आमेनाएबल समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Locally compact topological group with an invariant averaging operation}} | {{Short description|Locally compact topological group with an invariant averaging operation}} | ||
गणित में, '''सहज अनुगामी समूह''' एक [[स्थानीय रूप से कॉम्पैक्ट|स्थानीय रूप से संक्षिप्त]] [[टोपोलॉजिकल समूह|संस्थानिक समूह]]'' '''G' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है और समूह तत्वों द्वारा परिवर्तन के अंतर्गत [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय]] होता है। मूल परिभाषा ''G'' के उप समुच्चय पर एक सूक्ष्म योगात्मक माप या माध्य माप के संदर्भ में 1929 में [[जॉन वॉन न्यूमैन]] द्वारा [[जर्मन भाषा]] के नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बानाच-टार्स्की- पैराडॉक्स के संदर्भ में प्रस्तुत की गई थी। 1949 में महलोन एम. डे ने अंग्रेजी अनुवाद "अमीनाबल" को स्पष्ट रूप से "मीन" पर एक वाक्य के रूप में प्रस्तावित किया था।{{efn|Day's first published use of the word is in his abstract for an AMS summer meeting in 1949.{{sfn|Day|1949|pp=1054–1055}} Many textbooks on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.}} | गणित में, '''''सहज अनुगामी समूह''<nowiki/>'<nowiki/>'' एक [[स्थानीय रूप से कॉम्पैक्ट|स्थानीय रूप से संक्षिप्त]] [[टोपोलॉजिकल समूह|संस्थानिक समूह]]'' '''G' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है और समूह तत्वों द्वारा परिवर्तन के अंतर्गत [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय]] होता है। मूल परिभाषा ''G'' के उप समुच्चय पर एक सूक्ष्म योगात्मक माप या माध्य माप के संदर्भ में 1929 में [[जॉन वॉन न्यूमैन]] द्वारा [[जर्मन भाषा]] के नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बानाच-टार्स्की- पैराडॉक्स के संदर्भ में प्रस्तुत की गई थी। 1949 में महलोन एम. डे ने अंग्रेजी अनुवाद "अमीनाबल" को स्पष्ट रूप से "मीन" पर एक वाक्य के रूप में प्रस्तावित किया था।{{efn|Day's first published use of the word is in his abstract for an AMS summer meeting in 1949.{{sfn|Day|1949|pp=1054–1055}} Many textbooks on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.}} | ||
सहज अनुगामी वित्त में बड़ी संख्या में समान योग होते हैं। [[गणितीय विश्लेषण]] के क्षेत्र में, परिभाषा रैखिक कार्यों के संदर्भ में होती है। इस संस्करण को समझने का एक सहज तरीका यह है कि [[नियमित प्रतिनिधित्व]] का [[समर्थन (गणित)|समर्थन]] अलघुकरणीय अभिवेदन का संपूर्ण स्थान है। [[असतत समूह सिद्धांत]] में, जहाँ ''G'' के पास [[असतत टोपोलॉजी]] होती है जिसके लिए एक सरल परिभाषा का उपयोग किया जाता है। इस | सहज अनुगामी वित्त में बड़ी संख्या में समान योग होते हैं। [[गणितीय विश्लेषण]] के क्षेत्र में, परिभाषा रैखिक कार्यों के संदर्भ में होती है। इस संस्करण को समझने का एक सहज तरीका यह है कि [[नियमित प्रतिनिधित्व]] का [[समर्थन (गणित)|समर्थन]] अलघुकरणीय अभिवेदन का संपूर्ण स्थान है। [[असतत समूह सिद्धांत]] में, जहाँ ''G'' के पास [[असतत टोपोलॉजी]] होती है जिसके लिए एक सरल परिभाषा का उपयोग किया जाता है। इस समुच्चय में, एक समूह अनुमन्य होता है यदि कोई यह कह सकता है कि किसी दिए गए उप समुच्चय में ''G'' का कितना अनुपात होता है। | ||
यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से सहज अनुगामी होता है। | यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से सहज अनुगामी होता है। | ||
Line 11: | Line 11: | ||
परिभाषा 1. होम(''L''<sup>∞</sup>(''G''), '''R''') में एक रैखिक कार्यात्मक Λ को माध्य कहा जाता है यदि Λ का मानदंड 1 और गैर-ऋणात्मक है अर्थात f ≥ 0 का अर्थ Λ(f) ≥ 0 होता है। | परिभाषा 1. होम(''L''<sup>∞</sup>(''G''), '''R''') में एक रैखिक कार्यात्मक Λ को माध्य कहा जाता है यदि Λ का मानदंड 1 और गैर-ऋणात्मक है अर्थात f ≥ 0 का अर्थ Λ(f) ≥ 0 होता है। | ||
