अतिपरवलयकार कई गुना: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
एक अतिशयोक्तिपूर्ण <math>n</math>-मैनिफोल्ड एक पूर्ण रीमैनियन मैनिफोल्ड है|रीमैनियन <math>n</math>-निरंतर [[अनुभागीय वक्रता]] का कई गुना <math>-1</math>.
एक अतिशयोक्तिपूर्ण <math>n</math>-मैनिफोल्ड एक पूर्ण रीमैनियन मैनिफोल्ड है|रीमैनियन <math>n</math>-निरंतर [[अनुभागीय वक्रता]] का कई गुना <math>-1</math>.


निरंतर नकारात्मक वक्रता का हर पूर्ण, जुड़ा हुआ, बस-जुड़ा हुआ कई गुना <math>-1</math> वास्तविक अतिशयोक्तिपूर्ण स्थान के लिए [[आइसोमेट्री]] है <math>\mathbb{H}^n</math>. नतीजतन, किसी भी बंद कई गुना का सार्वभौमिक आवरण <math>M</math> निरंतर नकारात्मक वक्रता का <math>-1</math> है <math>\mathbb{H}^n</math>. इस प्रकार, प्रत्येक ऐसा <math>M</math> रूप में लिखा जा सकता है <math>\mathbb{H}^n/\Gamma</math> कहाँ <math>\Gamma</math> आइसोमेट्रीज़ का एक मरोड़-मुक्त असतत समूह है <math>\mathbb{H}^n</math>. वह है, <math>\Gamma</math> का असतत उपसमूह है <math>\mathrm{SO}^+_{1,n}\mathbb{R}</math>. मैनिफोल्ड में परिमित आयतन होता है यदि और केवल यदि <math>\Gamma</math> एक [[जाली (असतत उपसमूह)]] है।
निरंतर नकारात्मक वक्रता का हर पूर्ण, जुड़ा हुआ, बस-जुड़ा हुआ कई गुना <math>-1</math> वास्तविक अतिशयोक्तिपूर्ण स्थान के लिए [[आइसोमेट्री]] है <math>\mathbb{H}^n</math>। परिणामस्वरूप, किसी भी बंद कई गुना का सार्वभौमिक आवरण <math>M</math> निरंतर नकारात्मक वक्रता का <math>-1</math> है <math>\mathbb{H}^n</math>. इस प्रकार, प्रत्येक ऐसा <math>M</math> रूप में लिखा जा सकता है <math>\mathbb{H}^n/\Gamma</math> कहाँ <math>\Gamma</math> आइसोमेट्रीज़ का एक मरोड़-मुक्त असतत समूह है <math>\mathbb{H}^n</math>. वह है, <math>\Gamma</math> का असतत उपसमूह है <math>\mathrm{SO}^+_{1,n}\mathbb{R}</math>. मैनिफोल्ड में परिमित आयतन होता है यदि और केवल यदि <math>\Gamma</math> एक [[जाली (असतत उपसमूह)]] है।


इसके मोटे-पतले अपघटन में एक पतला हिस्सा होता है जिसमें बंद जियोडेसिक्स के ट्यूबलर पड़ोस और सिरे होते हैं जो एक यूक्लिडियन के उत्पाद होते हैं (<math>n-1</math>)-मैनीफोल्ड और क्लोज्ड हाफ-रे। कई गुना सीमित मात्रा का होता है अगर और केवल तभी इसका मोटा हिस्सा कॉम्पैक्ट होता है।
इसके मोटे-पतले अपघटन में एक पतला हिस्सा होता है जिसमें बंद जियोडेसिक्स के ट्यूबलर पड़ोस और सिरे होते हैं जो एक यूक्लिडियन के उत्पाद होते हैं (<math>n-1</math>)-मैनीफोल्ड और क्लोज्ड हाफ-रे। कई गुना सीमित मात्रा का होता है अगर और केवल तभी इसका मोटा हिस्सा कॉम्पैक्ट होता है।
Line 19: Line 19:
एक साधारण गैर-तुच्छ उदाहरण, हालांकि, एक बार छिद्रित टोरस है। यह एक (जी, एक्स)-कई गुना का एक उदाहरण है|(आइसोम(<math>\mathbb{H}^2</math>), <math>\mathbb{H}^2</math>)-कई गुना। इसे एक आदर्श आयत में लेकर बनाया जा सकता है <math>\mathbb{H}^2</math> - यानी, एक आयत जहां कोने अनंत पर सीमा पर हैं, और इस प्रकार परिणामी कई गुना में मौजूद नहीं हैं - और विपरीत छवियों की पहचान करना।
एक साधारण गैर-तुच्छ उदाहरण, हालांकि, एक बार छिद्रित टोरस है। यह एक (जी, एक्स)-कई गुना का एक उदाहरण है|(आइसोम(<math>\mathbb{H}^2</math>), <math>\mathbb{H}^2</math>)-कई गुना। इसे एक आदर्श आयत में लेकर बनाया जा सकता है <math>\mathbb{H}^2</math> - यानी, एक आयत जहां कोने अनंत पर सीमा पर हैं, और इस प्रकार परिणामी कई गुना में मौजूद नहीं हैं - और विपरीत छवियों की पहचान करना।


