सांख्यिकीय प्रतिरूप: Difference between revisions

From Vigyanwiki
Line 32: Line 32:


== सामान्य टिप्पणी ==
== सामान्य टिप्पणी ==
एक सांख्यिकीय मॉडल गणितीय मॉडल का एक विशेष वर्ग है। एक सांख्यिकीय मॉडल को अन्य गणितीय मॉडल से अलग करता है कि एक सांख्यिकीय मॉडल गैर-नियतात्मक है। इस प्रकार, गणितीय समीकरणों के माध्यम से निर्दिष्ट एक सांख्यिकीय मॉडल में, कुछ चर में विशिष्ट मूल्य नहीं होते हैं, बल्कि इसके बजाय संभाव्यता वितरण होते हैं; यानी कुछ चर स्टोकेस्टिक हैं। बच्चों की ऊंचाइयों के साथ उपरोक्त उदाहरण में, ε एक स्टोकेस्टिक चर है; उस स्टोकेस्टिक चर के बिना, मॉडल नियतात्मक होगा।
सांख्यिकी प्रतिरूप गणितीय प्रतिरूप का एक विशेष वर्ग होता है। जो एक सांख्यिकीय प्रतिरूप को अन्य गणितीय प्रतिरूपों से अलग करता है, वह यह है कि एक सांख्यिकीय प्रतिरूप गैर-नियतात्मक होता है। इस प्रकार, गणितीय समीकरणों के माध्यम से निर्दिष्ट एक सांख्यिकीय प्रतिरूप में, कुछ चर के विशिष्ट मान नहीं होते हैं, बल्कि इसके बजाय संभाव्यता वितरण होते हैं; यानी कुछ चर स्टोकेस्टिक (stochastic) हैं। उपरोक्त उदाहरण में बच्चों की लंबाई के साथ ε एक स्टोकेस्टिक चर है; उस स्टोकेस्टिक चर के बिना, प्रतिरूप नियतात्मक होगा।


सांख्यिकीय मॉडल का उपयोग अक्सर तब भी किया जाता है जब डेटा-जनरेटिंग प्रक्रिया मॉडलिंग की जा रही है, नियतात्मक है। उदाहरण के लिए, सिक्का टॉसिंग, सिद्धांत रूप में, एक नियतात्मक प्रक्रिया है; फिर भी यह आमतौर पर स्टोकेस्टिक (बर्नौली प्रक्रिया के माध्यम से) के रूप में तैयार किया जाता है।
सांख्यिकीय प्रतिरूप  का उपयोग अक्सर तब भी किया जाता है, जब प्रतिरूपित किए जा रहे आंकड़े को उत्पन्न करने की प्रक्रिया नियतात्मक होती है। उदाहरण के लिए, एक सिक्के को उछालना सिद्धांत रूप में एक नियतात्मक प्रक्रिया है; फिर भी यह आमतौर पर स्टोकेस्टिक (बर्नौली प्रक्रिया के माध्यम से) के रूप में तैयार किया जाता है।


