सुव्यवस्थित सिद्धांत: Difference between revisions
(Created page with "{{Short description|Statement that all sets of positive numbers contains a least element}} {{distinguish|Well-ordering theorem}} {{refimprove|date=July 2008}} गणित म...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Statement that all sets of positive numbers contains a least element}} | {{Short description|Statement that all sets of positive numbers contains a least element}} | ||
{{distinguish| | {{distinguish|सुव्यवस्थित प्रमेय}} | ||
वाक्यांश सुव्यवस्थित सिद्धांत को कभी-कभी [[सुव्यवस्थित प्रमेय]] का पर्यायवाची माना जाता है। अन्य अवसरों पर यह प्रस्ताव समझा जाता है कि [[पूर्णांकों]] का समुच्चय <math>\{\ldots, -2, -1, 0, 1, 2, 3, \ldots \}</math> एक सुव्यवस्थित उपसमुच्चय होता | गणित में, सुव्यवस्थित सिद्धांत बताता है कि सकारात्मक पूर्णांकों के प्रत्येक खाली समूह में [[कम से कम तत्व]] होता है।<ref>{{cite book |title=Introduction to Analytic Number Theory |last=Apostol |first=Tom |authorlink=Tom M. Apostol |year=1976 |publisher=Springer-Verlag |location=New York |isbn=0-387-90163-9 |pages=[https://archive.org/details/introductiontoan00apos_0/page/13 13] |url-access=registration |url=https://archive.org/details/introductiontoan00apos_0/page/13 }}</ref> दूसरे शब्दों में, धनात्मक पूर्णांकों का समुच्चय अपने प्राकृतिक या परिमाण क्रम द्वारा सुव्यवस्थित होता है जिसमें <math>x</math> पूर्ववर्ती <math>y</math> और केवल <math>y</math> भी है, <math>x</math> का योग <math>x</math> और कुछ सकारात्मक पूर्णांक (अन्य व्यवस्थित क्रम में व्यवस्थित क्रम <math>2, 4, 6, ...</math>और <math>1, 3, 5, ...</math> सम्मिलित है)। | ||
वाक्यांश सुव्यवस्थित सिद्धांत को कभी-कभी [[सुव्यवस्थित प्रमेय]] का पर्यायवाची माना जाता है। अन्य अवसरों पर यह प्रस्ताव समझा जाता है कि [[पूर्णांकों]] का समुच्चय <math>\{\ldots, -2, -1, 0, 1, 2, 3, \ldots \}</math> एक सुव्यवस्थित उपसमुच्चय होता है। सुव्यवस्थित उपसमुच्चय, जिसे [[प्राकृतिक संख्या]] कहा जाता है, जिसमें प्रत्येक गैर-रिक्त उपसमुच्चय में कम से कम तत्व होता है। | |||
== गुण == | == गुण == | ||
उस ढाँचे पर निर्भर करता है जिसमें प्राकृतिक संख्याएँ प्रस्तुत की जाती हैं, प्राकृतिक संख्याओं के समुच्चय की यह (द्वितीय क्रम) संपत्ति या तो एक [[स्वयंसिद्ध]] या एक सिद्ध प्रमेय है। उदाहरण के लिए: | यह उस ढाँचे पर निर्भर करता है जिसमें प्राकृतिक संख्याएँ प्रस्तुत की जाती हैं, प्राकृतिक संख्याओं के समुच्चय की यह (द्वितीय क्रम) संपत्ति या तो एक [[स्वयंसिद्ध]] या एक सिद्ध प्रमेय है। उदाहरण के लिए: | ||
* पीआनो अंकगणित, दूसरे क्रम के अंकगणित और संबंधित प्रणालियों में, और वास्तव में सुव्यवस्थित सिद्धांत के अधिकांश (आवश्यक रूप से औपचारिक नहीं) गणितीय उपचारों में, सिद्धांत गणितीय आगमन के सिद्धांत से लिया गया है, जिसे स्वयं | * [[पीआनो]] अंकगणित, दूसरे क्रम के अंकगणित और संबंधित प्रणालियों में, और वास्तव में सुव्यवस्थित सिद्धांत के अधिकांश (आवश्यक रूप से औपचारिक नहीं) गणितीय उपचारों में, सिद्धांत गणितीय आगमन के सिद्धांत से लिया गया है, जिसे स्वयं आधारभूत रूप में लिया जाता है। | ||