इसी तरह, हम दो [[आदर्श त्रिकोण]]ों को एक साथ चिपकाकर, नीचे दिखाए गए तीन-छेद वाले गोले का निर्माण कर सकते हैं। यह यह भी दिखाता है कि सतह पर वक्र कैसे बनाएं - आरेख में काली रेखा बंद वक्र बन जाती है जब हरे किनारों को एक साथ चिपकाया जाता है। जैसा कि हम एक छिद्रित गोले के साथ काम कर रहे हैं, सतह में रंगीन घेरे - उनकी सीमाओं सहित - सतह का हिस्सा नहीं हैं, और इसलिए आरेख में आदर्श त्रिकोण के रूप में दर्शाए गए हैं।
इसी तरह, हम दो [[आदर्श त्रिकोण]]ों को एक साथ चिपकाकर, नीचे दिखाए गए तीन-छेद वाले गोले का निर्माण कर सकते हैं। यह भी दिखाता है कि सतह पर वक्र कैसे बनाएं - जब हरे किनारों को एक साथ चिपकाया जाता है तब आरेख में काली रेखा बंद वक्र बन जाती है। जैसा कि हम एक छिद्रित गोले के साथ काम कर रहे हैं, सतह में रंगीन घेरे - उनकी सीमाओं सहित - सतह का हिस्सा नहीं हैं, और इसलिए आरेख में आदर्श त्रिकोण के रूप में दर्शाए गए हैं।


[[File:Thrice Punctured Sphere.svg|thumb|843x843px|(बाएं) तीन बार छिद्रित गोले के लिए एक चिपकाने वाला आरेख। समान रंग वाले किनारों को आपस में चिपका दिया जाता है। ध्यान दें कि जिन बिंदुओं पर रेखाएँ मिलती हैं (अनंत पर बिंदु सहित) अतिशयोक्तिपूर्ण स्थान की सीमा पर स्थित हैं, और इसलिए वे सतह का हिस्सा नहीं हैं। (दाएं) सतह आपस में चिपकी हुई है।|alt=|center]]कई [[अतिशयोक्तिपूर्ण लिंक]], जिनमें कुछ सरल गांठें सम्मिलित हैं जैसे कि [[चित्र-आठ गाँठ (गणित)]] और [[बोरोमियन बजता है]], अतिशयोक्तिपूर्ण हैं, और इसलिए गाँठ या लिंक के पूरक हैं <math>S^3</math> एक अतिशयोक्तिपूर्ण 3-कई गुना परिमित आयतन है।
[[File:Thrice Punctured Sphere.svg|thumb|843x843px|(बाएं) तीन बार छिद्रित गोले के लिए एक चिपकाने वाला आरेख। समान रंग वाले किनारों को आपस में चिपका दिया जाता है। ध्यान दें कि जिन बिंदुओं पर रेखाएँ मिलती हैं (अनंत पर बिंदु सहित) अतिशयोक्तिपूर्ण स्थान की सीमा पर स्थित हैं, और इसलिए वे सतह का हिस्सा नहीं हैं। (दाएं) सतह आपस में चिपकी हुई है।|alt=|center]]कई [[अतिशयोक्तिपूर्ण लिंक]], जिनमें कुछ सरल गांठें सम्मिलित हैं जैसे कि [[चित्र-आठ गाँठ (गणित)]] और [[बोरोमियन बजता है]], अतिशयोक्तिपूर्ण हैं, और इसलिए गाँठ या लिंक के पूरक हैं <math>S^3</math> एक अतिशयोक्तिपूर्ण 3-कई गुना परिमित आयतन है।
Line 34: Line 34:
* [[हाइपरबोलाइजेशन प्रमेय]]
* [[हाइपरबोलाइजेशन प्रमेय]]
* [[मार्गुलिस थीम]]
* [[मार्गुलिस थीम]]
* [[आम तौर पर अतिशयोक्तिपूर्ण अपरिवर्तनीय कई गुना]]
* [[आम तौर पर अतिशयोक्तिपूर्ण अपरिवर्तनीय कई गुना|प्रायः अतिशयोक्तिपूर्ण अपरिवर्तनीय कई गुना]]