किसी दिए गए डेटा-जनरेटिंग प्रक्रिया का प्रतिनिधित्व करने के लिए एक उपयुक्त सांख्यिकीय मॉडल का चयन करना कभी-कभी बेहद कठिन होता है, और प्रक्रिया और प्रासंगिक सांख्यिकीय विश्लेषण दोनों के ज्ञान की आवश्यकता हो सकती है। संबंधित रूप से, सांख्यिकीविद् सर डेविड कॉक्स ने कहा है, कैसे [] विषय-वस्तु समस्या से सांख्यिकीय मॉडल में अनुवाद किया जाता है, अक्सर एक विश्लेषण का सबसे महत्वपूर्ण हिस्सा होता है।<ref>{{Harvnb | Cox | 2006 | page=197}}</ref>
किसी दिए गए आंकड़े उत्त्पन्न करने की प्रक्रिया का प्रतिनिधित्व करने के लिए उपयुक्त सांख्यिकीय प्रतिरूप का चयन करना कभी-कभी बेहद मुश्किल होता है, और प्रक्रिया और प्रासंगिक सांख्यिकीय विश्लेषण दोनों के ज्ञान की आवश्यकता हो सकती है। संबंधित रूप से, जैसा कि सांख्यिकीविद् सर डेविड कॉक्स (Sir David Cox) ने कहा है, "किसी विषय-वस्तु की समस्या से सांख्यिकीय प्रतिरूप में अनुवाद कैसे किया जाता है, यह अक्सर विश्लेषण का सबसे महत्वपूर्ण हिस्सा होता है"।<ref>{{Harvnb | Cox | 2006 | page=197}}</ref> कोनिशी और कितागावा के अनुसार सांख्यिकीय प्रतिरूप के तीन उद्देश्य होते हैं।<ref>{{Harvnb | Konishi | Kitagawa | 2008 | loc= §1.1}}</ref>
कोनिशी & nbsp; & kitagawa के अनुसार, एक सांख्यिकीय मॉडल के लिए तीन उद्देश्य हैं।<ref>{{Harvnb | Konishi | Kitagawa | 2008 | loc= §1.1}}</ref>
*पूर्वानुमान
*भविष्यवाणियां
*सूचना निष्कर्षण
*जानकारी का निष्कर्षण
*स्टोकेस्टिक संरचनाओं का विवरण
*स्टोकेस्टिक संरचनाओं का विवरण
वे तीन उद्देश्य अनिवार्य रूप से दोस्ताना & nbsp; & meyer: भविष्यवाणी, अनुमान, विवरण द्वारा इंगित तीन उद्देश्यों के समान हैं।<ref>{{Harvnb| Friendly| Meyer | 2016| loc= §11.6}}</ref> तीन उद्देश्य तीन प्रकार के तार्किक तर्क के साथ मेल खाते हैं: कटौतीत्मक तर्क, आगमनात्मक तर्क, अपहरण तर्क।
वे तीन उद्देश्य अनिवार्य रूप से मित्रवत और मेयर द्वारा बताए गए तीन उद्देश्यों के समान हैं: पूर्वानुमान, अनुमान और विवरण।<ref>{{Harvnb| Friendly| Meyer | 2016| loc= §11.6}}</ref> तीन उद्देश्य तीन प्रकार के तार्किक तर्क के अनुरूप हैं: निगमनात्मक तर्क, आगमनात्मक तर्क और निगमनात्मक तर्क।


== एक मॉडल का आयाम ==
== एक मॉडल का आयाम ==

Revision as of 18:17, 17 August 2022

सांख्यिकीय प्रतिरूप एक गणितीय प्रतिरूप है जो प्रतिरूप आँकड़े (और एक बड़ी आबादी से समान आँकड़े) की पीढ़ी से संबंधित सांख्यिकीय मान्यताओं के एक समुच्चय का प्रतीक है। एक सांख्यिकीय प्रतिरूप, अक्सर पर्याप्त आदर्श रूप से, आंकड़े उत्पन्न करना की प्रक्रिया का प्रतिनिधित्व करता है।[1] एक सांख्यिकीय प्रतिरूप को आमतौर पर एक या अधिक यादृच्छिक चर और अन्य गैर-यादृच्छिक चर के बीच गणितीय संबंध के रूप में निर्दिष्ट किया जाता है। जैसे, एक सांख्यिकीय प्रतिरूप एक "सिद्धांत का औपचारिक प्रतिनिधित्व" है (केनेथ बोलन द्वारा उद्धृत हरमन एडर)।[2] सांख्यिकीय प्रतिरूपण के माध्यम से सभी सांख्यिकीय परिकल्पना परीक्षण और सभी सांख्यिकीय अनुमानक प्राप्त किए जाते हैं। आम तौर पर, सांख्यिकीय प्रतिरूप सांख्यिकीय अनुमान के आधार का हिस्सा होते हैं।

परिचय

अनौपचारिक रूप से, एक सांख्यिकीय प्रतिरूप को एक निश्चित संपत्ति के साथ एक सांख्यिकीय धारणा (या सांख्यिकीय मान्यताओं का समुच्चय) के रूप में माना जा सकता है: यह धारणा हमें किसी भी घटना की संभावना की गणना करने की अनुमति देती है। एक उदाहरण के रूप में, साधारण छः भुजाओं वाले पासों के एक जोड़े पर विचार करें। हम पासे के बारे में दो भिन्न सांख्यिकीय मान्यताओं का अध्ययन करेंगे।

पहली सांख्यिकीय धारणा यह है: प्रत्येक पासे के लिए, प्रत्येक चेहरे (1, 2, 3, 4, 5, और 6) के खींचे जाने की 1/6 संभावना है। उस धारणा से, हम इस संभावना की गणना कर सकते हैं कि दोनों पासे 5:  1/6 × 1/6 = 1/36 के रूप में निकलेंगे। सामान्य तौर पर, हम किसी भी घटना की संभावना की गणना कर सकते हैं: उदाहरण (1 और 2) या (3 और 3) या (5 और 6)।

