध विद्युत आपूर्ति (यूपीएस) को रखरखाव-मुक्त कैपेसिटर से लैस किया जा सकता है।<ref>[http://www.industrial-europe.com/showArticle.jhtml?articleID=210602105&cid=NL_industrialeu industrial-europe.com]{{dead link|date=October 2016 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
[[सेवा जीवन]] का विस्तार करने के लिए एक निर्बाध विद्युत आपूर्ति (यूपीएस) को रखरखाव-मुक्त संधारित्र से लैस किया जा सकता है।<ref>[http://www.industrial-europe.com/showArticle.jhtml?articleID=210602105&cid=NL_industrialeu industrial-europe.com]{{dead link|date=October 2016 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>




== [[स्पंदित शक्ति]] और हथियार ==
== [[स्पंदित शक्ति]] और हथियार ==
बड़े, विशेष रूप से निर्मित, कम-[[अधिष्ठापन]] उच्च-वोल्टेज कैपेसिटर (संधारित्र बैंक) के समूह का उपयोग कई स्पंदित बिजली अनुप्रयोगों के लिए करंट की विशाल दालों की आपूर्ति के लिए किया जाता है। इनमें [[विद्युत चुम्बकीय गठन]], [[मार्क्स जनरेटर]], स्पंदित [[लेज़र]] (विशेष रूप से [[चाय लेजर]]), [[नाड़ी बनाने नेटवर्क]], [[फ्यूजन शक्ति]] रिसर्च और [[कण त्वरक]] शामिल हैं।
बड़े, विशेष रूप से निर्मित, कम-[[अधिष्ठापन]] उच्च-वोल्टेज संधारित्र (संधारित्र बैंक) के समूह का उपयोग कई स्पंदित विद्युत अनुप्रयोगों के लिए करंट की विशाल दालों की आपूर्ति के लिए किया जाता है। इनमें [[विद्युत चुम्बकीय गठन]], [[मार्क्स जनरेटर]], स्पंदित [[लेज़र]] (विशेष रूप से [[चाय लेजर]]), [[नाड़ी बनाने नेटवर्क]], [[फ्यूजन शक्ति]] रिसर्च और [[कण त्वरक]] शामिल हैं।


बड़े कैपेसिटर बैंक (जलाशयों) का उपयोग [[परमाणु हथियार]]ों और अन्य विशेष हथियारों में विस्फोट-ब्रिजवायर डेटोनेटर या [[स्लैक्स डेटोनेटर]] के लिए ऊर्जा स्रोतों के रूप में किया जाता है। [[विद्युत चुंबकत्व]] [[वाहन कवच]] और इलेक्ट्रोमैग्नेटिक [[रेलगन]]्स या कॉइलगन्स के लिए पावर स्रोतों के रूप में कैपेसिटर के बैंकों का उपयोग करके प्रायोगिक कार्य चल रहा है।
बड़े संधारित्र बैंक (जलाशयों) का उपयोग [[परमाणु हथियार]]ों और अन्य विशेष हथियारों में विस्फोट-ब्रिजवायर डेटोनेटर या [[स्लैक्स डेटोनेटर]] के लिए ऊर्जा स्रोतों के रूप में किया जाता है। [[विद्युत चुंबकत्व]] [[वाहन कवच]] और इलेक्ट्रोमैग्नेटिक [[रेलगन]]्स या कॉइलगन्स के लिए पावर स्रोतों के रूप में संधारित्र के बैंकों का उपयोग करके प्रायोगिक कार्य चल रहा है।


== पावर कंडीशनिंग ==
== पावर कंडीशनिंग ==


जलाशय कैपेसिटर का उपयोग बिजली की आपूर्ति में किया जाता है जहां वे एक पूर्ण या आधा लहर सुधारक के उत्पादन को सुचारू करते हैं। उनका उपयोग चार्ज पंप सर्किट में इनपुट वोल्टेज की तुलना में उच्च वोल्टेज की पीढ़ी में ऊर्जा भंडारण तत्व के रूप में भी किया जा सकता है।
जलाशय संधारित्र का उपयोग विद्युत की आपूर्ति में किया जाता है जहां वे एक पूर्ण या आधा लहर सुधारक के उत्पादन को सुचारू करते हैं। उनका उपयोग चार्ज पंप परिपथ  में इनपुट वोल्टेज की तुलना में उच्च वोल्टेज की पीढ़ी में ऊर्जा भंडारण तत्व के रूप में भी किया जा सकता है।


कैपेसिटर सिग्नल या कंट्रोल सर्किट के लिए वर्तमान उतार-चढ़ाव को सुचारू करने के लिए अधिकांश इलेक्ट्रॉनिक उपकरणों के डीसी पावर सर्किट के साथ समानांतर में जुड़े हुए हैं। उदाहरण के लिए, ऑडियो उपकरण, इस तरह से कई कैपेसिटर का उपयोग करता है, सिग्नल सर्किट्री में आने से पहले पावर लाइन हम को दूर करने के लिए। कैपेसिटर डीसी पावर स्रोत के लिए स्थानीय रिजर्व के रूप में कार्य करते हैं, और बिजली आपूर्ति से एसी धाराओं को बाईपास करते हैं। इसका उपयोग कार ऑडियो अनुप्रयोगों में किया जाता है, जब एक कठोर संधारित्र लीड-एसिड कार बैटरी के अधिष्ठापन और प्रतिरोध के लिए क्षतिपूर्ति करता है।
संधारित्र सिग्नल या कंट्रोल परिपथ  के लिए वर्तमान उतार-चढ़ाव को सुचारू करने के लिए अधिकांश विद्युतीय उपकरणों के डीसी पावर परिपथ  के साथ समानांतर में जुड़े हुए हैं। उदाहरण के लिए, ऑडियो उपकरण, इस तरह से कई संधारित्र का उपयोग करता है, सिग्नल परिपथ ्री में आने से पहले पावर लाइन हम को दूर करने के लिए। संधारित्र डीसी पावर स्रोत के लिए स्थानीय रिजर्व के रूप में कार्य करते हैं, और विद्युत आपूर्ति से एसी धाराओं को बाईपास करते हैं। इसका उपयोग कार ऑडियो अनुप्रयोगों में किया जाता है, जब एक कठोर संधारित्र लीड-एसिड कार बैटरी के अधिष्ठापन और प्रतिरोध के लिए क्षतिपूर्ति करता है।


== पावर फैक्टर करेक्शन ==
== पावर फैक्टर करेक्शन ==
विद्युत शक्ति वितरण में, कैपेसिटर का उपयोग पावर फैक्टर करेक्शन के लिए किया जाता है। ऐसे कैपेसिटर अक्सर तीन कैपेसिटर के रूप में आते हैं जो तीन-चरण विद्युत भार के रूप में जुड़े होते हैं। आमतौर पर, इन कैपेसिटर के मान फैराड में नहीं बल्कि वोल्ट-एम्पीयर रिएक्टिव (VAr) में प्रतिक्रियाशील शक्ति के रूप में दिए जाते हैं। इसका उद्देश्य इंडक्शन मोटर्स, इलेक्ट्रिक मोटर्स और ट्रांसमिशन लाइनों जैसे उपकरणों से आगमनात्मक लोडिंग का प्रतिकार करना है ताकि लोड को प्राथमिक रूप से प्रतिरोधक बनाया जा सके। व्यक्तिगत मोटर या लैंप लोड में पावर फैक्टर सुधार के लिए कैपेसिटर हो सकते हैं, या कैपेसिटर के बड़े सेट (आमतौर पर स्वचालित स्विचिंग डिवाइस के साथ) एक इमारत के भीतर या एक बड़े उपयोगिता विद्युत सबस्टेशन में लोड सेंटर में स्थापित किए जा सकते हैं। हाई-वोल्टेज डायरेक्ट करंट ट्रांसमिशन सिस्टम में, पावर फैक्टर करेक्शन कैपेसिटर में हार्मोनिक करंट को दबाने के लिए ट्यूनिंग इंडिकेटर्स हो सकते हैं जो अन्यथा एसी पावर सिस्टम में इंजेक्ट किए जाएंगे।
विद्युत शक्ति वितरण में, संधारित्र का उपयोग पावर फैक्टर करेक्शन के लिए किया जाता है। ऐसे संधारित्र अक्सर तीन संधारित्र के रूप में आते हैं जो तीन-चरण विद्युत भार के रूप में जुड़े होते हैं। सामान्यतः, इन संधारित्र के मान फैराड में नहीं बल्कि वोल्ट-एम्पीयर रिएक्टिव (VAr) में प्रतिक्रियाशील शक्ति के रूप में दिए जाते हैं। इसका उद्देश्य इंडक्शन मोटर्स, इलेक्ट्रिक मोटर्स और ट्रांसमिशन लाइनों जैसे उपकरणों से आगमनात्मक लोडिंग का प्रतिकार करना है ताकि लोड को प्राथमिक रूप से प्रतिरोधक बनाया जा सके। व्यक्तिगत मोटर या लैंप लोड में पावर फैक्टर सुधार के लिए संधारित्र हो सकते हैं, या संधारित्र के बड़े सेट ( सामान्यतः स्वचालित स्विचिंग डिवाइस के साथ) एक इमारत के भीतर या एक बड़े उपयोगिता विद्युत सबस्टेशन में लोड सेंटर में स्थापित किए जा सकते हैं। हाई-वोल्टेज डायरेक्ट करंट ट्रांसमिशन सिस्टम में, पावर फैक्टर करेक्शन संधारित्र में हार्मोनिक करंट को दबाने के लिए ट्यूनिंग इंडिकेटर्स हो सकते हैं जो अन्यथा एसी पावर सिस्टम में इंजेक्ट किए जाएंगे।


== दमन और युग्मन ==
== दमन और युग्मन ==
अवांछनीय आवृत्तियों को दबाने के लिए उपयोग किए जाने वाले कैपेसिटर को कभी-कभी फ़िल्टर कैपेसिटर कहा जाता है। वे इलेक्ट्रिकल और इलेक्ट्रॉनिक उपकरणों में आम हैं, और कई अनुप्रयोगों को कवर करते हैं, जैसे:
अवांछनीय आवृत्तियों को दबाने के लिए उपयोग किए जाने वाले संधारित्र को कभी-कभी फ़िल्टर संधारित्र कहा जाता है। वेविद्युतीय और विद्युतीय उपकरणों में आम हैं, और कई अनुप्रयोगों को कवर करते हैं, जैसे:
* [[एकदिश धारा]] (DC) पावर रेल पर गड़बड़ हटाना
* [[एकदिश धारा]] (DC) पावर रेल पर गड़बड़ हटाना
* उपकरण में प्रवेश करने या छोड़ने वाले सिग्नल या पावर लाइनों के लिए [[रेडियो आवृत्ति हस्तक्षेप]] (RFI) हटाना
* उपकरण में प्रवेश करने या छोड़ने वाले सिग्नल या पावर लाइनों के लिए [[रेडियो आवृत्ति हस्तक्षेप]] (RFI) हटाना
* डीसी [[बिजली की आपूर्ति]] को और सुचारू करने के लिए [[विद्युत् दाब नियामक]] के बाद कैपेसिटर का उपयोग किया जाता है
* डीसी [[बिजली की आपूर्ति|विद्युत की आपूर्ति]] को और सुचारू करने के लिए [[विद्युत् दाब नियामक]] के बाद संधारित्र का उपयोग किया जाता है
* ऑडियो, [[माध्यमिक आवृत्ति]] (IF) या [[आकाशवाणी आवृति]] (RF) [[इलेक्ट्रॉनिक फिल्टर]] (जैसे लो पास, हाई पास, नॉच, आदि) में इस्तेमाल होने वाले कैपेसिटर।
* ऑडियो, [[माध्यमिक आवृत्ति]] (IF) या [[आकाशवाणी आवृति]] (RF) [[इलेक्ट्रॉनिक फिल्टर|विद्युतीय फिल्टर]] (जैसे लो पास, हाई पास, नॉच, आदि) में इस्तेमाल होने वाले संधारित्र।
* आर्क दमन, जैसे [[स्पार्क-इग्निशन इंजन]] में संपर्क ब्रेकर या 'पॉइंट्स' के पार
* आर्क दमन, जैसे [[स्पार्क-इग्निशन इंजन]] में संपर्क ब्रेकर या 'पॉइंट्स' के पार