==संदर्भ==
==संदर्भ==
परसेल, जेसिका एस.; कल्फ़गियान्नी, एफ़स्ट्रेटिया; फ्यूचर, डेविड (2006-12-06)। "देह भरना, मात्रा, और जोन्स बहुपद"। अर्क्सिव: गणित/0612138. बिबकोड: 2006गणित.....12138एफ. {{जर्नल उद्धृत करें}}: जर्नल की आवश्यकता का हवाला दें |जर्नल= (सहायता)
परसेल, जेसिका एस.; कल्फ़गियान्नी, एफ़स्ट्रेटिया; फ्यूचर, डेविड (2006-12-06)। "देह भरना, मात्रा, और जोन्स बहुपद"। अर्क्सिव: गणित/0612138. बिबकोड: 2006 गणित.....12138एफ. {{जर्नल उद्धृत करें}}: जर्नल की आवश्यकता का हवाला दें |जर्नल= (सहायता)
*कापोविच, माइकल (2009) [2001], हाइपरबोलिक मैनिफोल्ड्स और असतत समूह, मॉडर्न बिरखौसर क्लासिक्स, बोस्टन, एमए: बिरखौसर बोस्टन, doi:10.1007/978-0-8176-4913-5, आईएसबीएन 978-0-8176-4912- 8, एमआर 1792613
*कापोविच, माइकल (2009) [2001], हाइपरबोलिक मैनिफोल्ड्स और असतत समूह, मॉडर्न बिरखौसर क्लासिक्स, बोस्टन, एमए: बिरखौसर बोस्टन, doi:10.1007/978-0-8176-4913-5, आईएसबीएन 978-0-8176-4912- 8, एमआर 1792613
*मैक्लाक्लन, कॉलिन; रीड, एलन डब्ल्यू। (2003), अतिशयोक्तिपूर्ण 3-कई गुना का अंकगणित, गणित में स्नातक पाठ, वॉल्यूम। 219, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वर्लग, आईएसबीएन 978-0-387-98386-8, एमआर 1937957
*मैक्लाक्लन, कॉलिन; रीड, एलन डब्ल्यू। (2003), अतिशयोक्तिपूर्ण 3-कई गुना का अंकगणित, गणित में स्नातक पाठ, वॉल्यूम। 219, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वर्लग, आईएसबीएन 978-0-387-98386-8, एमआर 1937957

Revision as of 15:55, 15 February 2023

गणित में, हाइपरबोलिक मैनिफोल्ड एक ऐसा स्थान है जहां हर बिंदु स्थानीय रूप से किसी आयाम के अतिशयोक्तिपूर्ण स्थान की तरह दिखता है। उनका विशेष रूप से आयाम 2 और 3 में अध्ययन किया जाता है, जहां उन्हें क्रमशः रीमैन सतह और हाइपरबोलिक रीमैन सतह [[अतिशयोक्तिपूर्ण 3-कई गुना]] कहा जाता है। इन आयामों में, वे महत्वपूर्ण हैं क्योंकि होमियोमोर्फिज्म द्वारा अधिकांश मैनिफोल्ड को हाइपरबोलिक मैनिफोल्ड में बनाया जा सकता है। यह सतहों के लिए एकरूपता प्रमेय और त्वरित पेरेलमैन द्वारा सिद्ध किए गए 3-कई गुना के लिए ज्यामितीय अनुमान का परिणाम है।