वैकल्पिक सांख्यिकीय धारणा यह है: प्रत्येक पासे के लिए, एक फलक 5 प्राप्त करने की प्रायिकता 1/8 है (चूंकि पासों को भारित किया जाता है)। उस धारणा से, हम इस प्रायिकता की गणना कर सकते हैं कि दोनों पासे 5:  1/8 × 1/8 = 1/64 के रूप में निकलेंगे। यद्यपि, हम किसी अन्य गैर महत्वहीन घटना की प्रायिकता की गणना नहीं कर सकते, क्योंकि अन्य चेहरों की प्रायिकताएँ अज्ञात हैं।

पहली सांख्यिकीय धारणा एक सांख्यिकीय प्रतिरूप बनाती है: क्योंकि केवल धारणा के साथ, हम किसी भी घटना की संभावना की गणना कर सकते हैं। वैकल्पिक सांख्यिकीय धारणा एक सांख्यिकीय प्रतिरूप नहीं बनाती है: क्योंकि केवल धारणा के साथ, हम प्रत्येक घटना की संभावना की गणना नहीं कर सकते हैं।

उपरोक्त उदाहरण में, पहली धारणा के साथ, किसी घटना की प्रायिकता की गणना करना आसान है। हालांकि, जैसा कि कुछ अन्य उदाहरणों में होता है, गणना कठिन या अव्यवहारिक हो सकती है (उदाहरण के लिए गणना के लाखों वर्षों की आवश्यकता हो सकती है)। एक सांख्यिकीय प्रतिरूप के निर्माण की धारणा के लिए, ऐसी कठिनाई स्वीकार्य है: गणना का व्यावहारिक होना जरूरी नहीं है, केवल सैद्धांतिक रूप से संभव है।

औपचारिक परिभाषा

गणितीय शब्दों में, एक सांख्यिकीय प्रतिरूप को आमतौर पर एक जोड़ी (), के रूप में माना जाता है, जहां संभावित अवलोकनों का समहू है, यानी प्रतिदर्श समष्टि और , पर प्रायिकता वितरण का एक समुच्चय है।[3] इस परिभाषा के पीछे का भाव इस प्रकार है। यह माना जाता है कि देखे गए आंकड़ों में "सत्य" प्रयायिकता वितरण होता है जो उत्पादन प्रक्रिया द्वारा नियंत्रित होता है। हम एक समुच्चय (वितरण के) का प्रतिनिधित्व करने के लिए चुनते हैं, जिसमें एक वितरण है जो पर्याप्त रूप से सही वितरण का अनुमान लगाता है।

ध्यान दें कि हमें इसकी आवश्यकता नहीं है कि का पूर्ण वितरण हो, और व्यवहार में ऐसा बहुत कम होता है। वास्तव में, जैसा कि बर्नहैम एंड एंडरसन कहते हैं, "एक प्रतिरूप वास्तविकता का एक सरलीकरण या अनुमान है और इसलिए सभी वास्तविकता को प्रतिबिंबित नहीं करेगा" इसलिए कहावत "सभी प्रतिरूप गलत हैं"।[4]

समहू लगभग हमेशा पैरामीटरयुक्त होता है: । समहू मॉडल के मापदंडों को परिभाषित करता है। आम तौर पर अलग-अलग वितरण के लिए अलग-अलग मापदंड मान देने के लिए मानकीकरण की आवश्यकता होती है अर्थात् आयोजित करें (दूसरे शब्दों में, यह अंतःक्षेपक होना चाहिए)। आवश्यकता को संतुष्ट करने वाले मापदंडों को अभिज्ञेय कहा जाता है।[3]

एक उदाहरण

मान लीजिए कि हमारे पास बच्चों की आबादी है, जिसमें बच्चों की उम्र समान रूप से जनसंख्या में वितरित की जाती है। एक बच्चे की ऊंचाई एक सुसंगत तरीके से उम्र से संबंधित होगी: उदाहरण के लिए जब हम जानते हैं कि एक बच्चा 7 साल का है, तो यह बच्चे के 1.5 मीटर लंबे होने की प्रायिकता को प्रभावित करता है।हम उस संबंध को एक रेखीय प्रतिगमन प्रतिरूप में औपचारिक रूप दे सकते हैं, जैसे: ऊँचाईi = b0 + b1 आयुi + εi, जहाँ b0 अवरोधन है, b1 ऊँचाई का अनुमान प्राप्त करने के लिए आयु से गुणा किया जाने वाला एक मापदंड है,εi त्रुटि शब्द है, और i बच्चे की पहचान है। इसका मतलब है कि ऊंचाई का अनुमान उम्र के हिसाब से लगाया जाता है, जिसमें कुछ त्रुटि है।