=== सिग्नल कपलिंग ===
=== सिग्नल कपलिंग ===
{{main|Capacitive coupling}}
{{main|Capacitive coupling}}
चूंकि कैपेसिटर एसी पास करते हैं लेकिन डीसी [[सिग्नल (सूचना सिद्धांत)]] को अवरुद्ध करते हैं (जब लागू डीसी वोल्टेज तक चार्ज किया जाता है), तो उन्हें अक्सर सिग्नल के एसी और डीसी घटकों को अलग करने के लिए उपयोग किया जाता है। इस विधि को एसी कपलिंग या कैपेसिटिव कपलिंग के रूप में जाना जाता है। यहां, कैपेसिटेंस का एक बड़ा मूल्य, जिसका मूल्य सटीक रूप से नियंत्रित करने की आवश्यकता नहीं है, लेकिन जिसका रिएक्शन (इलेक्ट्रॉनिक्स) सिग्नल फ्रीक्वेंसी पर छोटा है, कार्यरत है।
चूंकि संधारित्र एसी पास करते हैं लेकिन डीसी [[सिग्नल (सूचना सिद्धांत)]] को अवरुद्ध करते हैं (जब लागू डीसी वोल्टेज तक चार्ज किया जाता है), तो उन्हें अक्सर सिग्नल के एसी और डीसी घटकों को अलग करने के लिए उपयोग किया जाता है। इस विधि को एसी कपलिंग या कैपेसिटिव कपलिंग के रूप में जाना जाता है। यहां, कैपेसिटेंस का एक बड़ा मूल्य, जिसका मूल्य सटीक रूप से नियंत्रित करने की आवश्यकता नहीं है, लेकिन जिसका रिएक्शन ( विद्युतीय्स) सिग्नल फ्रीक्वेंसी पर छोटा है, कार्यरत है।


=== डिकूपिंग ===
=== डिकूपिंग ===
{{main|Decoupling capacitor}}
{{main|Decoupling capacitor}}
[[File:Capacitors x2y.jpg|thumb|right|सिरैमिक X2Y डीकपलिंग कैपेसिटर]]एक [[decoupling संधारित्र]] एक कैपेसिटर होता है जिसका उपयोग सर्किट के एक हिस्से को दूसरे से अलग करने के लिए किया जाता है। अन्य सर्किट तत्वों के कारण होने वाले शोर को कैपेसिटर के माध्यम से शंट किया जाता है, जिससे बाकी सर्किट पर उनका प्रभाव कम हो जाता है। यह आमतौर पर बिजली की आपूर्ति और जमीन के बीच उपयोग किया जाता है।
[[File:Capacitors x2y.jpg|thumb|right|सिरैमिक X2Y डीकपलिंग संधारित्र]]एक [[decoupling संधारित्र]] एक संधारित्र होता है जिसका उपयोग परिपथ  के एक हिस्से को दूसरे से अलग करने के लिए किया जाता है। अन्य परिपथ  तत्वों के कारण होने वाले शोर को संधारित्र के माध्यम से शंट किया जाता है, जिससे बाकी परिपथ  पर उनका प्रभाव कम हो जाता है। यह सामान्यतः  विद्युत की आपूर्ति और जमीन के बीच उपयोग किया जाता है।
उच्च आवृत्तियों के लिए एक वैकल्पिक नाम [[बायपास संधारित्र]] है क्योंकि इसका उपयोग बिजली की आपूर्ति या सर्किट के अन्य उच्च प्रतिबाधा घटक को बायपास करने के लिए किया जाता है।
उच्च आवृत्तियों के लिए एक वैकल्पिक नाम [[बायपास संधारित्र]] है क्योंकि इसका उपयोग विद्युत की आपूर्ति या परिपथ  के अन्य उच्च प्रतिबाधा घटक को बायपास करने के लिए किया जाता है।


=== हाई-पास और लो-पास फिल्टर ===
=== हाई-पास और लो-पास फिल्टर ===


{{Further|High-pass filter|Low-pass filter}}
{{Further|High-pass filter|Low-pass filter}}
एक [[उच्च पास फिल्टर]] (एचपीएफ) एक इलेक्ट्रॉनिक फिल्टर है जो एक निश्चित कटऑफ [[आवृत्ति]] से अधिक आवृत्ति के साथ सिग्नल पास करता है और कटऑफ आवृत्ति से कम आवृत्तियों के साथ संकेतों को क्षीण करता है। प्रत्येक आवृत्ति के लिए क्षीणन की मात्रा फ़िल्टर डिज़ाइन पर निर्भर करती है। एक उच्च-पास फ़िल्टर आमतौर पर एक रैखिक समय-अपरिवर्तनीय प्रणाली के रूप में तैयार किया जाता है। इसे कभी-कभी लो-कट फिल्टर या बास-कट फिल्टर कहा जाता है। [1] हाई-पास फिल्टर के कई उपयोग हैं, जैसे डीसी को गैर-शून्य औसत वोल्टेज या रेडियो आवृत्ति उपकरणों के प्रति संवेदनशील सर्किट्री से अवरुद्ध करना। [[बैंडपास]] फ़िल्टर बनाने के लिए उनका उपयोग कम-पास फ़िल्टर के संयोजन के साथ भी किया जा सकता है।
एक [[उच्च पास फिल्टर]] (एचपीएफ) एक विद्युतीय फिल्टर है जो एक निश्चित कटऑफ [[आवृत्ति]] से अधिक आवृत्ति के साथ सिग्नल पास करता है और कटऑफ आवृत्ति से कम आवृत्तियों के साथ संकेतों को क्षीण करता है। प्रत्येक आवृत्ति के लिए क्षीणन की मात्रा फ़िल्टर डिज़ाइन पर निर्भर करती है। एक उच्च-पास फ़िल्टर सामान्यतः एक रैखिक समय-अपरिवर्तनीय प्रणाली के रूप में तैयार किया जाता है। इसे कभी-कभी लो-कट फिल्टर या बास-कट फिल्टर कहा जाता है। [1] हाई-पास फिल्टर के कई उपयोग हैं, जैसे डीसी को गैर-शून्य औसत वोल्टेज या रेडियो आवृत्ति उपकरणों के प्रति संवेदनशील परिपथ ्री से अवरुद्ध करना। [[बैंडपास]] फ़िल्टर बनाने के लिए उनका उपयोग कम-पास फ़िल्टर के संयोजन के साथ भी किया जा सकता है।


[[लो पास फिल्टर]] (LPF) एक फिल्टर है जो एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ संकेतों को पास करता है और कटऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। फ़िल्टर की सटीक आवृत्ति प्रतिक्रिया फ़िल्टर डिज़ाइन पर निर्भर करती है। फ़िल्टर को कभी-कभी ऑडियो अनुप्रयोगों में हाई-कट फ़िल्टर या [[तिहरा कट फिल्टर]] कहा जाता है। एक निम्न-पास फ़िल्टर एक उच्च-पास फ़िल्टर का पूरक है।
[[लो पास फिल्टर]] (LPF) एक फिल्टर है जो एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ संकेतों को पास करता है और कटऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। फ़िल्टर की सटीक आवृत्ति प्रतिक्रिया फ़िल्टर डिज़ाइन पर निर्भर करती है। फ़िल्टर को कभी-कभी ऑडियो अनुप्रयोगों में हाई-कट फ़िल्टर या [[तिहरा कट फिल्टर]] कहा जाता है। एक निम्न-पास फ़िल्टर एक उच्च-पास फ़िल्टर का पूरक है।


=== शोर फिल्टर और स्नबर्स ===
=== शोर फिल्टर और स्नबर्स ===
[[File:GTO-P1180590b.JPG|thumb|right|स्क्रू टर्मिनलों के साथ हेवी-ड्यूटी स्नबर कैपेसिटर]]जब एक इंडक्टिव सर्किट खोला जाता है, तो इंडक्शन के माध्यम से करंट जल्दी से ढह जाता है, जिससे स्विच या रिले के ओपन सर्किट में एक बड़ा वोल्टेज बन जाता है। यदि अधिष्ठापन काफी बड़ा है, तो ऊर्जा एक विद्युत चिंगारी उत्पन्न करेगी, जिससे संपर्क बिंदु ऑक्सीकरण, बिगड़ना, या कभी-कभी एक साथ वेल्ड हो जाते हैं, या एक ठोस-अवस्था स्विच को नष्ट कर देते हैं। नए खुले सर्किट में एक [[स्नबर]] कैपेसिटर इस आवेग के लिए संपर्क बिंदुओं को बायपास करने के लिए एक रास्ता बनाता है, जिससे उनके जीवन का संरक्षण होता है; उदाहरण के लिए, ये आमतौर पर कॉन्टैक्ट ब्रेकर [[ज्वलन प्रणाली]] में पाए जाते थे। इसी तरह, छोटे पैमाने के सर्किट में, स्पार्क स्विच को नुकसान पहुंचाने के लिए पर्याप्त नहीं हो सकता है, लेकिन फिर भी [[स्पार्क-गैप ट्रांसमीटर]] अवांछनीय रेडियो फ्रीक्वेंसी इंटरफेरेंस (RFI) करेगा, जिसे एक फिल्टर कैपेसिटर अवशोषित करता है। स्नबर कैपेसिटर आमतौर पर श्रृंखला में कम-मूल्य प्रतिरोधी के साथ नियोजित होते हैं, ऊर्जा को खत्म करने और आरएफआई को कम करने के लिए। ऐसे प्रतिरोधक-संधारित्र संयोजन एक ही पैकेज में उपलब्ध हैं।
[[File:GTO-P1180590b.JPG|thumb|right|स्क्रू टर्मिनलों के साथ हेवी-ड्यूटी स्नबर संधारित्र]]जब एक इंडक्टिव परिपथ  खोला जाता है, तो इंडक्शन के माध्यम से करंट जल्दी से ढह जाता है, जिससे स्विच या रिले के ओपन परिपथ  में एक बड़ा वोल्टेज बन जाता है। यदि अधिष्ठापन काफी बड़ा है, तो ऊर्जा एक विद्युत चिंगारी उत्पन्न करेगी, जिससे संपर्क बिंदु ऑक्सीकरण, बिगड़ना, या कभी-कभी एक साथ वेल्ड हो जाते हैं, या एक ठोस-अवस्था स्विच को नष्ट कर देते हैं। नए खुले परिपथ  में एक [[स्नबर]] संधारित्र इस आवेग के लिए संपर्क बिंदुओं को बायपास करने के लिए एक रास्ता बनाता है, जिससे उनके जीवन का संरक्षण होता है; उदाहरण के लिए, ये सामान्यतः कॉन्टैक्ट ब्रेकर [[ज्वलन प्रणाली]] में पाए जाते थे। इसी तरह, छोटे पैमाने के परिपथ  में, स्पार्क स्विच को नुकसान पहुंचाने के लिए पर्याप्त नहीं हो सकता है, लेकिन फिर भी [[स्पार्क-गैप ट्रांसमीटर]] अवांछनीय रेडियो फ्रीक्वेंसी इंटरफेरेंस (RFI) करेगा, जिसे एक फिल्टर संधारित्र अवशोषित करता है। स्नबर संधारित्र  सामान्यतः श्रृंखला में कम-मूल्य प्रतिरोधी के साथ नियोजित होते हैं, ऊर्जा को खत्म करने और आरएफआई को कम करने के लिए। ऐसे प्रतिरोधक-संधारित्र संयोजन एक ही पैकेज में उपलब्ध हैं।