परिभाषा 2. होम(''L''<sup>∞</sup>(''G''), '''R''') में एक माध्य Λ को बाएं-अपरिवर्तनीय (क्रमशः दाएं-अपरिवर्तनीय) कहा जाता है यदि Λ(''g''·''f'') = Λ(''f'') में सभी ''G'' के लिए और ''f'' में ''L''<sup>∞</sup>(''G'') ''g''·''f''(x) = ''f''(''g''<sup>−1</sup>''x'') क्रमशः ''f''·''g''(x) = ''f''(''xg''<sup>−1</sup>) की बाईं | परिभाषा 2. होम(''L''<sup>∞</sup>(''G''), '''R''') में एक माध्य Λ को बाएं-अपरिवर्तनीय (क्रमशः दाएं-अपरिवर्तनीय) कहा जाता है यदि Λ(''g''·''f'') = Λ(''f'') में सभी ''G'' के लिए और ''f'' में ''L''<sup>∞</sup>(''G'') ''g''·''f''(x) = ''f''(''g''<sup>−1</sup>''x'') क्रमशः ''f''·''g''(x) = ''f''(''xg''<sup>−1</sup>) की बाईं क्रमशः दाईं क्रिया के संबंध में होते है। | ||
परिभाषा 3. यदि यह बाएं या दाएं अपरिवर्तनीय माध्य को स्वीकृत करता है। तो स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह को संक्षिप्त सहज अनुगामी कहा जाता है। | परिभाषा 3. यदि यह बाएं या दाएं अपरिवर्तनीय माध्य को स्वीकृत करता है। तो स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह को संक्षिप्त सहज अनुगामी कहा जाता है। | ||
Line 23: | Line 23: | ||
* '''तुच्छ प्रतिनिधित्व:''' G का तुच्छ प्रतिनिधित्व बाएं नियमित प्रतिनिधित्व में अपेक्षाकृत कम रूप से समाहित है। | * '''तुच्छ प्रतिनिधित्व:''' G का तुच्छ प्रतिनिधित्व बाएं नियमित प्रतिनिधित्व में अपेक्षाकृत कम रूप से समाहित है। | ||
* '''संचलन की स्थिति:''' G पर बहुत सीमित धनात्मक-निश्चित माप μ μ (1) ≥ 0 को संतुष्ट करता है। वैलेट ने यह दिखाकर इस मानदंड में सुधार किया है कि यह पूछने के लिए पर्याप्त है कि G पर प्रत्येक निरंतर धनात्मक-निश्चित संक्षिप्त रूप से समर्थित फलन ''f'' के लिए, फलन Δ<sup>–½</sup>''f'' का 'हार माप' के संबंध में गैर-ऋणात्मक अभिन्न है जहां Δ मॉड्यूलर फलन को दर्शाता है।{{sfn|Valette|1998}} | * '''संचलन की स्थिति:''' G पर बहुत सीमित धनात्मक-निश्चित माप μ μ (1) ≥ 0 को संतुष्ट करता है। वैलेट ने यह दिखाकर इस मानदंड में सुधार किया है कि यह पूछने के लिए पर्याप्त है कि G पर प्रत्येक निरंतर धनात्मक-निश्चित संक्षिप्त रूप से समर्थित फलन ''f'' के लिए, फलन Δ<sup>–½</sup>''f'' का 'हार माप' के संबंध में गैर-ऋणात्मक अभिन्न है जहां Δ मॉड्यूलर फलन को दर्शाता है।{{sfn|Valette|1998}} | ||
* '''दिन की स्पर्शोन्मुख व्युत्क्रम स्थिति:''' पूर्णांक गैर-ऋणात्मक कार्यों φ का एक क्रम है | * '''दिन की स्पर्शोन्मुख व्युत्क्रम स्थिति:''' पूर्णांक गैर-ऋणात्मक कार्यों φ का एक क्रम है G पर पूर्ण 1 के साथ ऐसा है कि λ(g)φ<sub>''n''</sub> - C<sub>''n''</sub> ''L'' पर अपेक्षाकृत टोपोलॉजी में 0 की ओर जाता है। | ||
* '''रीटर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय F के लिए एक पूर्णांक गैर-ऋणात्मक फलन φ होता है जिसमें अभिन्न 1 होता है जैसे कि λ(g)φ - φ F में g के लिए L1(G) में अपेक्षाकृत रूप से छोटा होता है। | * '''रीटर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय ''F'' के लिए एक पूर्णांक गैर-ऋणात्मक फलन φ होता है जिसमें अभिन्न 1 होता है जैसे कि λ(g)φ - φ F में g के लिए ''L1(G'') में अपेक्षाकृत रूप से छोटा होता है। | ||
* '''डिक्समियर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय F के लिए L<sup>2</sup>(G) में इकाई सदिश f है जैसे कि λ(''g'')''f'', ''F'' में ''g'' के लिए L<sup>2</sup>(G) में अपेक्षाकृत रूप से छोटा होता है। | * '''डिक्समियर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय ''F'' के लिए ''L<sup>2</sup>(G)'' में इकाई सदिश f है जैसे कि λ(''g'')''f'', ''F'' में ''g'' के लिए L<sup>2</sup>(G) में अपेक्षाकृत रूप से छोटा होता है। | ||
* '''ग्लिक्सबर्ग−रीटर स्थिति:''' ''L<sup>1</sup>(G)'' में किसी भी ''f'' के लिए, बाईं ओर के ''L<sup>1</sup>(G)'' में 0 और बंद उत्तल पतवार के बीच की दूरी ''λ(g)f'' बराबर |∫f| का अनुवाद करती है। | * '''ग्लिक्सबर्ग−रीटर स्थिति:''' ''L<sup>1</sup>(G)'' में किसी भी ''f'' के लिए, बाईं ओर के ''L<sup>1</sup>(G)'' में 0 और बंद उत्तल पतवार के बीच की दूरी ''λ(g)f'' बराबर ''|∫f|'' का अनुवाद करती है। | ||
* '''फोल्नर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय ''F'' के लिए परिमित धनात्मक हार माप के साथ G का एक औसत दर्जे का उपसमुच्चय होता है जैसे कि ''m''(''U'' Δ ''gU'')/m(''U'') ''F'' में g के लिए अपेक्षाकृत रूप से छोटा होता है। | * '''फोल्नर की स्थिति:''' G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय ''F'' के लिए परिमित धनात्मक हार माप के साथ G का एक औसत दर्जे का उपसमुच्चय होता है जैसे कि ''m''(''U'' Δ ''gU'')/m(''U'') ''F'' में g के लिए अपेक्षाकृत रूप से छोटा होता है। | ||