H में एक हाइपरबोलिक छोटे डोडेकाहेड्रल मधुकोश का एक परिप्रेक्ष्य प्रक्षेपण3</उप>। यह एक उदाहरण है कि एक पर्यवेक्षक एक अतिशयोक्तिपूर्ण 3-कई गुना के अंदर क्या देख सकता है।
स्यूडोस्फीयर। इस आकार का प्रत्येक आधा सीमा के साथ एक अतिशयोक्तिपूर्ण 2-कई गुना (यानी सतह) है।

कठोर परिभाषा

एक अतिशयोक्तिपूर्ण -मैनिफोल्ड एक पूर्ण रीमैनियन मैनिफोल्ड है|रीमैनियन -निरंतर अनुभागीय वक्रता का कई गुना .

निरंतर नकारात्मक वक्रता का हर पूर्ण, जुड़ा हुआ, बस-जुड़ा हुआ कई गुना वास्तविक अतिशयोक्तिपूर्ण स्थान के लिए आइसोमेट्री है । परिणामस्वरूप, किसी भी बंद कई गुना का सार्वभौमिक आवरण निरंतर नकारात्मक वक्रता का है . इस प्रकार, प्रत्येक ऐसा रूप में लिखा जा सकता है कहाँ आइसोमेट्रीज़ का एक मरोड़-मुक्त असतत समूह है . वह है, का असतत उपसमूह है . मैनिफोल्ड में परिमित आयतन होता है यदि और केवल यदि एक जाली (असतत उपसमूह) है।

इसके मोटे-पतले अपघटन में एक पतला हिस्सा होता है जिसमें बंद जियोडेसिक्स के ट्यूबलर पड़ोस और सिरे होते हैं जो एक यूक्लिडियन के उत्पाद होते हैं ()-मैनीफोल्ड और क्लोज्ड हाफ-रे। कई गुना सीमित मात्रा का होता है अगर और केवल तभी इसका मोटा हिस्सा कॉम्पैक्ट होता है।

उदाहरण

हाइपरबोलिक मैनिफोल्ड का सबसे सरल उदाहरण हाइपरबोलिक स्पेस है, क्योंकि हाइपरबोलिक स्पेस के प्रत्येक बिंदु में हाइपरबोलिक स्पेस के लिए एक आइसोमेट्रिक पड़ोस है।

एक साधारण गैर-तुच्छ उदाहरण, हालांकि, एक बार छिद्रित टोरस है। यह एक (जी, एक्स)-कई गुना का एक उदाहरण है|(आइसोम(), )-कई गुना। इसे एक आदर्श आयत में लेकर बनाया जा सकता है - यानी, एक आयत जहां कोने अनंत पर सीमा पर हैं, और इस प्रकार परिणामी कई गुना में मौजूद नहीं हैं - और विपरीत छवियों की पहचान करना।

इसी तरह, हम दो आदर्श त्रिकोणों को एक साथ चिपकाकर, नीचे दिखाए गए तीन-छेद वाले गोले का निर्माण कर सकते हैं। यह भी दिखाता है कि सतह पर वक्र कैसे बनाएं - जब हरे किनारों को एक साथ चिपकाया जाता है तब आरेख में काली रेखा बंद वक्र बन जाती है। जैसा कि हम एक छिद्रित गोले के साथ काम कर रहे हैं, सतह में रंगीन घेरे - उनकी सीमाओं सहित - सतह का हिस्सा नहीं हैं, और इसलिए आरेख में आदर्श त्रिकोण के रूप में दर्शाए गए हैं।