एक स्वीकार्य प्रतिरूप सभी आँकड़ा अंको पर सुसंगत होना चाहिए। इस प्रकार, एक सीधी रेखा (ऊंचाईi = b0 + b1 आयुi) आंकड़ों के प्रतिरूप के लिए एक समीकरण नहीं हो सकती है - जब तक कि यह सभी आँकड़ा अंको पर संपूर्ण योग्य न हो, अर्थात सभी आँकड़ा अंक पूरी तरह से रेखा पर हों। त्रुटि शब्द, εi, को समीकरण में शामिल किया जाना चाहिए ताकि प्रतिरूप सभी आँकड़ा अंको में सुसंगत हो।

एक सांख्यिकीय निष्कर्ष निकालने के लिए, हमें सबसे पहले εi के लिए कुछ प्रायिकता वितरण मान लेना चाहिए। उदाहरण के लिए, हम मान सकते हैं कि εi वितरण i.i.d गाऊसी (Gaussian), शून्य, माध्य के साथ। इस उदाहरण में, प्रतिरूप के तीन मतपदंड होंगे: b0, b1, और गाऊसी वितरण का प्रसरण।

हम औपचारिक रूप से () में एक प्रतिरूप को निम्नानुसार निर्दिष्ट कर सकते हैं। हमारे प्रतिरूप के प्रतिदर्श समष्टि में सभी संभावित जोड़े (आयु, ऊंचाई) का समुच्चय होता है। = (b0, b1, σ2) का प्रत्येक संभावित मान पर एक वितरण निर्धारित करता है जिसे द्वारा दर्शाया जाता है। यदि , के सभी संभावित मानों का समुच्चय है, तो है। (मानकीकरण पहचानने योग्य है, और इसकी जाँच करना आसान है।)

इस उदाहरण में, मॉडल का निर्धारण (1) को निर्दिष्ट करके और (2) कुछ मान्यताओं को के लिए प्रासंगिक बनाते हुए किया जाता है।दो परिकल्पनाएं हैं: उस ऊंचाई का अनुमान उम्र के एक रैखिक कार्य से लगाया जा सकता है; सन्निकटन में त्रुटियाँ i.i.d गाऊसी के रूप में वितरित की जाती हैं। को निर्दिष्ट करने के लिए सन्निकटन पर्याप्त हैं - जैसा कि उन्हें करने की आवश्यकता है।

सामान्य टिप्पणी

सांख्यिकी प्रतिरूप गणितीय प्रतिरूप का एक विशेष वर्ग होता है। जो एक सांख्यिकीय प्रतिरूप को अन्य गणितीय प्रतिरूपों से अलग करता है, वह यह है कि एक सांख्यिकीय प्रतिरूप गैर-नियतात्मक होता है। इस प्रकार, गणितीय समीकरणों के माध्यम से निर्दिष्ट एक सांख्यिकीय प्रतिरूप में, कुछ चर के विशिष्ट मान नहीं होते हैं, बल्कि इसके बजाय संभाव्यता वितरण होते हैं; यानी कुछ चर स्टोकेस्टिक (stochastic) हैं। उपरोक्त उदाहरण में बच्चों की लंबाई के साथ ε एक स्टोकेस्टिक चर है; उस स्टोकेस्टिक चर के बिना, प्रतिरूप नियतात्मक होगा।

सांख्यिकीय प्रतिरूप  का उपयोग अक्सर तब भी किया जाता है, जब प्रतिरूपित किए जा रहे आंकड़े को उत्पन्न करने की प्रक्रिया नियतात्मक होती है। उदाहरण के लिए, एक सिक्के को उछालना सिद्धांत रूप में एक नियतात्मक प्रक्रिया है; फिर भी यह आमतौर पर स्टोकेस्टिक (बर्नौली प्रक्रिया के माध्यम से) के रूप में तैयार किया जाता है।