* '''लेप्टिन की स्थिति:''' G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए परिमित धनात्मक | * '''लेप्टिन की स्थिति:''' G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए परिमित धनात्मक 'हार माप' के साथ ''G'' का एक औसत भाग का उपसमुच्चय होता है जैसे कि ''m''(''U'' Δ ''gU'')/m(''U'') अपेक्षाकृत रूप से छोटा होता है। | ||
* '''केस्टन''' '''की स्थिति:''' G पर एक सममित [[संभाव्यता माप|प्रायिकता माप]] द्वारा ''L''<sup>2</sup>(''G'') पर वाम घूर्णन संचालन मानदंड 1 का एक संचालक देता है। | * '''केस्टन''' '''की स्थिति:''' G पर एक सममित [[संभाव्यता माप|प्रायिकता माप]] द्वारा ''L''<sup>2</sup>(''G'') पर वाम घूर्णन संचालन मानदंड 1 का एक संचालक देता है। | ||
* '''जॉनसन की कोहोमोलॉजिकल स्थिति:''' बनच बीजगणित ''A'' = ''L''<sup>1</sup>(''G'') एक बनच बीजगणित के रूप में सहज अनुगामी है, अर्थात ''A'' के किसी भी बाध्य व्युत्पत्ति मे एक बनच A-बिमॉड्यूल के दोहरे में आंतरिक होता है। | * '''जॉनसन की कोहोमोलॉजिकल स्थिति:''' बनच बीजगणित ''A'' = ''L''<sup>1</sup>(''G'') एक बनच बीजगणित के रूप में सहज अनुगामी है, अर्थात ''A'' के किसी भी बाध्य व्युत्पत्ति मे एक बनच A-बिमॉड्यूल के दोहरे में आंतरिक होता है। | ||
Line 71: | Line 71: | ||
* Γ का [[वॉन न्यूमैन बीजगणित]] (समूहों से जुड़े वॉन न्यूमैन बीजगणित देखें) अतिपरमित ए. कॉन्स है। | * Γ का [[वॉन न्यूमैन बीजगणित]] (समूहों से जुड़े वॉन न्यूमैन बीजगणित देखें) अतिपरमित ए. कॉन्स है। | ||
ध्यान दें कि ए. कॉन्स ने यह भी सिद्ध किया है कि किसी भी जुड़े हुए स्थानीय रूप से संक्षिप्त समूह का वॉन न्यूमैन समूह बीजगणित अतिपरिमित होता है इसलिए संबद्ध समूहों की स्थिति में | ध्यान दें कि ए. कॉन्स ने यह भी सिद्ध किया है कि किसी भी जुड़े हुए स्थानीय रूप से संक्षिप्त समूह का वॉन न्यूमैन समूह बीजगणित अतिपरिमित होता है इसलिए संबद्ध समूहों की स्थिति में सूक्ष्म रूप मे प्रयुक्त नहीं होता है। सहज अनुगामी के कुछ संचालन के [[वर्णक्रमीय सिद्धांत]] से संबंधित है। उदाहरण के लिए, एक विवृत रीमैनियन-मैनिफोल्ड का मौलिक समूह अनुमन्य है यदि और केवल मैनिफोल्ड के सार्वभौमिक आवरण के [[L2-अंतरिक्ष|एल 2-]]स्थिर [[लाप्लास-बेल्ट्रामी ऑपरेटर|लाप्लास-बेल्ट्रामी संचालन]] के नीचे शून्य होता है।{{sfn|Brooks|1981|pp=581–598}} | ||
सहज अनुगामी कुछ | |||
== गुण == | == गुण == | ||
* अनुमन्य समूह का प्रत्येक (विवृत) उपसमूह अनुमन्य है। | * अनुमन्य समूह का प्रत्येक (विवृत) उपसमूह अनुमन्य है। | ||
Line 97: | Line 95: | ||
*{{harvnb|Takesaki|2001}} | *{{harvnb|Takesaki|2001}} | ||
*{{harvnb|Takesaki|2002}}</ref> | *{{harvnb|Takesaki|2002}}</ref> | ||
* सूक्ष्म रूप से उत्पन्न अनंत सरल समूह बूटस्ट्रैप निर्माणों द्वारा प्राप्त नहीं किए जा सकते हैं, जैसा कि प्राथमिक अनुमन्य समूहों के निर्माण के लिए उपयोग किया जाता है। चूंकि जुशचेंको और [[निकोलस मोनोड]] के कारण ऐसे सरल समूह सम्मिलित हैं जो सहज अनुगामी हैं | * सूक्ष्म रूप से उत्पन्न अनंत सरल समूह बूटस्ट्रैप निर्माणों द्वारा प्राप्त नहीं किए जा सकते हैं, जैसा कि प्राथमिक अनुमन्य समूहों के निर्माण के लिए उपयोग किया जाता है। चूंकि जुशचेंको और [[निकोलस मोनोड]] के कारण ऐसे सरल समूह सम्मिलित हैं जो सहज अनुगामी हैं{{sfn|Juschenko|Monod|2013|pp=775–787}} यह फिर से गैर-प्राथमिक अनुकूल उदाहरण प्रदान करता है। | ||
== गैर-उदाहरण == | == गैर-उदाहरण == | ||