इन इकाइयों के बीच वोल्टेज को समान रूप से वितरित करने के लिए कैपेसिटर का उपयोग एक उच्च-वोल्टेज [[परिपथ वियोजक]] की इंटरप्ट इकाइयों के समानांतर में भी किया जाता है। इस मामले में, उन्हें ग्रेडिंग कैपेसिटर कहा जाता है।
इन इकाइयों के बीच वोल्टेज को समान रूप से वितरित करने के लिए संधारित्र का उपयोग एक उच्च-वोल्टेज [[परिपथ वियोजक]] की इंटरप्ट इकाइयों के समानांतर में भी किया जाता है। इस मामले में, उन्हें ग्रेडिंग संधारित्र कहा जाता है।


योजनाबद्ध आरेखों में, डीसी चार्ज स्टोरेज के लिए मुख्य रूप से उपयोग किए जाने वाले संधारित्र को अक्सर सर्किट आरेखों में निचले, अधिक नकारात्मक, चाप के रूप में खींची गई प्लेट के साथ लंबवत रूप से खींचा जाता है। सीधी प्लेट डिवाइस के सकारात्मक टर्मिनल को इंगित करती है यदि यह ध्रुवीकृत है ([[विद्युत - अपघटनी संधारित्र]] देखें)।
योजनाबद्ध आरेखों में, डीसी चार्ज स्टोरेज के लिए मुख्य रूप से उपयोग किए जाने वाले संधारित्र को अक्सर परिपथ  आरेखों में निचले, अधिक नकारात्मक, चाप के रूप में खींची गई प्लेट के साथ लंबवत रूप से खींचा जाता है। सीधी प्लेट डिवाइस के सकारात्मक टर्मिनल को इंगित करती है यदि यह ध्रुवीकृत है ([[विद्युत - अपघटनी संधारित्र]] देखें)।


====डीसी मोटर दमन ====
====डीसी मोटर दमन ====
सिरेमिक डिस्क कैपेसिटर आमतौर पर [[ब्रश डीसी इलेक्ट्रिक मोटर]]्स के लिए स्नबर सर्किट में उनके कम अधिष्ठापन और कम लागत के लिए उपयोग किए जाते हैं।
सिरेमिक डिस्क संधारित्र  सामान्यतः [[ब्रश डीसी इलेक्ट्रिक मोटर]]्स के लिए स्नबर परिपथ  में उनके कम अधिष्ठापन और कम लागत के लिए उपयोग किए जाते हैं।


==== स्विच्ड मोड पावर सप्लाई फ़िल्टरिंग ====
==== स्विच्ड मोड पावर सप्लाई फ़िल्टरिंग ====
Line 63: Line 63:


=== मुख्य फ़िल्टरिंग ===
=== मुख्य फ़िल्टरिंग ===
मुख्य फ़िल्टर कैपेसिटर आमतौर पर घाव-प्लास्टिक-फिल्म प्रकार के होते हैं, क्योंकि ये कम लागत पर उच्च वोल्टेज रेटिंग प्रदान करते हैं, और इन्हें स्व-उपचार और फ़्यूज़िबल बनाया जा सकता है। मुख्य फिल्टर कैपेसिटर अक्सर सिरेमिक कैपेसिटर #RFI/EMI दमन सिरेमिक कैपेसिटर | सिरेमिक RFI/EMI दमन कैपेसिटर होते हैं। मुख्य फ़िल्टरिंग के लिए अतिरिक्त सुरक्षा आवश्यकताएँ हैं:
मुख्य फ़िल्टर संधारित्र  सामान्यतः घाव-प्लास्टिक-फिल्म प्रकार के होते हैं, क्योंकि ये कम लागत पर उच्च वोल्टेज रेटिंग प्रदान करते हैं, और इन्हें स्व-उपचार और फ़्यूज़िबल बनाया जा सकता है। मुख्य फिल्टर संधारित्र अक्सर सिरेमिक संधारित्र #RFI/EMI दमन सिरेमिक संधारित्र | सिरेमिक RFI/EMI दमन संधारित्र होते हैं। मुख्य फ़िल्टरिंग के लिए अतिरिक्त सुरक्षा आवश्यकताएँ हैं:
* लाइन टू न्यूट्रल कैपेसिटर फ्लेम रिटार्डेंट हैं, और यूरोप में क्लास X डाइइलेक्ट्रिक्स का उपयोग करना आवश्यक है।
* लाइन टू न्यूट्रल संधारित्र फ्लेम रिटार्डेंट हैं, और यूरोप में क्लास X डाइइलेक्ट्रिक्स का उपयोग करना आवश्यक है।
* पृथ्वी के लिए रेखा या तटस्थ: ज्वाला मंदक होना चाहिए; इसके अलावा, ढांकता हुआ स्वयं चिकित्सा और फ़्यूज़िबल होना चाहिए। यूरोप में ये क्लास वाई कैपेसिटर हैं।
* पृथ्वी के लिए रेखा या तटस्थ: ज्वाला मंदक होना चाहिए; इसके अलावा, ढांकता हुआ स्वयं चिकित्सा और फ़्यूज़िबल होना चाहिए। यूरोप में ये क्लास वाई संधारित्र हैं।


=== पावर रेल फ़िल्टरिंग ===
=== पावर रेल फ़िल्टरिंग ===
[[File:Power supply with linear voltage regulator.svg|upright=1.35|thumb|ट्रांसफॉर्मर, [[पुल सुधारक]], [[78xx]] रेगुलेटर और [[फ़िल्टर संधारित्र]] दिखाते हुए एक साधारण मेन PSU के लिए विशिष्ट एप्लिकेशन सर्किट]]इलेक्ट्रोलाइटिक कैपेसिटर आमतौर पर कम लागत और कम आकार में उच्च क्षमता के कारण उपयोग किए जाते हैं। उच्च आवृत्तियों पर इलेक्ट्रोलाइटिक्स के खराब प्रदर्शन की भरपाई के लिए छोटे गैर-इलेक्ट्रोलाइटिक्स इनके साथ समानांतर हो सकते हैं।
[[File:Power supply with linear voltage regulator.svg|upright=1.35|thumb|ट्रांसफॉर्मर, [[पुल सुधारक]], [[78xx]] रेगुलेटर और [[फ़िल्टर संधारित्र]] दिखाते हुए एक साधारण मेन PSU के लिए विशिष्ट एप्लिकेशन परिपथ ]]इलेक्ट्रोलाइटिक संधारित्र  सामान्यतः कम लागत और कम आकार में उच्च क्षमता के कारण उपयोग किए जाते हैं। उच्च आवृत्तियों पर इलेक्ट्रोलाइटिक्स के खराब प्रदर्शन की भरपाई के लिए छोटे गैर-इलेक्ट्रोलाइटिक्स इनके साथ समानांतर हो सकते हैं।