* प्राकृतिक संख्याओं को वास्तविक संख्याओं के | * प्राकृतिक संख्याओं को वास्तविक संख्याओं के सबसमूह के रूप में देखते हुए, और यह मानते हुए कि हम पहले से ही जानते हैं कि वास्तविक संख्याएँ पूर्ण हैं (फिर से, या तो एक स्वयंसिद्ध या वास्तविक संख्या प्रणाली के बारे में एक प्रमेय के रूप में), अर्थात, प्रत्येक परिबद्ध (नीचे से) समूह में एक इन्फिनमम है, फिर भी हर समूह <math>A</math> प्राकृतिक संख्या में एक अनंत है, कहते हैं <math>a^*</math>. अब हम एक पूर्णांक पा सकते हैं <math>n^*</math> ऐसा है कि <math>a^*</math> आधे खुले अंतराल में स्थित है <math>(n^*-1,n^*]</math>, और फिर दिखा सकते हैं कि हमारे पास होना चाहिए <math>a^* = n^*</math>, और <math>n^*</math> में<math>A</math>. | ||
* स्वयंसिद्ध समुच्चय सिद्धांत में, प्राकृतिक संख्याओं को सबसे छोटे आगमनात्मक समुच्चय | *स्वयंसिद्ध समुच्चय सिद्धांत में, प्राकृतिक संख्याओं को सबसे छोटे आगमनात्मक समुच्चय के रूप में परिभाषित किया जाता है (अर्थात्, 0 युक्त समुच्चय और परवर्ती संक्रिया के अंतर्गत बंद)। कोई भी (नियमितता स्वयंसिद्ध को लागू किए बिना भी) दिखा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय <math>\{0,\ldots,n\}</math> आगमनात्मक है, और इसलिए इसमें सभी प्राकृतिक संख्याएँ सम्मिलित होनी चाहिए, इस गुण से यह निष्कर्ष निकाला जा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय भी सुव्यवस्थित है। | ||
दूसरे अर्थ में, इस वाक्यांश का उपयोग तब किया जाता है जब उस प्रस्ताव पर | दूसरे अर्थ में, इस वाक्यांश का उपयोग तब किया जाता है जब उस प्रस्ताव पर प्रमाणों को सही ठहराने के उद्देश्य से भरोसा किया जाता है जो निम्नलिखित रूप लेते हैं, यह प्रमाणित करने के लिए कि प्रत्येक प्राकृतिक संख्या एक निर्दिष्ट समूह <math>S</math> से संबंधित है, इसके विपरीत मान लें, जिसका अर्थ है कि प्रति उदाहरणों का समुच्चय खाली नहीं है और इस प्रकार इसमें सबसे छोटा प्रति उदाहरण सम्मिलित है। फिर दिखाएं कि किसी भी प्रति उदाहरण के लिए एक और भी छोटा प्रति उदाहरण है, जो एक विरोधाभास उत्पन्न करता है। तर्क का यह तरीका पूर्ण आगमन द्वारा प्रमाण का प्रतिधनात्मक है। इसे हल्के-फुल्के अंदाज में न्यूनतम आपराधिक पद्धति के रूप में जाना जाता है{{cn| date=March 2022}} और इसकी प्रकृति में फ़र्मैट की [[अनंत वंश|अनंत वंशानुक्रम]] की विधि के समान है। | ||
[[गैरेट बिरखॉफ]] और [[सॉन्डर्स मैक लेन]] ने आधुनिक बीजगणित के एक सर्वेक्षण में लिखा है कि यह संपत्ति, वास्तविक संख्याओं के लिए कम से कम ऊपरी बाध्य स्वयंसिद्ध की तरह, गैर-बीजीय है; | [[गैरेट बिरखॉफ]] और [[सॉन्डर्स मैक लेन]] ने आधुनिक बीजगणित के एक सर्वेक्षण में लिखा है कि यह संपत्ति, वास्तविक संख्याओं के लिए कम से कम ऊपरी बाध्य स्वयंसिद्ध की तरह, गैर-बीजीय है; अर्थात, इसे पूर्णांकों के बीजगणितीय गुणों से नहीं निकाला जा सकता है (जो एक आदेशित [[अभिन्न डोमेन]] बनाते हैं)। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:45, 15 February 2023
गणित में, सुव्यवस्थित सिद्धांत बताता है कि सकारात्मक पूर्णांकों के प्रत्येक खाली समूह में कम से कम तत्व होता है।[1] दूसरे शब्दों में, धनात्मक पूर्णांकों का समुच्चय अपने प्राकृतिक या परिमाण क्रम द्वारा सुव्यवस्थित होता है जिसमें पूर्ववर्ती और केवल भी है, का योग और कुछ सकारात्मक पूर्णांक (अन्य व्यवस्थित क्रम में व्यवस्थित क्रम और सम्मिलित है)।