यदि एक गणनीय असतत समूह में दो जेनरेटर पर एक गैर-अबेलियन [[मुक्त समूह|मुक्त]] उपसमूह होता है, तो यह सहज अनुगामी नहीं है। इस कथन के विपरीत तथाकथित [[वॉन न्यूमैन अनुमान]] है जिसे 1980 में ओलशनस्की ने अपने टर्स्की मॉन्स्टर का उपयोग करके अस्वीकृत कर दिया था। अदयान ने बाद में प्रदर्शित किया कि मुक्त [[बर्नसाइड समूह]] गैर-प्रतिगामी होते हैं चूंकि वे [[आवधिक समूह]] हैं और वे दो | यदि एक गणनीय असतत समूह में दो जेनरेटर पर एक गैर-अबेलियन [[मुक्त समूह|मुक्त]] उपसमूह होता है, तो यह सहज अनुगामी नहीं है। इस कथन के विपरीत तथाकथित [[वॉन न्यूमैन अनुमान]] है जिसे 1980 में ओलशनस्की ने अपने टर्स्की मॉन्स्टर का उपयोग करके अस्वीकृत कर दिया था। अदयान ने बाद में प्रदर्शित किया कि मुक्त [[बर्नसाइड समूह]] गैर-प्रतिगामी होते हैं चूंकि वे [[आवधिक समूह]] हैं और वे दो भाग पर मुक्त समूह को सम्मिलित नहीं कर सकते है ये समूह सूक्ष्म रूप से उत्पन्न होते हैं, लेकिन अंतिम रूप से प्रस्तुत नहीं किए जाते हैं। हालांकि, 2002 में सपिर और ओलशनस्की ने सूक्ष्म रूप से प्रस्तुत किए गए प्रति-उदाहरण मे गैर-प्रतिशोधी सूक्ष्म रूप से प्रस्तुत किए गए समूह जिनमें भागफल पूर्णांक के साथ एक आवधिक सामान्य उपसमूह होता है।{{sfn|Olshanskii|Sapir|2002|pp=43–169}} | ||
सूक्ष्म रूप से उत्पन्न [[रैखिक समूह|रैखिक समूहों]] के लिए, हालांकि, वॉन न्यूमैन अनुमान स्तन विकल्प द्वारा सत्य है{{sfn|Tits|1972|pp=250–270}} k क्षेत्र के साथ GL(''n'',''k'') का प्रत्येक उपसमूह या तो परिमित सूचकांक का एक सामान्य हल करने योग्य उपसमूह है और इसलिए अनुमन्य या दो भाग पर मुक्त समूह सम्मिलित होते है। हालांकि [[जैक्स स्तन|टिट्स]] के प्रमाण में [[बीजगणितीय ज्यामिति]] का उपयोग किया गया था गिवार्क'ह ने बाद में वी. ओसेलेडेट्स के गुणात्मक एर्गोडिक प्रमेय पर आधारित विश्लेषणात्मक प्रमाण प्राप्त हुए है।{{sfn|Guivarc'h|1990|pp=483–512}} जैसे कि [[गैर-सकारात्मक वक्रता|गैर-धनात्मक वक्रता]] के 2-आयामी सरलीकृत परिसरों के [[मौलिक समूह]] के कई अन्य वर्गों के लिए [[जैक्स स्तन|टिट्स]] विकल्प के अनुरूप सिद्ध हुए हैं।{{sfn|Ballmann|Brin|1995|pp=169–209}} | |||
== यह भी देखें == | == यह भी देखें == | ||
* समान रूप से बाध्य प्रतिनिधित्व | * समान रूप से बाध्य प्रतिनिधित्व |
Revision as of 09:57, 15 February 2023
गणित में, सहज अनुगामी समूह' एक स्थानीय रूप से संक्षिप्त संस्थानिक समूह G' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है और समूह तत्वों द्वारा परिवर्तन के अंतर्गत अपरिवर्तनीय होता है। मूल परिभाषा G के उप समुच्चय पर एक सूक्ष्म योगात्मक माप या माध्य माप के संदर्भ में 1929 में जॉन वॉन न्यूमैन द्वारा जर्मन भाषा के नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बानाच-टार्स्की- पैराडॉक्स के संदर्भ में प्रस्तुत की गई थी। 1949 में महलोन एम. डे ने अंग्रेजी अनुवाद "अमीनाबल" को स्पष्ट रूप से "मीन" पर एक वाक्य के रूप में प्रस्तावित किया था।[lower-alpha 1]
सहज अनुगामी वित्त में बड़ी संख्या में समान योग होते हैं। गणितीय विश्लेषण के क्षेत्र में, परिभाषा रैखिक कार्यों के संदर्भ में होती है। इस संस्करण को समझने का एक सहज तरीका यह है कि नियमित प्रतिनिधित्व का समर्थन अलघुकरणीय अभिवेदन का संपूर्ण स्थान है। असतत समूह सिद्धांत में, जहाँ G के पास असतत टोपोलॉजी होती है जिसके लिए एक सरल परिभाषा का उपयोग किया जाता है। इस समुच्चय में, एक समूह अनुमन्य होता है यदि कोई यह कह सकता है कि किसी दिए गए उप समुच्चय में G का कितना अनुपात होता है।
यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से सहज अनुगामी होता है।
स्थानीय रूप से संक्षिप्त समूहों के लिए परिभाषा
माना कि G एक स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह है। तब यह सर्वविदित होता है कि इसके पास एक अद्वितीय पैमाने तक बाएं या दाएं परिवर्तन मे अपरिवर्तनीय गैर तुच्छ वलय होता है जो "हार माप" को मापता है। यह एक बोरेल नियमित माप है जब G दूसरा गणनीय है। G संक्षिप्त के होने पर बाएं और दाएं दोनों माप हैं। बानाच समष्टि L∞(G) पर विचार करें कि इस माप समष्टि के भीतर अनिवार्य रूप से परिबद्ध मापनीय कार्यों (जो स्पष्ट रूप से "हार माप" के पैमाने से स्वतंत्र है) कि माप होती है।
परिभाषा 1. होम(L∞(G), R) में एक रैखिक कार्यात्मक Λ को माध्य कहा जाता है यदि Λ का मानदंड 1 और गैर-ऋणात्मक है अर्थात f ≥ 0 का अर्थ Λ(f) ≥ 0 होता है।
परिभाषा 2. होम(L∞(G), R) में एक माध्य Λ को बाएं-अपरिवर्तनीय (क्रमशः दाएं-अपरिवर्तनीय) कहा जाता है यदि Λ(g·f) = Λ(f) में सभी G के लिए और f में L∞(G) g·f(x) = f(g−1x) क्रमशः f·g(x) = f(xg−1) की बाईं क्रमशः दाईं क्रिया के संबंध में होते है।
परिभाषा 3. यदि यह बाएं या दाएं अपरिवर्तनीय माध्य को स्वीकृत करता है। तो स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह को संक्षिप्त सहज अनुगामी कहा जाता है।
सहज अनुगामी समूह के लिए समतुल्य शर्तें