[[कंप्यूटर]] बड़ी संख्या में फ़िल्टर कैपेसिटर का उपयोग करते हैं, जिससे आकार एक महत्वपूर्ण कारक बन जाता है। सॉलिड टैंटलम और वेट टैंटलम कैपेसिटर उपलब्ध कुछ सबसे अधिक मात्रा में कुशल पैकेजिंग में कुछ बेहतरीन सीवी (कैपेसिटेंस / वोल्टेज) प्रदर्शन प्रदान करते हैं। उच्च धाराएं और कम वोल्टेज भी कम समतुल्य श्रृंखला प्रतिरोध (ESR) को महत्वपूर्ण बनाते हैं। ठोस टैंटलम कैपेसिटर कम ईएसआर संस्करण पेश करते हैं जो अक्सर ईएसआर आवश्यकताओं को पूरा कर सकते हैं लेकिन वे सभी कैपेसिटर के बीच सबसे कम ईएसआर विकल्प नहीं हैं। सॉलिड टैंटलम में एक अतिरिक्त समस्या है जिसे डिजाइन चरण के दौरान संबोधित किया जाना चाहिए। ठोस टैंटलम कैपेसिटर को सभी अनुप्रयोगों में वोल्टेज व्युत्पन्न होना चाहिए। एक 50% वोल्टेज व्युत्पन्न की सिफारिश की जाती है और आम तौर पर उद्योग मानक के रूप में स्वीकार किया जाता है; उदा. एक 50V [[ठोस टैंटलम संधारित्र]] को कभी भी 25V से ऊपर के वास्तविक अनुप्रयोग वोल्टेज के संपर्क में नहीं आना चाहिए। ठोस टैंटलम कैपेसिटर बहुत विश्वसनीय घटक होते हैं यदि उचित देखभाल की जाती है और सभी डिज़ाइन दिशानिर्देशों का ध्यानपूर्वक पालन किया जाता है। दुर्भाग्य से, एक ठोस टैंटलम कैपेसिटर के लिए विफलता तंत्र एक छोटा है जिसके परिणामस्वरूप एक पीसीबी पर एक हिंसक भड़कना और धूम्रपान करना होगा जो अन्य घटकों को निकटता में नुकसान पहुंचाने के साथ-साथ कैपेसिटर को पूरी तरह से नष्ट करने में सक्षम है। सौभाग्य से, अधिकांश ठोस टैंटलम कैपेसिटर विफलताएं तत्काल और बहुत स्पष्ट होंगी। एक बार लगाने के बाद सॉलिड टैंटलम कैपेसिटर के प्रदर्शन में समय के साथ सुधार होगा और घटक के गलत निर्माण के कारण विफलता की संभावना कम हो जाएगी। गीले टैंटलम एक प्रकार के इलेक्ट्रोलाइटिक कैपेसिटर होते हैं, जो एक हर्मेटिक पैकेज में सील किए गए इलेक्ट्रोलाइटिक सामग्री में टैंटलम गोली का उपयोग करते हैं। इस प्रकार के टैंटलम कैपेसिटर को उसी व्युत्पन्न की आवश्यकता नहीं होती है जो एक ठोस टैंटलम करता है और इसकी विफलता तंत्र खुली होती है। 85C से 125C तक संचालन करते समय गीले टैंटलम के लिए 10% से 20% वोल्टेज व्युत्पन्न वक्र की सिफारिश की जाती है। गीले टैंटलम को आमतौर पर केवल 'इलेक्ट्रोलाइटिक्स' के रूप में नहीं जाना जाता है क्योंकि आमतौर पर 'इलेक्ट्रोलाइटिक' एल्यूमीनियम इलेक्ट्रोलाइटिक्स को संदर्भित करता है।
[[कंप्यूटर]] बड़ी संख्या में फ़िल्टर संधारित्र का उपयोग करते हैं, जिससे आकार एक महत्वपूर्ण कारक बन जाता है। सॉलिड टैंटलम और वेट टैंटलम संधारित्र उपलब्ध कुछ सबसे अधिक मात्रा में कुशल पैकेजिंग में कुछ बेहतरीन सीवी (कैपेसिटेंस / वोल्टेज) प्रदर्शन प्रदान करते हैं। उच्च धाराएं और कम वोल्टेज भी कम समतुल्य श्रृंखला प्रतिरोध (ESR) को महत्वपूर्ण बनाते हैं। ठोस टैंटलम संधारित्र कम ईएसआर संस्करण पेश करते हैं जो अक्सर ईएसआर आवश्यकताओं को पूरा कर सकते हैं लेकिन वे सभी संधारित्र के बीच सबसे कम ईएसआर विकल्प नहीं हैं। सॉलिड टैंटलम में एक अतिरिक्त समस्या है जिसे डिजाइन चरण के दौरान संबोधित किया जाना चाहिए। ठोस टैंटलम संधारित्र को सभी अनुप्रयोगों में वोल्टेज व्युत्पन्न होना चाहिए। एक 50% वोल्टेज व्युत्पन्न की सिफारिश की जाती है और आम तौर पर उद्योग मानक के रूप में स्वीकार किया जाता है; उदा. एक 50V [[ठोस टैंटलम संधारित्र]] को कभी भी 25V से ऊपर के वास्तविक अनुप्रयोग वोल्टेज के संपर्क में नहीं आना चाहिए। ठोस टैंटलम संधारित्र बहुत विश्वसनीय घटक होते हैं यदि उचित देखभाल की जाती है और सभी डिज़ाइन दिशानिर्देशों का ध्यानपूर्वक पालन किया जाता है। दुर्भाग्य से, एक ठोस टैंटलम संधारित्र के लिए विफलता तंत्र एक छोटा है जिसके परिणामस्वरूप एक पीसीबी पर एक हिंसक भड़कना और धूम्रपान करना होगा जो अन्य घटकों को निकटता में नुकसान पहुंचाने के साथ-साथ संधारित्र को पूरी तरह से नष्ट करने में सक्षम है। सौभाग्य से, अधिकांश ठोस टैंटलम संधारित्र विफलताएं तत्काल और बहुत स्पष्ट होंगी। एक बार लगाने के बाद सॉलिड टैंटलम संधारित्र के प्रदर्शन में समय के साथ सुधार होगा और घटक के गलत निर्माण के कारण विफलता की संभावना कम हो जाएगी। गीले टैंटलम एक प्रकार के इलेक्ट्रोलाइटिक संधारित्र होते हैं, जो एक हर्मेटिक पैकेज में सील किए गए इलेक्ट्रोलाइटिक सामग्री में टैंटलम गोली का उपयोग करते हैं। इस प्रकार के टैंटलम संधारित्र को उसी व्युत्पन्न की आवश्यकता नहीं होती है जो एक ठोस टैंटलम करता है और इसकी विफलता तंत्र खुली होती है। 85C से 125C तक संचालन करते समय गीले टैंटलम के लिए 10% से 20% वोल्टेज व्युत्पन्न वक्र की सिफारिश की जाती है। गीले टैंटलम को सामान्यतः केवल 'इलेक्ट्रोलाइटिक्स' के रूप में नहीं जाना जाता है क्योंकि सामान्यतः 'इलेक्ट्रोलाइटिक' एल्यूमीनियम इलेक्ट्रोलाइटिक्स को संदर्भित करता है।


== मोटर स्टार्टर्स ==
== मोटर स्टार्टर्स ==
{{main|motor capacitor}}
{{main|motor capacitor}}
[[File:Motor-Start-Capacitor.jpg|thumb|right|एक विशिष्ट मोटर स्टार्ट कैपेसिटर, जैसा कि इसके काले रंग से देखा जा सकता है और आकार दे सकता है]]एकल चरण [[गिलहरी-पिंजरे रोटर]] मोटर्स में, मोटर आवास के भीतर प्राथमिक घुमाव रोटर पर घूर्णन गति शुरू करने में सक्षम नहीं है, लेकिन एक को बनाए रखने में सक्षम है। मोटर शुरू करने के लिए, एक गैर-ध्रुवीकृत [[प्रारंभिक संधारित्र]] के साथ श्रृंखला में एक द्वितीयक वाइंडिंग का उपयोग किया जाता है, जो कि प्रारंभिक वाइंडिंग के माध्यम से साइनसोइडल करंट में अंतराल का परिचय देता है। जब द्वितीयक वाइंडिंग को प्राथमिक वाइंडिंग के संबंध में एक कोण पर रखा जाता है, तो एक घूर्णन विद्युत क्षेत्र बनाया जाता है। घूर्णी क्षेत्र का बल स्थिर नहीं है, लेकिन रोटर कताई शुरू करने के लिए पर्याप्त है। जब रोटर ऑपरेटिंग गति के करीब आता है, एक केन्द्रापसारक स्विच (या मुख्य घुमाव के साथ श्रृंखला में वर्तमान-संवेदनशील रिले) संधारित्र को डिस्कनेक्ट करता है। स्टार्ट कैपेसिटर को आमतौर पर मोटर हाउसिंग के किनारे लगाया जाता है। इन्हें कैपेसिटर-स्टार्ट मोटर्स कहा जाता है, और इनमें अपेक्षाकृत उच्च स्टार्टिंग टॉर्क होता है।
[[File:Motor-Start-Capacitor.jpg|thumb|right|एक विशिष्ट मोटर स्टार्ट संधारित्र, जैसा कि इसके काले रंग से देखा जा सकता है और आकार दे सकता है]]एकल चरण [[गिलहरी-पिंजरे रोटर]] मोटर्स में, मोटर आवास के भीतर प्राथमिक घुमाव रोटर पर घूर्णन गति शुरू करने में सक्षम नहीं है, लेकिन एक को बनाए रखने में सक्षम है। मोटर शुरू करने के लिए, एक गैर-ध्रुवीकृत [[प्रारंभिक संधारित्र]] के साथ श्रृंखला में एक द्वितीयक वाइंडिंग का उपयोग किया जाता है, जो कि प्रारंभिक वाइंडिंग के माध्यम से साइनसोइडल करंट में अंतराल का परिचय देता है। जब द्वितीयक वाइंडिंग को प्राथमिक वाइंडिंग के संबंध में एक कोण पर रखा जाता है, तो एक घूर्णन विद्युत क्षेत्र बनाया जाता है। घूर्णी क्षेत्र का बल स्थिर नहीं है, लेकिन रोटर कताई शुरू करने के लिए पर्याप्त है। जब रोटर ऑपरेटिंग गति के करीब आता है, एक केन्द्रापसारक स्विच (या मुख्य घुमाव के साथ श्रृंखला में वर्तमान-संवेदनशील रिले) संधारित्र को डिस्कनेक्ट करता है। स्टार्ट संधारित्र को सामान्यतः मोटर हाउसिंग के किनारे लगाया जाता है। इन्हें संधारित्र-स्टार्ट मोटर्स कहा जाता है, और इनमें अपेक्षाकृत उच्च स्टार्टिंग टॉर्क होता है।


कैपेसिटर-रन इंडक्शन मोटर्स भी हैं जिनमें दूसरी वाइंडिंग के साथ श्रृंखला में स्थायी रूप से जुड़ा फेज-शिफ्टिंग कैपेसिटर है। मोटर दो-चरण प्रेरण मोटर की तरह है।
संधारित्र-रन इंडक्शन मोटर्स भी हैं जिनमें दूसरी वाइंडिंग के साथ श्रृंखला में स्थायी रूप से जुड़ा फेज-शिफ्टिंग संधारित्र है। मोटर दो-चरण प्रेरण मोटर की तरह है।


मोटर-स्टार्टिंग कैपेसिटर आमतौर पर गैर-ध्रुवीकृत इलेक्ट्रोलाइटिक प्रकार होते हैं, जबकि कैपेसिटर चलाने वाले पारंपरिक पेपर या प्लास्टिक फिल्म [[ढांकता हुआ]] प्रकार होते हैं।
मोटर-स्टार्टिंग संधारित्र  सामान्यतः गैर-ध्रुवीकृत इलेक्ट्रोलाइटिक प्रकार होते हैं, जबकि संधारित्र चलाने वाले पारंपरिक पेपर या प्लास्टिक फिल्म [[ढांकता हुआ]] प्रकार होते हैं।


=== सिग्नल प्रोसेसिंग ===
=== सिग्नल प्रोसेसिंग ===
कैपेसिटर में संग्रहीत ऊर्जा का उपयोग सूचनाओं को दर्शाने के लिए किया जा सकता है, या तो द्विआधारी रूप में, [[DRAM]]s के रूप में, या एनालॉग रूप में, जैसा कि [[एनालॉग नमूना फिल्टर]] और चार्ज-युग्मित डिवाइस CCDs में होता है। कैपेसिटर का उपयोग [[एनालॉग सर्किट]] में इंटीग्रेटर्स या अधिक जटिल फिल्टर के घटकों के रूप में और नकारात्मक प्रतिक्रिया पाश स्थिरीकरण में किया जा सकता है। सिग्नल प्रोसेसिंग सर्किट वर्तमान सिग्नल को एकीकृत करने के लिए कैपेसिटर का भी उपयोग करते हैं।
संधारित्र में संग्रहीत ऊर्जा का उपयोग सूचनाओं को दर्शाने के लिए किया जा सकता है, या तो द्विआधारी रूप में, [[DRAM]]s के रूप में, या एनालॉग रूप में, जैसा कि [[एनालॉग नमूना फिल्टर]] और चार्ज-युग्मित डिवाइस CCDs में होता है। संधारित्र का उपयोग [[एनालॉग सर्किट|एनालॉग परिपथ]] में इंटीग्रेटर्स या अधिक जटिल फिल्टर के घटकों के रूप में और नकारात्मक प्रतिक्रिया पाश स्थिरीकरण में किया जा सकता है। सिग्नल प्रोसेसिंग परिपथ  वर्तमान सिग्नल को एकीकृत करने के लिए संधारित्र का भी उपयोग करते हैं।