किसी दिए गए आंकड़े उत्त्पन्न करने की प्रक्रिया का प्रतिनिधित्व करने के लिए उपयुक्त सांख्यिकीय प्रतिरूप का चयन करना कभी-कभी बेहद मुश्किल होता है, और प्रक्रिया और प्रासंगिक सांख्यिकीय विश्लेषण दोनों के ज्ञान की आवश्यकता हो सकती है। संबंधित रूप से, जैसा कि सांख्यिकीविद् सर डेविड कॉक्स (Sir David Cox) ने कहा है, "किसी विषय-वस्तु की समस्या से सांख्यिकीय प्रतिरूप में अनुवाद कैसे किया जाता है, यह अक्सर विश्लेषण का सबसे महत्वपूर्ण हिस्सा होता है"।[5] कोनिशी और कितागावा के अनुसार सांख्यिकीय प्रतिरूप के तीन उद्देश्य होते हैं।[6]

  • पूर्वानुमान
  • सूचना निष्कर्षण
  • स्टोकेस्टिक संरचनाओं का विवरण

वे तीन उद्देश्य अनिवार्य रूप से मित्रवत और मेयर द्वारा बताए गए तीन उद्देश्यों के समान हैं: पूर्वानुमान, अनुमान और विवरण।[7] तीन उद्देश्य तीन प्रकार के तार्किक तर्क के अनुरूप हैं: निगमनात्मक तर्क, आगमनात्मक तर्क और निगमनात्मक तर्क।

एक मॉडल का आयाम

मान लीजिए कि हमारे पास एक सांख्यिकीय मॉडल है () साथ ।मॉडल को पैरामीट्रिक कहा जाता है एक परिमित आयाम है।संकेतन में, हम यह लिखते हैं कहाँ पे k एक सकारात्मक पूर्णांक है ( वास्तविक संख्याओं को दर्शाता है;अन्य समुच्चयों का उपयोग किया जा सकता है, सिद्धांत रूप में)।यहां, k मॉडल का आयाम कहा जाता है।

एक उदाहरण के रूप में, यदि हम मानते हैं कि डेटा एक अविभाज्य गौसियन वितरण से उत्पन्न होता है, तो हम यह मान रहे हैं कि

इस उदाहरण में, आयाम, k, 2 बराबर है।

एक अन्य उदाहरण के रूप में, मान लीजिए कि डेटा में अंक होते हैं (x, y) कि हम मानते हैं कि I.I.D के साथ एक सीधी रेखा के अनुसार वितरित किए जाते हैं।गाऊसी अवशिष्ट (शून्य माध्य के साथ): यह उसी सांख्यिकीय मॉडल की ओर जाता है जैसा कि बच्चों की ऊंचाइयों के साथ उदाहरण में उपयोग किया गया था।सांख्यिकीय मॉडल का आयाम 3 है: रेखा का अवरोधन, रेखा का ढलान और अवशिष्ट के वितरण का विचरण।(ध्यान दें कि ज्यामिति में, एक सीधी रेखा का आयाम 1. है)

हालांकि औपचारिक रूप से एक एकल पैरामीटर है जिसमें आयाम है k, इसे कभी -कभी शामिल माना जाता है k अलग -अलग पैरामीटर।उदाहरण के लिए, यूनीवेट गॉसियन वितरण के साथ, औपचारिक रूप से आयाम 2 के साथ एक एकल पैरामीटर है, लेकिन इसे कभी -कभी 2 अलग -अलग मापदंडों के रूप में माना जाता है - माध्य और मानक विचलन।

एक सांख्यिकीय मॉडल nonparametric सांख्यिकी है#गैर-पैरामीट्रिक मॉडल | पैरामीटर समुच्चय यदि गैर-पैरामीट्रिक अनंत आयामी है।एक सांख्यिकीय मॉडल सेमीपेरामेट्रिक है यदि इसमें परिमित-आयामी और अनंत-आयामी दोनों पैरामीटर हैं।औपचारिक रूप से, अगर k का आयाम है तथा n नमूनों की संख्या है, दोनों सेमीपेरामेट्रिक और नॉनपैमेट्रिक मॉडल हैं जैसा ।यदि जैसा , फिर मॉडल सेमीपेरामेट्रिक है;अन्यथा, मॉडल नॉनपैमेट्रिक है।