पियर (1984) में एक दूसरे गणनीय स्थानीय रूप से संक्षिप्त समूह G पर शर्तों का एक व्यापक विवरण सम्मिलित है जो कि अनुमनन (अमीनबिलिटी) के बराबर होता है:[2]
- L∞(G) पर बाएँ या दाएँ अपरिवर्तनीय माध्य का अस्तित्व: मूल परिभाषा, जो चयन के सिद्धांत पर निर्भर करती है।
- वाम-अपरिवर्तनीय स्थिति का अस्तित्व: G पर बाध्य निरंतर कार्यों के किसी भी वियोज्य बाएं अपरिवर्तनीय यूनिटल सी * सबलजेब्रा पर एक बाएं-अपरिवर्तनीय स्थिति है।
- निश्चित बिन्दु संपत्ति (वियोज्य): स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश समष्टि के उत्तल समुच्चय पर निरंतर सजातीय परिवर्तन द्वारा समूह की कोई भी स्थिति एक निश्चित बिंदु है। जो स्थानीय रूप से संक्षिप्त अबेलियन समूहों के लिए, यह संपत्ति मार्कोव-काकुटानी निश्चित-बिंदु प्रमेय के परिणामस्वरूप संतुष्ट है।
- अलघुकरणीय द्विक: सभी अलघुकरणीय अभिवेदन L2(G) पर बाएं नियमित प्रतिनिधित्व λ में अपेक्षाकृत कम रूप से समाहित हैं।
- तुच्छ प्रतिनिधित्व: G का तुच्छ प्रतिनिधित्व बाएं नियमित प्रतिनिधित्व में अपेक्षाकृत कम रूप से समाहित है।
- संचलन की स्थिति: G पर बहुत सीमित धनात्मक-निश्चित माप μ μ (1) ≥ 0 को संतुष्ट करता है। वैलेट ने यह दिखाकर इस मानदंड में सुधार किया है कि यह पूछने के लिए पर्याप्त है कि G पर प्रत्येक निरंतर धनात्मक-निश्चित संक्षिप्त रूप से समर्थित फलन f के लिए, फलन Δ–½f का 'हार माप' के संबंध में गैर-ऋणात्मक अभिन्न है जहां Δ मॉड्यूलर फलन को दर्शाता है।[3]
- दिन की स्पर्शोन्मुख व्युत्क्रम स्थिति: पूर्णांक गैर-ऋणात्मक कार्यों φ का एक क्रम है G पर पूर्ण 1 के साथ ऐसा है कि λ(g)φn - Cn L पर अपेक्षाकृत टोपोलॉजी में 0 की ओर जाता है।
- रीटर की स्थिति: G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय F के लिए एक पूर्णांक गैर-ऋणात्मक फलन φ होता है जिसमें अभिन्न 1 होता है जैसे कि λ(g)φ - φ F में g के लिए L1(G) में अपेक्षाकृत रूप से छोटा होता है।
- डिक्समियर की स्थिति: G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय F के लिए L2(G) में इकाई सदिश f है जैसे कि λ(g)f, F में g के लिए L2(G) में अपेक्षाकृत रूप से छोटा होता है।
- ग्लिक्सबर्ग−रीटर स्थिति: L1(G) में किसी भी f के लिए, बाईं ओर के L1(G) में 0 और बंद उत्तल पतवार के बीच की दूरी λ(g)f बराबर |∫f| का अनुवाद करती है।
- फोल्नर की स्थिति: G के प्रत्येक परिमित या संक्षिप्त उपसमुच्चय F के लिए परिमित धनात्मक हार माप के साथ G का एक औसत दर्जे का उपसमुच्चय होता है जैसे कि m(U Δ gU)/m(U) F में g के लिए अपेक्षाकृत रूप से छोटा होता है।
- लेप्टिन की स्थिति: G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए परिमित धनात्मक 'हार माप' के साथ G का एक औसत भाग का उपसमुच्चय होता है जैसे कि m(U Δ gU)/m(U) अपेक्षाकृत रूप से छोटा होता है।
- केस्टन की स्थिति: G पर एक सममित प्रायिकता माप द्वारा L2(G) पर वाम घूर्णन संचालन मानदंड 1 का एक संचालक देता है।
- जॉनसन की कोहोमोलॉजिकल स्थिति: बनच बीजगणित A = L1(G) एक बनच बीजगणित के रूप में सहज अनुगामी है, अर्थात A के किसी भी बाध्य व्युत्पत्ति मे एक बनच A-बिमॉड्यूल के दोहरे में आंतरिक होता है।
असतत समूहों का स्थिति
असतत समूह यानी असतत टोपोलॉजी से लैस[4] समूह के स्थिति में अनुकूलता की परिभाषा सरल होती है।[5]
परिभाषा: एक असतत समूह G सहज अनुगामी है यदि कोई परिमित योगात्मक माप है जिसे माध्य भी कहा जाता है - एक कारक जो G के प्रत्येक उपसमुच्चय को 0 से 1 तक की संख्या प्रदान करता है - जैसे कि
- माप एक प्रायिकता माप है संपूर्ण समूह G का माप 1 है।
- उपाय सूक्ष्म रूप से योगात्मक है: G के बहुत से असंयुक्त उपसमुच्चयों को देखते हुए, समुच्चयों के मिलन के मापों का योग है।
- माप वाम-अपरिवर्तनीय है: एक उपसमुच्चय A और G का एक तत्व g दिया गया है, A का माप gA के माप के बराबर है। gA, A में प्रत्येक तत्व a के लिए तत्वों के समूह को दर्शाता है। अर्थात, A के प्रत्येक तत्व को बाईं ओर g द्वारा अनुवादित किया गया है।
इस परिभाषा को इस प्रकार संक्षेपित किया जा सकता है: G सहज अनुगामी है यदि इसमें एक परिमित-योगात्मक वाम-अपरिवर्तनीय प्रायिकता माप है। G के एक उपसमुच्चय A को देखते हुए, माप को प्रश्न का उत्तर देने के रूप में सोचा जा सकता है कि प्रायिकता क्या है कि G का एक यादृच्छिक तत्व A में है?