=== ट्यून्ड सर्किट ===
=== ट्यून्ड परिपथ ===
[[File:Drehkondensator-sw.jpg|thumb|right|एयर गैप ट्यूनिंग कैपेसिटर]]विशेष आवृत्ति बैंड में सूचना का चयन करने के लिए [[आरएलसी सर्किट]] में कैपेसिटर और [[प्रारंभ करनेवाला]]्स एक साथ लगाए जाते हैं। उदाहरण के लिए, [[रेडियो रिसीवर]] स्टेशन फ्रीक्वेंसी को ट्यून करने के लिए वेरिएबल कैपेसिटर पर भरोसा करते हैं। स्पीकर निष्क्रिय एनालॉग [[ऑडियो क्रॉसओवर]] का उपयोग करते हैं, और एनालॉग तुल्यकारक अलग-अलग ऑडियो बैंड का चयन करने के लिए कैपेसिटर का उपयोग करते हैं।
[[File:Drehkondensator-sw.jpg|thumb|right|एयर गैप ट्यूनिंग संधारित्र]]विशेष आवृत्ति बैंड में सूचना का चयन करने के लिए [[आरएलसी सर्किट|आरएलसी परिपथ]] में संधारित्र और [[प्रारंभ करनेवाला]]्स एक साथ लगाए जाते हैं। उदाहरण के लिए, [[रेडियो रिसीवर]] स्टेशन फ्रीक्वेंसी को ट्यून करने के लिए वेरिएबल संधारित्र पर भरोसा करते हैं। स्पीकर निष्क्रिय एनालॉग [[ऑडियो क्रॉसओवर]] का उपयोग करते हैं, और एनालॉग तुल्यकारक अलग-अलग ऑडियो बैंड का चयन करने के लिए संधारित्र का उपयोग करते हैं।


== संवेदन ==
== संवेदन ==
अधिकांश कैपेसिटर एक निश्चित भौतिक संरचना को बनाए रखने के लिए डिज़ाइन किए गए हैं। हालाँकि, विभिन्न कारक संधारित्र की संरचना को बदल सकते हैं; कैपेसिटेंस में परिणामी परिवर्तन का उपयोग उन कारकों को [[सेंसर]] करने के लिए किया जा सकता है।
अधिकांश संधारित्र एक निश्चित भौतिक संरचना को बनाए रखने के लिए डिज़ाइन किए गए हैं। हालाँकि, विभिन्न कारक संधारित्र की संरचना को बदल सकते हैं; कैपेसिटेंस में परिणामी परिवर्तन का उपयोग उन कारकों को [[सेंसर]] करने के लिए किया जा सकता है।


=== ढांकता हुआ बदलना ===
=== ढांकता हुआ बदलना ===
ढांकता हुआ की विशेषताओं को बदलने के प्रभाव का उपयोग संवेदन और माप के लिए भी किया जा सकता है। हवा में नमी को मापने के लिए एक उजागर और झरझरा ढांकता हुआ कैपेसिटर का उपयोग किया जा सकता है। कैपेसिटर का उपयोग हवाई जहाजों में ईंधन के स्तर को सटीक रूप से मापने के लिए किया जाता है; चूंकि ईंधन प्लेटों की एक जोड़ी को अधिक कवर करता है, सर्किट कैपेसिटेंस बढ़ता है।
ढांकता हुआ की विशेषताओं को बदलने के प्रभाव का उपयोग संवेदन और माप के लिए भी किया जा सकता है। हवा में नमी को मापने के लिए एक उजागर और झरझरा ढांकता हुआ संधारित्र का उपयोग किया जा सकता है। संधारित्र का उपयोग हवाई जहाजों में ईंधन के स्तर को सटीक रूप से मापने के लिए किया जाता है; चूंकि ईंधन प्लेटों की एक जोड़ी को अधिक कवर करता है, परिपथ  कैपेसिटेंस बढ़ता है।


===प्लेटों के बीच की दूरी बदलना===
===प्लेटों के बीच की दूरी बदलना===
लचीली प्लेट वाले संधारित्र का उपयोग तनाव या दबाव या [[भरा कोश]] को मापने के लिए किया जा सकता है।
लचीली प्लेट वाले संधारित्र का उपयोग तनाव या दबाव या [[भरा कोश]] को मापने के लिए किया जा सकता है।


[[प्रक्रिया नियंत्रण]] के लिए उपयोग किए जाने वाले औद्योगिक दबाव ट्रांसमीटर दबाव-संवेदन डायाफ्राम का उपयोग करते हैं, जो एक ऑसीलेटर सर्किट की कैपेसिटर प्लेट बनाते हैं। कैपेसिटर का उपयोग [[कंडेंसर माइक्रोफोन]] में सेंसर के रूप में किया जाता है, जहां एक प्लेट को दूसरी प्लेट की निश्चित स्थिति के सापेक्ष हवा के दबाव से स्थानांतरित किया जाता है। त्वरण सदिश के परिमाण और दिशा को मापने के लिए कुछ [[accelerometer]] [[माइक्रोइलेक्ट्रॉनिक सिस्टम]] (एमईएमएस) कैपेसिटर का उपयोग चिप पर उकेरा जाता है। उनका उपयोग त्वरण में परिवर्तन का पता लगाने के लिए किया जाता है, उदा। टिल्ट सेंसर के रूप में या फ्री फॉल का पता लगाने के लिए, [[एयरबैग]] परिनियोजन को ट्रिगर करने वाले सेंसर के रूप में, और कई अन्य अनुप्रयोगों में। कुछ फ़िंगरप्रिंट प्रमाणीकरण # फ़िंगरप्रिंट सेंसर कैपेसिटर का उपयोग करते हैं।
[[प्रक्रिया नियंत्रण]] के लिए उपयोग किए जाने वाले औद्योगिक दबाव ट्रांसमीटर दबाव-संवेदन डायाफ्राम का उपयोग करते हैं, जो एक ऑसीलेटर परिपथ  की संधारित्र प्लेट बनाते हैं। संधारित्र का उपयोग [[कंडेंसर माइक्रोफोन]] में सेंसर के रूप में किया जाता है, जहां एक प्लेट को दूसरी प्लेट की निश्चित स्थिति के सापेक्ष हवा के दबाव से स्थानांतरित किया जाता है। त्वरण सदिश के परिमाण और दिशा को मापने के लिए कुछ [[accelerometer]] [[माइक्रोइलेक्ट्रॉनिक सिस्टम|माइक्रो विद्युतीय सिस्टम]] (एमईएमएस) संधारित्र का उपयोग चिप पर उकेरा जाता है। उनका उपयोग त्वरण में परिवर्तन का पता लगाने के लिए किया जाता है, उदा। टिल्ट सेंसर के रूप में या फ्री फॉल का पता लगाने के लिए, [[एयरबैग]] परिनियोजन को ट्रिगर करने वाले सेंसर के रूप में, और कई अन्य अनुप्रयोगों में। कुछ फ़िंगरप्रिंट प्रमाणीकरण # फ़िंगरप्रिंट सेंसर संधारित्र का उपयोग करते हैं।


=== प्लेटों के प्रभावी क्षेत्र को बदलना ===
=== प्लेटों के प्रभावी क्षेत्र को बदलना ===
कैपेसिटिव टच स्विच अब कई उपभोक्ता इलेक्ट्रॉनिक उत्पादों पर उपयोग किए जाते हैं
कैपेसिटिव टच स्विच अब कई उपभोक्ता विद्युतीय उत्पादों पर उपयोग किए जाते हैं


== ऑसिलेटर्स ==
== ऑसिलेटर्स ==
Line 105: Line 105:


== खतरे और सुरक्षा ==
== खतरे और सुरक्षा ==
कैपेसिटर एक सर्किट से बिजली हटाए जाने के बाद लंबे समय तक चार्ज बनाए रख सकते हैं; यह शुल्क खतरनाक या संभावित रूप से घातक झटके या जुड़े उपकरणों को नुकसान पहुंचा सकता है। उदाहरण के लिए, 1.5 वोल्ट AA बैटरी द्वारा संचालित डिस्पोजेबल कैमरा फ्लैश यूनिट जैसे प्रतीत होने वाले अहानिकर उपकरण में भी एक कैपेसिटर होता है जिसे 300 वोल्ट से अधिक चार्ज किया जा सकता है। यह आसानी से झटका देने में सक्षम है। इलेक्ट्रॉनिक उपकरणों के लिए सेवा प्रक्रियाओं में आमतौर पर बड़े या उच्च-वोल्टेज कैपेसिटर को डिस्चार्ज करने के निर्देश शामिल होते हैं। कैपेसिटर में बिल्ट-इन डिस्चार्ज रेसिस्टर्स भी हो सकते हैं, जो पावर हटाने के बाद कुछ सेकंड के भीतर संग्रहीत ऊर्जा को एक सुरक्षित स्तर तक फैलाने के लिए होते हैं। ढांकता हुआ अवशोषण के कारण संभावित खतरनाक वोल्टेज से सुरक्षा के रूप में, उच्च-वोल्टेज कैपेसिटर को शॉर्ट टर्मिनलों के साथ संग्रहीत किया जाता है।
संधारित्र एक परिपथ  से विद्युत हटाए जाने के बाद लंबे समय तक चार्ज बनाए रख सकते हैं; यह शुल्क खतरनाक या संभावित रूप से घातक झटके या जुड़े उपकरणों को नुकसान पहुंचा सकता है। उदाहरण के लिए, 1.5 वोल्ट AA बैटरी द्वारा संचालित डिस्पोजेबल कैमरा फ्लैश यूनिट जैसे प्रतीत होने वाले अहानिकर उपकरण में भी एक संधारित्र होता है जिसे 300 वोल्ट से अधिक चार्ज किया जा सकता है। यह आसानी से झटका देने में सक्षम है। विद्युतीय उपकरणों के लिए सेवा प्रक्रियाओं में सामान्यतः बड़े या उच्च-वोल्टेज संधारित्र को डिस्चार्ज करने के निर्देश शामिल होते हैं। संधारित्र में बिल्ट-इन डिस्चार्ज रेसिस्टर्स भी हो सकते हैं, जो पावर हटाने के बाद कुछ सेकंड के भीतर संग्रहीत ऊर्जा को एक सुरक्षित स्तर तक फैलाने के लिए होते हैं। ढांकता हुआ अवशोषण के कारण संभावित खतरनाक वोल्टेज से सुरक्षा के रूप में, उच्च-वोल्टेज संधारित्र को शॉर्ट टर्मिनलों के साथ संग्रहीत किया जाता है।


कुछ पुराने, बड़े तेल से भरे कैपेसिटर में [[पॉलीक्लोराइनेटेड बाइफिनाइल]] (पीसीबी) होते हैं। यह ज्ञात है कि अपशिष्ट पीसीबी लैंडफिल के तहत भूजल में रिसाव कर सकते हैं। पीसीबी वाले कैपेसिटर को एस्कारेल और कई अन्य व्यापारिक नामों के रूप में लेबल किया गया था। पीसीबी से भरे कैपेसिटर बहुत पुराने (1975 से पहले) फ्लोरोसेंट लैंप रोड़े और अन्य अनुप्रयोगों में पाए जाते हैं।
कुछ पुराने, बड़े तेल से भरे संधारित्र में [[पॉलीक्लोराइनेटेड बाइफिनाइल]] (पीसीबी) होते हैं। यह ज्ञात है कि अपशिष्ट पीसीबी लैंडफिल के तहत भूजल में रिसाव कर सकते हैं। पीसीबी वाले संधारित्र को एस्कारेल और कई अन्य व्यापारिक नामों के रूप में लेबल किया गया था। पीसीबी से भरे संधारित्र बहुत पुराने (1975 से पहले) फ्लोरोसेंट लैंप रोड़े और अन्य अनुप्रयोगों में पाए जाते हैं।