(बाएं) तीन बार छिद्रित गोले के लिए एक चिपकाने वाला आरेख। समान रंग वाले किनारों को आपस में चिपका दिया जाता है। ध्यान दें कि जिन बिंदुओं पर रेखाएँ मिलती हैं (अनंत पर बिंदु सहित) अतिशयोक्तिपूर्ण स्थान की सीमा पर स्थित हैं, और इसलिए वे सतह का हिस्सा नहीं हैं। (दाएं) सतह आपस में चिपकी हुई है।

कई अतिशयोक्तिपूर्ण लिंक, जिनमें कुछ सरल गांठें सम्मिलित हैं जैसे कि चित्र-आठ गाँठ (गणित) और बोरोमियन बजता है, अतिशयोक्तिपूर्ण हैं, और इसलिए गाँठ या लिंक के पूरक हैं एक अतिशयोक्तिपूर्ण 3-कई गुना परिमित आयतन है।

महत्वपूर्ण परिणाम

के लिए एक परिमित आयतन अतिपरवलयिक पर अतिशयोक्तिपूर्ण संरचना -मैनिफोल्ड मोस्टो कठोरता प्रमेय द्वारा अद्वितीय है और इसलिए ज्यामितीय आविष्कार वास्तव में टोपोलॉजिकल इनवेरिएंट हैं। टोपोलॉजिकल इनवेरिएंट के रूप में उपयोग किए जाने वाले इन ज्यामितीय इनवेरिएंट्स में से एक गाँठ या लिंक पूरक का अतिशयोक्तिपूर्ण आयतन है, जो हमें उनके संबंधित मैनिफोल्ड की ज्यामिति का अध्ययन करके एक दूसरे से दो समुद्री मील को अलग करने की अनुमति दे सकता है।

हम यह भी पूछ सकते हैं कि गाँठ पूरक की सीमा का क्षेत्रफल क्या है। जैसा कि अतिशयोक्तिपूर्ण देह भरना के तहत एक गाँठ पूरक की मात्रा और पूरक की मात्रा के बीच संबंध है,[1] हम सीमा के क्षेत्र का उपयोग हमें यह सूचित करने के लिए कर सकते हैं कि इस तरह की फिलिंग के तहत वॉल्यूम कैसे बदल सकता है।

यह भी देखें

संदर्भ

परसेल, जेसिका एस.; कल्फ़गियान्नी, एफ़स्ट्रेटिया; फ्यूचर, डेविड (2006-12-06)। "देह भरना, मात्रा, और जोन्स बहुपद"। अर्क्सिव: गणित/0612138. बिबकोड: 2006 गणित.....12138एफ. Template:जर्नल उद्धृत करें: जर्नल की आवश्यकता का हवाला दें |जर्नल= (सहायता)

  • कापोविच, माइकल (2009) [2001], हाइपरबोलिक मैनिफोल्ड्स और असतत समूह, मॉडर्न बिरखौसर क्लासिक्स, बोस्टन, एमए: बिरखौसर बोस्टन, doi:10.1007/978-0-8176-4913-5, आईएसबीएन 978-0-8176-4912- 8, एमआर 1792613
  • मैक्लाक्लन, कॉलिन; रीड, एलन डब्ल्यू। (2003), अतिशयोक्तिपूर्ण 3-कई गुना का अंकगणित, गणित में स्नातक पाठ, वॉल्यूम। 219, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वर्लग, आईएसबीएन 978-0-387-98386-8, एमआर 1937957
  • रैटक्लिफ, जॉन जी. (2006) [1994], फ़ाउंडेशन ऑफ़ हाइपरबोलिक मैनिफोल्ड्स, ग्रेजुएट टेक्स्ट्स इन मैथेमेटिक्स, वॉल्यूम। 149 (दूसरा संस्करण), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वर्लाग, डोई:10.1007/978-0-387-47322-2, आईएसबीएन 978-0-387-33197-3, एमआर 2249478
  1. Purcell, Jessica S.; Kalfagianni, Efstratia; Futer, David (2006-12-06). "Dehn filling, volume, and the Jones polynomial" (in English). arXiv:math/0612138. Bibcode:2006math.....12138F. {{cite journal}}: Cite journal requires |journal= (help)