वाक्यांश सुव्यवस्थित सिद्धांत को कभी-कभी सुव्यवस्थित प्रमेय का पर्यायवाची माना जाता है। अन्य अवसरों पर यह प्रस्ताव समझा जाता है कि पूर्णांकों का समुच्चय एक सुव्यवस्थित उपसमुच्चय होता है। सुव्यवस्थित उपसमुच्चय, जिसे प्राकृतिक संख्या कहा जाता है, जिसमें प्रत्येक गैर-रिक्त उपसमुच्चय में कम से कम तत्व होता है।
गुण
यह उस ढाँचे पर निर्भर करता है जिसमें प्राकृतिक संख्याएँ प्रस्तुत की जाती हैं, प्राकृतिक संख्याओं के समुच्चय की यह (द्वितीय क्रम) संपत्ति या तो एक स्वयंसिद्ध या एक सिद्ध प्रमेय है। उदाहरण के लिए:
- पीआनो अंकगणित, दूसरे क्रम के अंकगणित और संबंधित प्रणालियों में, और वास्तव में सुव्यवस्थित सिद्धांत के अधिकांश (आवश्यक रूप से औपचारिक नहीं) गणितीय उपचारों में, सिद्धांत गणितीय आगमन के सिद्धांत से लिया गया है, जिसे स्वयं आधारभूत रूप में लिया जाता है।
- प्राकृतिक संख्याओं को वास्तविक संख्याओं के सबसमूह के रूप में देखते हुए, और यह मानते हुए कि हम पहले से ही जानते हैं कि वास्तविक संख्याएँ पूर्ण हैं (फिर से, या तो एक स्वयंसिद्ध या वास्तविक संख्या प्रणाली के बारे में एक प्रमेय के रूप में), अर्थात, प्रत्येक परिबद्ध (नीचे से) समूह में एक इन्फिनमम है, फिर भी हर समूह प्राकृतिक संख्या में एक अनंत है, कहते हैं . अब हम एक पूर्णांक पा सकते हैं ऐसा है कि आधे खुले अंतराल में स्थित है , और फिर दिखा सकते हैं कि हमारे पास होना चाहिए , और में.
- स्वयंसिद्ध समुच्चय सिद्धांत में, प्राकृतिक संख्याओं को सबसे छोटे आगमनात्मक समुच्चय के रूप में परिभाषित किया जाता है (अर्थात्, 0 युक्त समुच्चय और परवर्ती संक्रिया के अंतर्गत बंद)। कोई भी (नियमितता स्वयंसिद्ध को लागू किए बिना भी) दिखा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय आगमनात्मक है, और इसलिए इसमें सभी प्राकृतिक संख्याएँ सम्मिलित होनी चाहिए, इस गुण से यह निष्कर्ष निकाला जा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय भी सुव्यवस्थित है।
दूसरे अर्थ में, इस वाक्यांश का उपयोग तब किया जाता है जब उस प्रस्ताव पर प्रमाणों को सही ठहराने के उद्देश्य से भरोसा किया जाता है जो निम्नलिखित रूप लेते हैं, यह प्रमाणित करने के लिए कि प्रत्येक प्राकृतिक संख्या एक निर्दिष्ट समूह से संबंधित है, इसके विपरीत मान लें, जिसका अर्थ है कि प्रति उदाहरणों का समुच्चय खाली नहीं है और इस प्रकार इसमें सबसे छोटा प्रति उदाहरण सम्मिलित है। फिर दिखाएं कि किसी भी प्रति उदाहरण के लिए एक और भी छोटा प्रति उदाहरण है, जो एक विरोधाभास उत्पन्न करता है। तर्क का यह तरीका पूर्ण आगमन द्वारा प्रमाण का प्रतिधनात्मक है। इसे हल्के-फुल्के अंदाज में न्यूनतम आपराधिक पद्धति के रूप में जाना जाता है[citation needed] और इसकी प्रकृति में फ़र्मैट की अनंत वंशानुक्रम की विधि के समान है।
गैरेट बिरखॉफ और सॉन्डर्स मैक लेन ने आधुनिक बीजगणित के एक सर्वेक्षण में लिखा है कि यह संपत्ति, वास्तविक संख्याओं के लिए कम से कम ऊपरी बाध्य स्वयंसिद्ध की तरह, गैर-बीजीय है; अर्थात, इसे पूर्णांकों के बीजगणितीय गुणों से नहीं निकाला जा सकता है (जो एक आदेशित अभिन्न डोमेन बनाते हैं)।
संदर्भ
- ↑ Apostol, Tom (1976). Introduction to Analytic Number Theory. New York: Springer-Verlag. pp. 13. ISBN 0-387-90163-9.