उच्च-वोल्टेज कैपेसिटर अपनी रेटिंग से परे वोल्टेज या धाराओं के अधीन होने पर, या जब वे अपने जीवन के सामान्य अंत तक पहुँचते हैं, तो भयावह रूप से विफल हो सकते हैं। ढांकता हुआ या धातु इंटरकनेक्शन विफलताएं उत्पन्न कर सकती हैं जो ढांकता हुआ द्रव को वाष्पीकृत करती हैं, जिसके परिणामस्वरूप उभड़ा हुआ, टूटना या विस्फोट भी हो सकता है। RF या निरंतर उच्च-वर्तमान अनुप्रयोगों में उपयोग किए जाने वाले कैपेसिटर ज़्यादा गरम हो सकते हैं, विशेष रूप से कैपेसिटर रोल के केंद्र में। उच्च-ऊर्जा कैपेसिटर बैंकों के भीतर उपयोग किए जाने वाले कैपेसिटर हिंसक रूप से विस्फोट कर सकते हैं जब एक कैपेसिटर में कमी के कारण बैंक के बाकी हिस्सों में जमा ऊर्जा अचानक विफल हो जाती है। उच्च वोल्टेज वैक्यूम कैपेसिटर सामान्य ऑपरेशन के दौरान भी सॉफ्ट एक्स-रे उत्पन्न कर सकते हैं। उचित रोकथाम, फ़्यूज़िंग और निवारक रखरखाव इन खतरों को कम करने में मदद कर सकते हैं।
उच्च-वोल्टेज संधारित्र अपनी रेटिंग से परे वोल्टेज या धाराओं के अधीन होने पर, या जब वे अपने जीवन के सामान्य अंत तक पहुँचते हैं, तो भयावह रूप से विफल हो सकते हैं। ढांकता हुआ या धातु इंटरकनेक्शन विफलताएं उत्पन्न कर सकती हैं जो ढांकता हुआ द्रव को वाष्पीकृत करती हैं, जिसके परिणामस्वरूप उभड़ा हुआ, टूटना या विस्फोट भी हो सकता है। RF या निरंतर उच्च-वर्तमान अनुप्रयोगों में उपयोग किए जाने वाले संधारित्र ज़्यादा गरम हो सकते हैं, विशेष रूप से संधारित्र रोल के केंद्र में। उच्च-ऊर्जा संधारित्र बैंकों के भीतर उपयोग किए जाने वाले संधारित्र हिंसक रूप से विस्फोट कर सकते हैं जब एक संधारित्र में कमी के कारण बैंक के बाकी हिस्सों में जमा ऊर्जा अचानक विफल हो जाती है। उच्च वोल्टेज वैक्यूम संधारित्र सामान्य ऑपरेशन के दौरान भी सॉफ्ट एक्स-रे उत्पन्न कर सकते हैं। उचित रोकथाम, फ़्यूज़िंग और निवारक रखरखाव इन खतरों को कम करने में मदद कर सकते हैं।


हाई-वोल्टेज कैपेसिटर हाई वोल्टेज डायरेक्ट करंट (HVDC) सर्किट के पावर-अप पर इन-रश करंट को सीमित करने के लिए प्री-चार्ज से लाभ उठा सकते हैं। यह घटक के जीवन का विस्तार करेगा और उच्च वोल्टेज के खतरों को कम कर सकता है।
हाई-वोल्टेज संधारित्र हाई वोल्टेज डायरेक्ट करंट (HVDC) परिपथ  के पावर-अप पर इन-रश करंट को सीमित करने के लिए प्री-चार्ज से लाभ उठा सकते हैं। यह घटक के जीवन का विस्तार करेगा और उच्च वोल्टेज के खतरों को कम कर सकता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 02:12, 13 February 2023

विद्युतीय उपकरणों के लिए कुछ अलग संधारित्र

संधारित्र के विद्युतीय और विद्युतकीय प्रणाली में कई उपयोग हैं। वे इतने सर्वव्यापी हैं कि यह दुर्लभ है कि किसी विद्युत उत्पाद में किसी उद्देश्य के लिए कम से कम एक शामिल न हो।

ऊर्जा भंडारण

विंटेज तत्काल कैमरा में कैमरा फ़्लैश के लिए ऊर्जा भंडारण संधारित्र

एक संधारित्र विद्युत ऊर्जा को तब संग्रहीत कर सकता है जब वह अपने आवेशित परिपथ से जुड़ा होता है और जब इसे अपने आवेशित परिपथ से विच्छेदित किया जाता है, तो यह उस संग्रहित ऊर्जा को नष्ट कर सकता है, इसलिए इसे एक अस्थायी बैटरी के रूप में प्रयोग किया जा सकता है। संधारित्र सामान्यतः विद्युत की आपूर्ति बनाए रखने के लिए विद्युतीय उपकरणों में उपयोग किया जाता है, जबकि बैटरी बदली जा रही है। यह वाष्पशील स्मृति में सूचना के नुकसान को रोकता है।

पारंपरिक इलेक्ट्रोस्टैटिक संधारित्र 360 जूल प्रति किलोग्राम ऊर्जा घनत्व से कम प्रदान करते हैं, जबकि विकासशील तकनीक का उपयोग करने वाले संधारित्र 2.52 किलो-जूल प्रति किलोग्राम से अधिक प्रदान कर सकते हैं।[1] कार ऑडियो सिस्टम में, बड़े संधारित्र मांग पर उपयोग करने के लिए एम्पलीफायर के लिए ऊर्जा संग्रहित करते हैं।

सेवा जीवन का विस्तार करने के लिए एक निर्बाध विद्युत आपूर्ति (यूपीएस) को रखरखाव-मुक्त संधारित्र से लैस किया जा सकता है।[2]


स्पंदित शक्ति और हथियार

बड़े, विशेष रूप से निर्मित, कम-अधिष्ठापन उच्च-वोल्टेज संधारित्र (संधारित्र बैंक) के समूह का उपयोग कई स्पंदित विद्युत अनुप्रयोगों के लिए करंट की विशाल दालों की आपूर्ति के लिए किया जाता है। इनमें विद्युत चुम्बकीय गठन, मार्क्स जनरेटर, स्पंदित लेज़र (विशेष रूप से चाय लेजर), नाड़ी बनाने नेटवर्क, फ्यूजन शक्ति रिसर्च और कण त्वरक शामिल हैं।

बड़े संधारित्र बैंक (जलाशयों) का उपयोग परमाणु हथियारों और अन्य विशेष हथियारों में विस्फोट-ब्रिजवायर डेटोनेटर या स्लैक्स डेटोनेटर के लिए ऊर्जा स्रोतों के रूप में किया जाता है। विद्युत चुंबकत्व वाहन कवच और इलेक्ट्रोमैग्नेटिक रेलगन्स या कॉइलगन्स के लिए पावर स्रोतों के रूप में संधारित्र के बैंकों का उपयोग करके प्रायोगिक कार्य चल रहा है।

पावर कंडीशनिंग

जलाशय संधारित्र का उपयोग विद्युत की आपूर्ति में किया जाता है जहां वे एक पूर्ण या आधा लहर सुधारक के उत्पादन को सुचारू करते हैं। उनका उपयोग चार्ज पंप परिपथ में इनपुट वोल्टेज की तुलना में उच्च वोल्टेज की पीढ़ी में ऊर्जा भंडारण तत्व के रूप में भी किया जा सकता है।

संधारित्र सिग्नल या कंट्रोल परिपथ के लिए वर्तमान उतार-चढ़ाव को सुचारू करने के लिए अधिकांश विद्युतीय उपकरणों के डीसी पावर परिपथ के साथ समानांतर में जुड़े हुए हैं। उदाहरण के लिए, ऑडियो उपकरण, इस तरह से कई संधारित्र का उपयोग करता है, सिग्नल परिपथ ्री में आने से पहले पावर लाइन हम को दूर करने के लिए। संधारित्र डीसी पावर स्रोत के लिए स्थानीय रिजर्व के रूप में कार्य करते हैं, और विद्युत आपूर्ति से एसी धाराओं को बाईपास करते हैं। इसका उपयोग कार ऑडियो अनुप्रयोगों में किया जाता है, जब एक कठोर संधारित्र लीड-एसिड कार बैटरी के अधिष्ठापन और प्रतिरोध के लिए क्षतिपूर्ति करता है।

पावर फैक्टर करेक्शन

विद्युत शक्ति वितरण में, संधारित्र का उपयोग पावर फैक्टर करेक्शन के लिए किया जाता है। ऐसे संधारित्र अक्सर तीन संधारित्र के रूप में आते हैं जो तीन-चरण विद्युत भार के रूप में जुड़े होते हैं। सामान्यतः, इन संधारित्र के मान फैराड में नहीं बल्कि वोल्ट-एम्पीयर रिएक्टिव (VAr) में प्रतिक्रियाशील शक्ति के रूप में दिए जाते हैं। इसका उद्देश्य इंडक्शन मोटर्स, इलेक्ट्रिक मोटर्स और ट्रांसमिशन लाइनों जैसे उपकरणों से आगमनात्मक लोडिंग का प्रतिकार करना है ताकि लोड को प्राथमिक रूप से प्रतिरोधक बनाया जा सके। व्यक्तिगत मोटर या लैंप लोड में पावर फैक्टर सुधार के लिए संधारित्र हो सकते हैं, या संधारित्र के बड़े सेट ( सामान्यतः स्वचालित स्विचिंग डिवाइस के साथ) एक इमारत के भीतर या एक बड़े उपयोगिता विद्युत सबस्टेशन में लोड सेंटर में स्थापित किए जा सकते हैं। हाई-वोल्टेज डायरेक्ट करंट ट्रांसमिशन सिस्टम में, पावर फैक्टर करेक्शन संधारित्र में हार्मोनिक करंट को दबाने के लिए ट्यूनिंग इंडिकेटर्स हो सकते हैं जो अन्यथा एसी पावर सिस्टम में इंजेक्ट किए जाएंगे।

दमन और युग्मन

अवांछनीय आवृत्तियों को दबाने के लिए उपयोग किए जाने वाले संधारित्र को कभी-कभी फ़िल्टर संधारित्र कहा जाता है। वेविद्युतीय और विद्युतीय उपकरणों में आम हैं, और कई अनुप्रयोगों को कवर करते हैं, जैसे:

सिग्नल कपलिंग

चूंकि संधारित्र एसी पास करते हैं लेकिन डीसी सिग्नल (सूचना सिद्धांत) को अवरुद्ध करते हैं (जब लागू डीसी वोल्टेज तक चार्ज किया जाता है), तो उन्हें अक्सर सिग्नल के एसी और डीसी घटकों को अलग करने के लिए उपयोग किया जाता है। इस विधि को एसी कपलिंग या कैपेसिटिव कपलिंग के रूप में जाना जाता है। यहां, कैपेसिटेंस का एक बड़ा मूल्य, जिसका मूल्य सटीक रूप से नियंत्रित करने की आवश्यकता नहीं है, लेकिन जिसका रिएक्शन ( विद्युतीय्स) सिग्नल फ्रीक्वेंसी पर छोटा है, कार्यरत है।