यह एक तथ्य है कि यह परिभाषा L∞(G) के संदर्भ में परिभाषा के समतुल्य है।
G पर एक माप μ होने से हमें G पर परिबद्ध कार्यों के एकीकरण को परिभाषित करने की स्वीकृति मिलती है। एक परिबद्ध फलन f: G → R, समाकल दिया है
लेबेस्ग कीकरण के रूप में परिभाषित किया गया है। ध्यान दें कि लेबेसेग एकीकरण के कुछ गुण यहां विफल हो जाते हैं, क्योंकि हमारा माप केवल सूक्ष्म रूप से योज्य है।
यदि किसी समूह के पास वाम-अपरिवर्तनीय माप है, तो इसमें स्वचालित रूप से द्वि-अपरिवर्तनीय माप होता है। बाएं-अपरिवर्तनीय माप μ को देखते हुए, फलन μ−(A) = μ(A−1) एक वाम-अपरिवर्तनीय माप है। इन दोनों के संयोजन से द्वि-अपरिवर्तनीय माप प्राप्त होता है:
गणनीय असतत समूह Γ की स्थिति में सहज अनुगामी के लिए समतुल्य शर्तें भी सरल हो जाती हैं। ऐसे समूह के लिए निम्नलिखित शर्तें समतुल्य हैं:[2]
- Γ सहज अनुगामी है।
- यदि Γ एक (वियोज्य) बानाच स्थिति E पर समदूरीकता द्वारा कार्य करता है, तो E* अपरिवर्तनीय की विवृत इकाई वृत्त के अपेक्षाकृत विवृत उत्तल उपसमुच्चय को छोड़कर, Γ में सी में एक निश्चित बिंदु है।
- μ(1) = 1 के साथ ℓ∞(Γ) पर एक बायां अपरिवर्तनीय मानक-निरंतर कार्यात्मक μ है इसके लिए चयन सिद्धान्त की आवश्यकता होती है।
- ℓ∞(Γ) के किसी भी बाएं अपरिवर्तनीय वियोज्य यूनिटल C*-सबलगेब्रा पर एक बाएं अपरिवर्तनीय स्थिति μ है।
- Γ पर प्रायिकता उपायों का एक सेट है जैसे कि ||g · μn - μn||1 Γ (एमएम डे) में प्रत्येक जी के लिए 0 हो जाता है।
- ℓ2(Γ) में इकाई सदिश xn हैं ऐसा कि ||g · xn − xn||2 Γ (जे डिक्समियर) में प्रत्येक g के लिए 0 हो जाता है।
- Γ के परिमित उपसमुच्चय Sn ऐसे हैं कि |g · Sn Δ Sn| / |Sn| Γ (Følner) में प्रत्येक g के लिए 0 हो जाता है।
- यदि μ Γ पर एक सममित प्रायिकता माप है जो Γ उत्पन्न करने के समर्थन के साथ है, तो μ द्वारा कनवल्शन ℓ2(Γ) केस्टेन पर मानदंड 1 के एक संचालन को परिभाषित करता है।
- यदि Γ isometrics द्वारा एक (वियोज्य) बानाच स्थान E और f पर ℓ∞(Γ, E*) पर कार्य करता है, तो एक परिबद्ध 1-चक्र चक्र है, अर्थात f(gh) = f(g) + g·f(h) फिर f एक 1-कोबाउंडरी है अर्थात f(g) = g·φ - φ E* में कुछ φ के लिए बी.ई. जॉनसन होता है।
- घटा हुआ समूह C*-बीजगणित (घटित समूह C*-बीजगणित Cr*(G) परमाणु है।
- घटा हुआ समूह C*-बीजगणित क्वैसिडागोनल (जे. रोसेनबर्ग, ए. टिकुइसिस, एस. व्हाइट डब्ल्यू. विंटर) है।
- Γ का वॉन न्यूमैन बीजगणित (समूहों से जुड़े वॉन न्यूमैन बीजगणित देखें) अतिपरमित ए. कॉन्स है।
ध्यान दें कि ए. कॉन्स ने यह भी सिद्ध किया है कि किसी भी जुड़े हुए स्थानीय रूप से संक्षिप्त समूह का वॉन न्यूमैन समूह बीजगणित अतिपरिमित होता है इसलिए संबद्ध समूहों की स्थिति में सूक्ष्म रूप मे प्रयुक्त नहीं होता है। सहज अनुगामी के कुछ संचालन के वर्णक्रमीय सिद्धांत से संबंधित है। उदाहरण के लिए, एक विवृत रीमैनियन-मैनिफोल्ड का मौलिक समूह अनुमन्य है यदि और केवल मैनिफोल्ड के सार्वभौमिक आवरण के एल 2-स्थिर लाप्लास-बेल्ट्रामी संचालन के नीचे शून्य होता है।[6]
गुण
- अनुमन्य समूह का प्रत्येक (विवृत) उपसमूह अनुमन्य है।
- अनुमन्य समूह का प्रत्येक भाग अनुमन्य होता है।
- एक अनुमन्य समूह द्वारा एक अनुमन्य समूह का एक समूह विस्तार पुनः अनुमन्य होता है। विशेष रूप से अनुमन्य समूहों के परिमित प्रत्यक्ष उत्पाद अनुमन्य हैं, हालांकि अनंत उत्पादों की आवश्यकता नहीं है।
- अनुमन्य समूहों की प्रत्यक्ष सीमाएं अनुमन्य होती हैं। विशेष रूप से, यदि एक समूह को सहज अनुगामी उपसमूहों के निर्देशित संघ के रूप में लिखा जा सकता है, तो यह अनुमन्य होता है।
- अनुमन्य समूह एकात्मक हैं, इसका विपरीत एक सवृत समस्या है।
- गणनीय असतत अनुगामी समूह ऑर्नस्टीन समरूपता प्रमेय का पालन करते हैं।[7][8]
उदाहरण
- परिमित समूह सहज अनुगामी हैं। असतत परिभाषा के साथ मतगणना माप का उपयोग करें। अधिक सामान्यतः संक्षिप्त अस्थायी समूह सहज अनुगामी होते हैं। 'हार माप' एक अपरिवर्तनीय माध्य (कुल माप 1 लेने वाला अद्वितीय) है।