पैरामीट्रिक मॉडल अब तक सबसे अधिक इस्तेमाल किए जाने वाले सांख्यिकीय मॉडल हैं।सेमीपेरामेट्रिक और नॉनपैमेट्रिक मॉडल के बारे में, सर डेविड कॉक्स ने कहा है, इनमें आमतौर पर संरचना और वितरण के रूप में कम धारणाएं शामिल होती हैं, लेकिन आमतौर पर स्वतंत्रता के बारे में मजबूत धारणाएं होती हैं।[8]


नेस्टेड मॉडल

दो सांख्यिकीय मॉडल नेस्टेड हैं यदि पहले मॉडल को पहले मॉडल के मापदंडों पर बाधाओं को लागू करके दूसरे मॉडल में बदल दिया जा सकता है।एक उदाहरण के रूप में, सभी गौसियन वितरणों का समुच्चय, इसके भीतर नेस्टेड है, शून्य-मीन गौसियन वितरण का समुच्चय: हम शून्य-मीन वितरण प्राप्त करने के लिए सभी गाऊसी वितरण के समुच्चय में माध्य को बाधित करते हैं।एक दूसरे उदाहरण के रूप में, द्विघात मॉडल

y = b0 + b1x + b2x2 + ε,    ε ~ 𝒩(0, σ2) इसके भीतर नेस्टेड है, रैखिक मॉडल
y = b0 + b1x + ε,    ε ~ 𝒩(0, σ2)

-हम पैरामीटर को विवश करते हैं b2 के बराबर 0।

उन दोनों उदाहरणों में, पहले मॉडल में दूसरे मॉडल की तुलना में अधिक आयाम होता है (पहले उदाहरण के लिए, शून्य-मीन मॉडल में आयाम & nbsp; 1) होता है।ऐसा अक्सर होता है, लेकिन हमेशा नहीं, मामला।एक अलग उदाहरण के रूप में, पॉजिटिव-मीन गौसियन वितरण का समुच्चय, जिसमें आयाम 2 है, सभी गौसियन वितरण के समुच्चय के भीतर नेस्टेड है।

मॉडल की तुलना

सांख्यिकीय मॉडल की तुलना सांख्यिकीय अनुमान के अधिकांश के लिए मौलिक है।वास्तव में, Konishi & Kitagawa (2008, p. 75) यह बताइए: सांख्यिकीय निष्कर्ष में अधिकांश समस्याओं को सांख्यिकीय मॉडलिंग से संबंधित समस्याओं के रूप में माना जा सकता है।वे आमतौर पर कई सांख्यिकीय मॉडल की तुलना के रूप में तैयार किए जाते हैं।

मॉडल की तुलना करने के लिए सामान्य मानदंड में निम्नलिखित शामिल हैं: आर2 , Bayes कारक, Akaike सूचना मानदंड, और संभावना-अनुपात परीक्षण इसके सामान्यीकरण, सापेक्ष संभावना के साथ।

यह भी देखें

  • सभी मॉडल गलत हैं
  • ब्लॉकमॉडल
  • संकल्पनात्मक निदर्श
  • प्रयोगों की रूप रेखा
  • नियतात्मक मॉडल
  • प्रभावी सिद्धांत
  • भविष्य कहनेवाला मॉडल
  • प्रतिक्रिया मॉडलिंग पद्धति
  • वैज्ञानिक मॉडल
  • सांख्यिकीय निष्कर्ष
  • सांख्यिकीय मॉडल विनिर्देश
  • सांख्यिकीय मॉडल सत्यापन
  • सांख्यिकीय सिद्धांत
  • अनेक संभावनाओं में से चुनी हूई प्रक्रिया


टिप्पणियाँ


संदर्भ

  • Adèr, H. J. (2008), "Modelling", in Adèr, H. J.; Mellenbergh, G. J. (eds.), Advising on Research Methods: A consultant's companion, Huizen, The Netherlands: Johannes van Kessel Publishing, pp. 271–304.
  • Burnham, K. P.; Anderson, D. R. (2002), Model Selection and Multimodel Inference (2nd ed.), Springer-Verlag.
  • Cox, D. R. (2006), Principles of Statistical Inference, Cambridge University Press.
  • Friendly, M.; Meyer, D. (2016), Discrete Data Analysis with R, Chapman & Hall.
  • Konishi, S.; Kitagawa, G. (2008), Information Criteria and Statistical Modeling, Springer.
  • McCullagh, P. (2002), "What is a statistical model?" (PDF), Annals of Statistics, 30 (5): 1225–1310, doi:10.1214/aos/1035844977.


अग्रिम पठन


]