डिकूपिंग

सिरैमिक X2Y डीकपलिंग संधारित्र

एक decoupling संधारित्र एक संधारित्र होता है जिसका उपयोग परिपथ के एक हिस्से को दूसरे से अलग करने के लिए किया जाता है। अन्य परिपथ तत्वों के कारण होने वाले शोर को संधारित्र के माध्यम से शंट किया जाता है, जिससे बाकी परिपथ पर उनका प्रभाव कम हो जाता है। यह सामान्यतः विद्युत की आपूर्ति और जमीन के बीच उपयोग किया जाता है।

उच्च आवृत्तियों के लिए एक वैकल्पिक नाम बायपास संधारित्र है क्योंकि इसका उपयोग विद्युत की आपूर्ति या परिपथ के अन्य उच्च प्रतिबाधा घटक को बायपास करने के लिए किया जाता है।

हाई-पास और लो-पास फिल्टर

एक उच्च पास फिल्टर (एचपीएफ) एक विद्युतीय फिल्टर है जो एक निश्चित कटऑफ आवृत्ति से अधिक आवृत्ति के साथ सिग्नल पास करता है और कटऑफ आवृत्ति से कम आवृत्तियों के साथ संकेतों को क्षीण करता है। प्रत्येक आवृत्ति के लिए क्षीणन की मात्रा फ़िल्टर डिज़ाइन पर निर्भर करती है। एक उच्च-पास फ़िल्टर सामान्यतः एक रैखिक समय-अपरिवर्तनीय प्रणाली के रूप में तैयार किया जाता है। इसे कभी-कभी लो-कट फिल्टर या बास-कट फिल्टर कहा जाता है। [1] हाई-पास फिल्टर के कई उपयोग हैं, जैसे डीसी को गैर-शून्य औसत वोल्टेज या रेडियो आवृत्ति उपकरणों के प्रति संवेदनशील परिपथ ्री से अवरुद्ध करना। बैंडपास फ़िल्टर बनाने के लिए उनका उपयोग कम-पास फ़िल्टर के संयोजन के साथ भी किया जा सकता है।

लो पास फिल्टर (LPF) एक फिल्टर है जो एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ संकेतों को पास करता है और कटऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। फ़िल्टर की सटीक आवृत्ति प्रतिक्रिया फ़िल्टर डिज़ाइन पर निर्भर करती है। फ़िल्टर को कभी-कभी ऑडियो अनुप्रयोगों में हाई-कट फ़िल्टर या तिहरा कट फिल्टर कहा जाता है। एक निम्न-पास फ़िल्टर एक उच्च-पास फ़िल्टर का पूरक है।

शोर फिल्टर और स्नबर्स

स्क्रू टर्मिनलों के साथ हेवी-ड्यूटी स्नबर संधारित्र

जब एक इंडक्टिव परिपथ खोला जाता है, तो इंडक्शन के माध्यम से करंट जल्दी से ढह जाता है, जिससे स्विच या रिले के ओपन परिपथ में एक बड़ा वोल्टेज बन जाता है। यदि अधिष्ठापन काफी बड़ा है, तो ऊर्जा एक विद्युत चिंगारी उत्पन्न करेगी, जिससे संपर्क बिंदु ऑक्सीकरण, बिगड़ना, या कभी-कभी एक साथ वेल्ड हो जाते हैं, या एक ठोस-अवस्था स्विच को नष्ट कर देते हैं। नए खुले परिपथ में एक स्नबर संधारित्र इस आवेग के लिए संपर्क बिंदुओं को बायपास करने के लिए एक रास्ता बनाता है, जिससे उनके जीवन का संरक्षण होता है; उदाहरण के लिए, ये सामान्यतः कॉन्टैक्ट ब्रेकर ज्वलन प्रणाली में पाए जाते थे। इसी तरह, छोटे पैमाने के परिपथ में, स्पार्क स्विच को नुकसान पहुंचाने के लिए पर्याप्त नहीं हो सकता है, लेकिन फिर भी स्पार्क-गैप ट्रांसमीटर अवांछनीय रेडियो फ्रीक्वेंसी इंटरफेरेंस (RFI) करेगा, जिसे एक फिल्टर संधारित्र अवशोषित करता है। स्नबर संधारित्र सामान्यतः श्रृंखला में कम-मूल्य प्रतिरोधी के साथ नियोजित होते हैं, ऊर्जा को खत्म करने और आरएफआई को कम करने के लिए। ऐसे प्रतिरोधक-संधारित्र संयोजन एक ही पैकेज में उपलब्ध हैं।

इन इकाइयों के बीच वोल्टेज को समान रूप से वितरित करने के लिए संधारित्र का उपयोग एक उच्च-वोल्टेज परिपथ वियोजक की इंटरप्ट इकाइयों के समानांतर में भी किया जाता है। इस मामले में, उन्हें ग्रेडिंग संधारित्र कहा जाता है।

योजनाबद्ध आरेखों में, डीसी चार्ज स्टोरेज के लिए मुख्य रूप से उपयोग किए जाने वाले संधारित्र को अक्सर परिपथ आरेखों में निचले, अधिक नकारात्मक, चाप के रूप में खींची गई प्लेट के साथ लंबवत रूप से खींचा जाता है। सीधी प्लेट डिवाइस के सकारात्मक टर्मिनल को इंगित करती है यदि यह ध्रुवीकृत है (विद्युत - अपघटनी संधारित्र देखें)।

डीसी मोटर दमन

सिरेमिक डिस्क संधारित्र सामान्यतः ब्रश डीसी इलेक्ट्रिक मोटर्स के लिए स्नबर परिपथ में उनके कम अधिष्ठापन और कम लागत के लिए उपयोग किए जाते हैं।

स्विच्ड मोड पावर सप्लाई फ़िल्टरिंग

उच्च तरंग (विद्युत) को संभालने के लिए अक्सर कम ईएसआर (समतुल्य श्रृंखला प्रतिरोध) इलेक्ट्रोलाइट्स की आवश्यकता होती है।

मुख्य फ़िल्टरिंग

मुख्य फ़िल्टर संधारित्र सामान्यतः घाव-प्लास्टिक-फिल्म प्रकार के होते हैं, क्योंकि ये कम लागत पर उच्च वोल्टेज रेटिंग प्रदान करते हैं, और इन्हें स्व-उपचार और फ़्यूज़िबल बनाया जा सकता है। मुख्य फिल्टर संधारित्र अक्सर सिरेमिक संधारित्र #RFI/EMI दमन सिरेमिक संधारित्र | सिरेमिक RFI/EMI दमन संधारित्र होते हैं। मुख्य फ़िल्टरिंग के लिए अतिरिक्त सुरक्षा आवश्यकताएँ हैं:

  • लाइन टू न्यूट्रल संधारित्र फ्लेम रिटार्डेंट हैं, और यूरोप में क्लास X डाइइलेक्ट्रिक्स का उपयोग करना आवश्यक है।
  • पृथ्वी के लिए रेखा या तटस्थ: ज्वाला मंदक होना चाहिए; इसके अलावा, ढांकता हुआ स्वयं चिकित्सा और फ़्यूज़िबल होना चाहिए। यूरोप में ये क्लास वाई संधारित्र हैं।

पावर रेल फ़िल्टरिंग

ट्रांसफॉर्मर, पुल सुधारक, 78xx रेगुलेटर और फ़िल्टर संधारित्र दिखाते हुए एक साधारण मेन PSU के लिए विशिष्ट एप्लिकेशन परिपथ

इलेक्ट्रोलाइटिक संधारित्र सामान्यतः कम लागत और कम आकार में उच्च क्षमता के कारण उपयोग किए जाते हैं। उच्च आवृत्तियों पर इलेक्ट्रोलाइटिक्स के खराब प्रदर्शन की भरपाई के लिए छोटे गैर-इलेक्ट्रोलाइटिक्स इनके साथ समानांतर हो सकते हैं।

कंप्यूटर बड़ी संख्या में फ़िल्टर संधारित्र का उपयोग करते हैं, जिससे आकार एक महत्वपूर्ण कारक बन जाता है। सॉलिड टैंटलम और वेट टैंटलम संधारित्र उपलब्ध कुछ सबसे अधिक मात्रा में कुशल पैकेजिंग में कुछ बेहतरीन सीवी (कैपेसिटेंस / वोल्टेज) प्रदर्शन प्रदान करते हैं। उच्च धाराएं और कम वोल्टेज भी कम समतुल्य श्रृंखला प्रतिरोध (ESR) को महत्वपूर्ण बनाते हैं। ठोस टैंटलम संधारित्र कम ईएसआर संस्करण पेश करते हैं जो अक्सर ईएसआर आवश्यकताओं को पूरा कर सकते हैं लेकिन वे सभी संधारित्र के बीच सबसे कम ईएसआर विकल्प नहीं हैं। सॉलिड टैंटलम में एक अतिरिक्त समस्या है जिसे डिजाइन चरण के दौरान संबोधित किया जाना चाहिए। ठोस टैंटलम संधारित्र को सभी अनुप्रयोगों में वोल्टेज व्युत्पन्न होना चाहिए। एक 50% वोल्टेज व्युत्पन्न की सिफारिश की जाती है और आम तौर पर उद्योग मानक के रूप में स्वीकार किया जाता है; उदा. एक 50V ठोस टैंटलम संधारित्र को कभी भी 25V से ऊपर के वास्तविक अनुप्रयोग वोल्टेज के संपर्क में नहीं आना चाहिए। ठोस टैंटलम संधारित्र बहुत विश्वसनीय घटक होते हैं यदि उचित देखभाल की जाती है और सभी डिज़ाइन दिशानिर्देशों का ध्यानपूर्वक पालन किया जाता है। दुर्भाग्य से, एक ठोस टैंटलम संधारित्र के लिए विफलता तंत्र एक छोटा है जिसके परिणामस्वरूप एक पीसीबी पर एक हिंसक भड़कना और धूम्रपान करना होगा जो अन्य घटकों को निकटता में नुकसान पहुंचाने के साथ-साथ संधारित्र को पूरी तरह से नष्ट करने में सक्षम है। सौभाग्य से, अधिकांश ठोस टैंटलम संधारित्र विफलताएं तत्काल और बहुत स्पष्ट होंगी। एक बार लगाने के बाद सॉलिड टैंटलम संधारित्र के प्रदर्शन में समय के साथ सुधार होगा और घटक के गलत निर्माण के कारण विफलता की संभावना कम हो जाएगी। गीले टैंटलम एक प्रकार के इलेक्ट्रोलाइटिक संधारित्र होते हैं, जो एक हर्मेटिक पैकेज में सील किए गए इलेक्ट्रोलाइटिक सामग्री में टैंटलम गोली का उपयोग करते हैं। इस प्रकार के टैंटलम संधारित्र को उसी व्युत्पन्न की आवश्यकता नहीं होती है जो एक ठोस टैंटलम करता है और इसकी विफलता तंत्र खुली होती है। 85C से 125C तक संचालन करते समय गीले टैंटलम के लिए 10% से 20% वोल्टेज व्युत्पन्न वक्र की सिफारिश की जाती है। गीले टैंटलम को सामान्यतः केवल 'इलेक्ट्रोलाइटिक्स' के रूप में नहीं जाना जाता है क्योंकि सामान्यतः 'इलेक्ट्रोलाइटिक' एल्यूमीनियम इलेक्ट्रोलाइटिक्स को संदर्भित करता है।