- पूर्णांकों का समूह अनुमन्य है लंबाई के अंतरालों का एक क्रम जो अनंत तक जाता है जो एक फोल्नर अनुक्रम है समूह Z पर गैर-अपरिवर्तनीय परिमित योगात्मक प्रायिकता माप का अस्तित्व भी हन-बनच प्रमेय का आसानी से अनुसरण करता है। S को अनुक्रम समष्टि ℓ∞(Z) पर शिफ्ट संचालन जो सभी ∈ ℓ∞(Z) के लिए (Sx)i = xi+1 द्वारा परिभाषित है और u ∈ ℓ∞(Z) स्थिर होता है जिसमे सभी i ∈ Z के लिए अनुक्रम ui = 1 किसी भी तत्व y ∈ Y:= स्थिति (S - I) की दूरी u से 1 से अधिक या उसके बराबर होता है (अन्यथा yi = xi+1 - xi धनात्मक होगा और इससे दूर होगा शून्य, जहाँ से xi को परिबद्ध नहीं किया जा सकता है इसका तात्पर्य यह है कि उपसमष्टि Ru + Y पर tu + y से t तक ले जाने वाला एक सुपरिभाषित मानक-एक रेखीय रूप है। हैन-बनाक प्रमेय द्वारा उत्तरार्द्ध ℓ∞(Z) पर एक मानक-एक रैखिक विस्तार को स्वीकृत करता है, जो कि Z पर एक अपरिवर्तनीय परिवर्तन सूक्ष्म रूप से योगात्मक प्रायिकता माप का निर्माण करता है।
- यदि स्थानीय रूप से संक्षिप्त समूह में प्रत्येक संयुग्मन वर्ग का संक्षिप्त विवृत है, तो समूह सहज अनुगामी होता है। इस संपत्ति वाले समूहों के उदाहरणों में संक्षिप्त समूह स्थानीय रूप से संक्षिप्त एबेलियन समूह और एफसी-समूह सम्मिलित हैं।[9]
- उपरोक्त प्रत्यक्ष सीमा संपत्ति के अनुसार एक समूह अनुमन्य होता है यदि उसके सभी सूक्ष्म रूप से उत्पन्न समूह उपसमूह हैं। अर्थात्, स्थानीय रूप से अनुकूल समूह सहज अनुगामी होते हैं।
- अंतिम रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय द्वारा, यह अनुसरण करता है कि एबेलियन समूह सहज अनुगामी हैं।
- उपरोक्त विस्तार संपत्ति से यह अनुसरण करता है कि एक समूह अनुगामी है यदि उसके पास एक अनुगामी उपसमूह का एक परिमित सूचकांक है। अर्थात्, वस्तुत: अनुमन्य समूह अनुमन्य होते हैं।
- इसके अतिरिक्त यह इस प्रकार है कि सभी हल करने योग्य समूह सहज अनुगामी होते हैं।
उपरोक्त सभी उदाहरण प्रारंभिक सहज अनुगामी हैं। मध्यवर्ती विकास के समूहों के अस्तित्व के लिए धन्यवाद, नीचे दिए गए उदाहरणों की पहली श्रेणी का उपयोग गैर-प्राथमिक उत्तरदायी उदाहरणों को प्रदर्शित करने के लिए किया जा सकता है।
- उप-घातीय (समूह सिद्धांत) वृद्धि के अंतिम रूप से उत्पन्न समूह सहज अनुगामी हैं। गेंदों का एक उपयुक्त अनुक्रम एक फोल्नर अनुक्रम प्रदान करता है।[10]
- सूक्ष्म रूप से उत्पन्न अनंत सरल समूह बूटस्ट्रैप निर्माणों द्वारा प्राप्त नहीं किए जा सकते हैं, जैसा कि प्राथमिक अनुमन्य समूहों के निर्माण के लिए उपयोग किया जाता है। चूंकि जुशचेंको और निकोलस मोनोड के कारण ऐसे सरल समूह सम्मिलित हैं जो सहज अनुगामी हैं[11] यह फिर से गैर-प्राथमिक अनुकूल उदाहरण प्रदान करता है।
गैर-उदाहरण
यदि एक गणनीय असतत समूह में दो जेनरेटर पर एक गैर-अबेलियन मुक्त उपसमूह होता है, तो यह सहज अनुगामी नहीं है। इस कथन के विपरीत तथाकथित वॉन न्यूमैन अनुमान है जिसे 1980 में ओलशनस्की ने अपने टर्स्की मॉन्स्टर का उपयोग करके अस्वीकृत कर दिया था। अदयान ने बाद में प्रदर्शित किया कि मुक्त बर्नसाइड समूह गैर-प्रतिगामी होते हैं चूंकि वे आवधिक समूह हैं और वे दो भाग पर मुक्त समूह को सम्मिलित नहीं कर सकते है ये समूह सूक्ष्म रूप से उत्पन्न होते हैं, लेकिन अंतिम रूप से प्रस्तुत नहीं किए जाते हैं। हालांकि, 2002 में सपिर और ओलशनस्की ने सूक्ष्म रूप से प्रस्तुत किए गए प्रति-उदाहरण मे गैर-प्रतिशोधी सूक्ष्म रूप से प्रस्तुत किए गए समूह जिनमें भागफल पूर्णांक के साथ एक आवधिक सामान्य उपसमूह होता है।[12]
सूक्ष्म रूप से उत्पन्न रैखिक समूहों के लिए, हालांकि, वॉन न्यूमैन अनुमान स्तन विकल्प द्वारा सत्य है[13] k क्षेत्र के साथ GL(n,k) का प्रत्येक उपसमूह या तो परिमित सूचकांक का एक सामान्य हल करने योग्य उपसमूह है और इसलिए अनुमन्य या दो भाग पर मुक्त समूह सम्मिलित होते है। हालांकि टिट्स के प्रमाण में बीजगणितीय ज्यामिति का उपयोग किया गया था गिवार्क'ह ने बाद में वी. ओसेलेडेट्स के गुणात्मक एर्गोडिक प्रमेय पर आधारित विश्लेषणात्मक प्रमाण प्राप्त हुए है।[14] जैसे कि गैर-धनात्मक वक्रता के 2-आयामी सरलीकृत परिसरों के मौलिक समूह के कई अन्य वर्गों के लिए टिट्स विकल्प के अनुरूप सिद्ध हुए हैं।[15]
यह भी देखें
- समान रूप से बाध्य प्रतिनिधित्व
- कज़दान की संपत्ति (टी)
- वॉन न्यूमैन अनुमान
टिप्पणियाँ
उद्धरण
- ↑ Day 1949, pp. 1054–1055.