मोटर स्टार्टर्स

एक विशिष्ट मोटर स्टार्ट संधारित्र, जैसा कि इसके काले रंग से देखा जा सकता है और आकार दे सकता है

एकल चरण गिलहरी-पिंजरे रोटर मोटर्स में, मोटर आवास के भीतर प्राथमिक घुमाव रोटर पर घूर्णन गति शुरू करने में सक्षम नहीं है, लेकिन एक को बनाए रखने में सक्षम है। मोटर शुरू करने के लिए, एक गैर-ध्रुवीकृत प्रारंभिक संधारित्र के साथ श्रृंखला में एक द्वितीयक वाइंडिंग का उपयोग किया जाता है, जो कि प्रारंभिक वाइंडिंग के माध्यम से साइनसोइडल करंट में अंतराल का परिचय देता है। जब द्वितीयक वाइंडिंग को प्राथमिक वाइंडिंग के संबंध में एक कोण पर रखा जाता है, तो एक घूर्णन विद्युत क्षेत्र बनाया जाता है। घूर्णी क्षेत्र का बल स्थिर नहीं है, लेकिन रोटर कताई शुरू करने के लिए पर्याप्त है। जब रोटर ऑपरेटिंग गति के करीब आता है, एक केन्द्रापसारक स्विच (या मुख्य घुमाव के साथ श्रृंखला में वर्तमान-संवेदनशील रिले) संधारित्र को डिस्कनेक्ट करता है। स्टार्ट संधारित्र को सामान्यतः मोटर हाउसिंग के किनारे लगाया जाता है। इन्हें संधारित्र-स्टार्ट मोटर्स कहा जाता है, और इनमें अपेक्षाकृत उच्च स्टार्टिंग टॉर्क होता है।

संधारित्र-रन इंडक्शन मोटर्स भी हैं जिनमें दूसरी वाइंडिंग के साथ श्रृंखला में स्थायी रूप से जुड़ा फेज-शिफ्टिंग संधारित्र है। मोटर दो-चरण प्रेरण मोटर की तरह है।

मोटर-स्टार्टिंग संधारित्र सामान्यतः गैर-ध्रुवीकृत इलेक्ट्रोलाइटिक प्रकार होते हैं, जबकि संधारित्र चलाने वाले पारंपरिक पेपर या प्लास्टिक फिल्म ढांकता हुआ प्रकार होते हैं।

सिग्नल प्रोसेसिंग

संधारित्र में संग्रहीत ऊर्जा का उपयोग सूचनाओं को दर्शाने के लिए किया जा सकता है, या तो द्विआधारी रूप में, DRAMs के रूप में, या एनालॉग रूप में, जैसा कि एनालॉग नमूना फिल्टर और चार्ज-युग्मित डिवाइस CCDs में होता है। संधारित्र का उपयोग एनालॉग परिपथ में इंटीग्रेटर्स या अधिक जटिल फिल्टर के घटकों के रूप में और नकारात्मक प्रतिक्रिया पाश स्थिरीकरण में किया जा सकता है। सिग्नल प्रोसेसिंग परिपथ वर्तमान सिग्नल को एकीकृत करने के लिए संधारित्र का भी उपयोग करते हैं।

ट्यून्ड परिपथ

एयर गैप ट्यूनिंग संधारित्र

विशेष आवृत्ति बैंड में सूचना का चयन करने के लिए आरएलसी परिपथ में संधारित्र और प्रारंभ करनेवाला्स एक साथ लगाए जाते हैं। उदाहरण के लिए, रेडियो रिसीवर स्टेशन फ्रीक्वेंसी को ट्यून करने के लिए वेरिएबल संधारित्र पर भरोसा करते हैं। स्पीकर निष्क्रिय एनालॉग ऑडियो क्रॉसओवर का उपयोग करते हैं, और एनालॉग तुल्यकारक अलग-अलग ऑडियो बैंड का चयन करने के लिए संधारित्र का उपयोग करते हैं।

संवेदन

अधिकांश संधारित्र एक निश्चित भौतिक संरचना को बनाए रखने के लिए डिज़ाइन किए गए हैं। हालाँकि, विभिन्न कारक संधारित्र की संरचना को बदल सकते हैं; कैपेसिटेंस में परिणामी परिवर्तन का उपयोग उन कारकों को सेंसर करने के लिए किया जा सकता है।

ढांकता हुआ बदलना

ढांकता हुआ की विशेषताओं को बदलने के प्रभाव का उपयोग संवेदन और माप के लिए भी किया जा सकता है। हवा में नमी को मापने के लिए एक उजागर और झरझरा ढांकता हुआ संधारित्र का उपयोग किया जा सकता है। संधारित्र का उपयोग हवाई जहाजों में ईंधन के स्तर को सटीक रूप से मापने के लिए किया जाता है; चूंकि ईंधन प्लेटों की एक जोड़ी को अधिक कवर करता है, परिपथ कैपेसिटेंस बढ़ता है।

प्लेटों के बीच की दूरी बदलना

लचीली प्लेट वाले संधारित्र का उपयोग तनाव या दबाव या भरा कोश को मापने के लिए किया जा सकता है।

प्रक्रिया नियंत्रण के लिए उपयोग किए जाने वाले औद्योगिक दबाव ट्रांसमीटर दबाव-संवेदन डायाफ्राम का उपयोग करते हैं, जो एक ऑसीलेटर परिपथ की संधारित्र प्लेट बनाते हैं। संधारित्र का उपयोग कंडेंसर माइक्रोफोन में सेंसर के रूप में किया जाता है, जहां एक प्लेट को दूसरी प्लेट की निश्चित स्थिति के सापेक्ष हवा के दबाव से स्थानांतरित किया जाता है। त्वरण सदिश के परिमाण और दिशा को मापने के लिए कुछ accelerometer माइक्रो विद्युतीय सिस्टम (एमईएमएस) संधारित्र का उपयोग चिप पर उकेरा जाता है। उनका उपयोग त्वरण में परिवर्तन का पता लगाने के लिए किया जाता है, उदा। टिल्ट सेंसर के रूप में या फ्री फॉल का पता लगाने के लिए, एयरबैग परिनियोजन को ट्रिगर करने वाले सेंसर के रूप में, और कई अन्य अनुप्रयोगों में। कुछ फ़िंगरप्रिंट प्रमाणीकरण # फ़िंगरप्रिंट सेंसर संधारित्र का उपयोग करते हैं।

प्लेटों के प्रभावी क्षेत्र को बदलना

कैपेसिटिव टच स्विच अब कई उपभोक्ता विद्युतीय उत्पादों पर उपयोग किए जाते हैं

ऑसिलेटर्स

एक साधारण दोलक का उदाहरण जिसे कार्य करने के लिए एक संधारित्र की आवश्यकता होती है

एक संधारित्र में दोलक परिपथ में स्प्रिंग जैसे गुण हो सकते हैं। छवि उदाहरण में, एक संधारित्र एनपीएन ट्रांजिस्टर के आधार पर बायसिंग वोल्टेज को प्रभावित करने के लिए कार्य करता है। वोल्टेज-विभाजक प्रतिरोधों के प्रतिरोध मान और संधारित्र के समाई मूल्य एक साथ दोलन आवृत्ति को नियंत्रित करते हैं।

खतरे और सुरक्षा

संधारित्र एक परिपथ से विद्युत हटाए जाने के बाद लंबे समय तक चार्ज बनाए रख सकते हैं; यह शुल्क खतरनाक या संभावित रूप से घातक झटके या जुड़े उपकरणों को नुकसान पहुंचा सकता है। उदाहरण के लिए, 1.5 वोल्ट AA बैटरी द्वारा संचालित डिस्पोजेबल कैमरा फ्लैश यूनिट जैसे प्रतीत होने वाले अहानिकर उपकरण में भी एक संधारित्र होता है जिसे 300 वोल्ट से अधिक चार्ज किया जा सकता है। यह आसानी से झटका देने में सक्षम है। विद्युतीय उपकरणों के लिए सेवा प्रक्रियाओं में सामान्यतः बड़े या उच्च-वोल्टेज संधारित्र को डिस्चार्ज करने के निर्देश शामिल होते हैं। संधारित्र में बिल्ट-इन डिस्चार्ज रेसिस्टर्स भी हो सकते हैं, जो पावर हटाने के बाद कुछ सेकंड के भीतर संग्रहीत ऊर्जा को एक सुरक्षित स्तर तक फैलाने के लिए होते हैं। ढांकता हुआ अवशोषण के कारण संभावित खतरनाक वोल्टेज से सुरक्षा के रूप में, उच्च-वोल्टेज संधारित्र को शॉर्ट टर्मिनलों के साथ संग्रहीत किया जाता है।

कुछ पुराने, बड़े तेल से भरे संधारित्र में पॉलीक्लोराइनेटेड बाइफिनाइल (पीसीबी) होते हैं। यह ज्ञात है कि अपशिष्ट पीसीबी लैंडफिल के तहत भूजल में रिसाव कर सकते हैं। पीसीबी वाले संधारित्र को एस्कारेल और कई अन्य व्यापारिक नामों के रूप में लेबल किया गया था। पीसीबी से भरे संधारित्र बहुत पुराने (1975 से पहले) फ्लोरोसेंट लैंप रोड़े और अन्य अनुप्रयोगों में पाए जाते हैं।

उच्च-वोल्टेज संधारित्र अपनी रेटिंग से परे वोल्टेज या धाराओं के अधीन होने पर, या जब वे अपने जीवन के सामान्य अंत तक पहुँचते हैं, तो भयावह रूप से विफल हो सकते हैं। ढांकता हुआ या धातु इंटरकनेक्शन विफलताएं उत्पन्न कर सकती हैं जो ढांकता हुआ द्रव को वाष्पीकृत करती हैं, जिसके परिणामस्वरूप उभड़ा हुआ, टूटना या विस्फोट भी हो सकता है। RF या निरंतर उच्च-वर्तमान अनुप्रयोगों में उपयोग किए जाने वाले संधारित्र ज़्यादा गरम हो सकते हैं, विशेष रूप से संधारित्र रोल के केंद्र में। उच्च-ऊर्जा संधारित्र बैंकों के भीतर उपयोग किए जाने वाले संधारित्र हिंसक रूप से विस्फोट कर सकते हैं जब एक संधारित्र में कमी के कारण बैंक के बाकी हिस्सों में जमा ऊर्जा अचानक विफल हो जाती है। उच्च वोल्टेज वैक्यूम संधारित्र सामान्य ऑपरेशन के दौरान भी सॉफ्ट एक्स-रे उत्पन्न कर सकते हैं। उचित रोकथाम, फ़्यूज़िंग और निवारक रखरखाव इन खतरों को कम करने में मदद कर सकते हैं।

हाई-वोल्टेज संधारित्र हाई वोल्टेज डायरेक्ट करंट (HVDC) परिपथ के पावर-अप पर इन-रश करंट को सीमित करने के लिए प्री-चार्ज से लाभ उठा सकते हैं। यह घटक के जीवन का विस्तार करेगा और उच्च वोल्टेज के खतरों को कम कर सकता है।

यह भी देखें

संदर्भ