- ↑ 2.0 2.1 Pier 1984.
- ↑ Valette 1998.
- ↑ See:
- ↑ Weisstein, Eric W. "Discrete Group". MathWorld.
- ↑ Brooks 1981, pp. 581–598.
- ↑ Ornstein & Weiss 1987, pp. 1–141.
- ↑ Bowen 2012.
- ↑ Leptin 1968.
- ↑ See:
- ↑ Juschenko & Monod 2013, pp. 775–787.
- ↑ Olshanskii & Sapir 2002, pp. 43–169.
- ↑ Tits 1972, pp. 250–270.
- ↑ Guivarc'h 1990, pp. 483–512.
- ↑ Ballmann & Brin 1995, pp. 169–209.
स्रोत
This article incorporates material from Amenable group on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
- Ballmann, Werner; Brin, Michael (1995), "Orbihedra of nonpositive curvature", Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 82: 169–209, CiteSeerX 10.1.1.30.8282, doi:10.1007/BF02698640
- Bowen, Lewis (2012). "Every countably infinite group is almost Ornstein". डायनेमिक सिस्टम और ग्रुप एक्शन. Contemporary Mathematics. Vol. 567. pp. 67–78. arXiv:1103.4424. doi:10.1090/conm/567.
- Brooks, Robert (1981). "मौलिक समूह और लाप्लासियन का स्पेक्ट्रम". Comment. Math. Helv. 56: 581–598. doi:10.1007/bf02566228.
- Day, M. M. (1949). "सेमीग्रुप्स और ग्रुप्स पर मतलब". Bulletin of the American Mathematical Society. 55 (11): 1054–1055.
- Dixmier, Jacques (1977), C*-algebras (translated from the French by Francis Jellett), North-Holland Mathematical Library, vol. 15, North-Holland
- Greenleaf, F.P. (1969), Invariant Means on Topological Groups and Their Applications, Van Nostrand Reinhold
- Guivarc'h, Yves (1990), "Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupes linéaire", Ergodic Theory and Dynamical Systems (in français), 10 (3): 483–512, doi:10.1017/S0143385700005708
- Juschenko, Kate; Monod, Nicolas (2013), "Cantor systems, piecewise translations and simple amenable groups", Annals of Mathematics, 178 (2): 775–787, arXiv:1204.2132, doi:10.4007/annals.2013.178.2.7
- Leptin, H. (1968), "Zur harmonischen Analyse klassenkompakter Gruppen", Invent. Math., 5 (4): 249–254, Bibcode:1968InMat...5..249L, doi:10.1007/bf01389775
- von Neumann, J (1929), "Zur allgemeinen Theorie des Maßes" (PDF), Fund. Math., 13 (1): 73–111, doi:10.4064/fm-13-1-73-116
- Olshanskii, Alexander Yu; Sapir, Mark V. (2002), "Non-amenable finitely presented torsion-by-cyclic groups", Publ. Math. Inst. Hautes Études Sci., 96: 43–169, arXiv:math/0208237, doi:10.1007/s10240-002-0006-7
- Ornstein, Donald S.; Weiss, Benjamin (1987). "उत्तरदायी समूहों के कार्यों के लिए एंट्रॉपी और आइसोमोर्फिज्म प्रमेय". Journal d'Analyse Mathématique. 48: 1–141. doi:10.1007/BF02790325.
- Pier, Jean-Paul (1984), Amenable locally compact groups, Pure and Applied Mathematics, Wiley, Zbl 0621.43001
- Runde, V. (2002), Lectures on Amenability, Lecture Notes in Mathematics, vol. 1774, Springer, ISBN 978-354042852-7
- Sunada, Toshikazu (1989), "Unitary representations of fundamental groups and the spectrum of twisted Laplacians", Topology, 28 (2): 125–132, doi:10.1016/0040-9383(89)90015-3
- Takesaki, M. (2001), Theory of Operator Algebras I, Springer, ISBN 978-354042248-8
- Takesaki, M. (2002), Theory of Operator Algebras II, Springer, ISBN 978-354042914-2
- Takesaki, M. (2013), Theory of Operator Algebras III, Springer, ISBN 978-366210453-8
- Tits, J. (1972), "Free subgroups in linear groups", J. Algebra, 20 (2): 250–270, doi:10.1016/0021-8693(72)90058-0
- Valette, Alain (1998), "On Godement's characterisation of amenability" (PDF), Bull. Austral. Math. Soc., 57: 153–158, doi:10.1017/s0004972700031506