थर्मल अपघटन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 47: | Line 47: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 01/02/2023]] | [[Category:Created On 01/02/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 14:59, 17 February 2023
थर्मल अपघटन, या थर्मोलिसिस, गर्मी के कारण होने वाला रासायनिक अपघटन है। किसी पदार्थ का अपघटन तापमान वह तापमान होता है जिस पर पदार्थ रासायनिक रूप से विघटित हो जाता है। प्रतिक्रिया सामान्यतः एंडोथर्मिक प्रक्रिया होती है क्योंकि अपघटन से निकलने वाले यौगिक में रासायनिक बंधनों को तोड़ने के लिए गर्मी की आवश्यकता होती है। यदि अपघटन पर्याप्त रूप से एक्ज़ोथिर्मिक प्रक्रिया है, तो सकारात्मक प्रतिक्रिया पाश बनाया जाता है जिससे थर्मल पलायन होता है और संभवतः विस्फोट या अन्य रासायनिक प्रतिक्रिया होती है।
अपघटन तापमान परिभाषा
साधारण पदार्थ (जैसे पानी) अपने थर्मल अपघटन उत्पादों के साथ संतुलन में उपस्थित हो सकता है, प्रभावी रूप से अपघटन को रोक सकता है। विघटित अणुओं का संतुलन अंश तापमान के साथ बढ़ता है।
उदाहरण
- कैल्शियम कार्बोनेट (चूना पत्थर या चाक) गरम करने पर कैल्शियम ऑक्साइड और कार्बन डाइऑक्साइड में विघटित हो जाता है। रासायनिक प्रतिक्रिया इस प्रकार है:
- CaCO3 → CaO + CO2
- प्रतिक्रिया का उपयोग कैल्शियम ऑक्साइड बनाने के लिए किया जाता है, जो औद्योगिक रूप से महत्वपूर्ण उत्पाद है।
- तापीय अपघटन का अन्य उदाहरण 2Pb(NO3)2 → 2PbO + O2 + 4NO2.
- कुछ आक्साइड, विशेष रूप से कमजोर इलेक्ट्रोपोसिटिव धातुओं के, पर्याप्त उच्च तापमान पर गर्म होने पर विघटित हो जाते हैं। शास्त्रीय उदाहरण ऑक्सीजन और पारा (धातु) देने के लिए मरक्यूरिक ऑक्साइड का अपघटन है। पहली बार गैसीय ऑक्सीजन के नमूने तैयार करने के लिए प्रतिक्रिया का उपयोग जोसेफ प्रिस्टले ने किया था।
- जब पानी को 2000 °C से अधिक गर्म किया जाता है, तो इसका छोटा प्रतिशत OH, मोनोएटोमिक ऑक्सीजन, मोनोएटोमिक हाइड्रोजन, O2 और H2 में विघटित हो जाएगा ।[1]
- उच्चतम ज्ञात अपघटन तापमान वाला यौगिक ≈3870 °C (≈7000 °F) पर कार्बन मोनोआक्साइड है।[citation needed]
नाइट्रेट्स, नाइट्राइट्स और अमोनियम यौगिकों का अपघटन
- अमोनियम डाईक्रोमेट गर्म करने पर नाइट्रोजन, पानी और क्रोमियम (III) ऑक्साइड देता है।
- अमोनियम नाइट्रेट को तेज गर्म करने पर डाइनाइट्रोजन ऑक्साइड (नाइट्रस ऑक्साइड) और पानी निकलता है।
- अमोनियम नाइट्राइट को गर्म करने पर नाइट्रोजन गैस तथा जल प्राप्त होता है।
- बेरियम एजाइड को गर्म करने पर बेरियम धातु और नाइट्रोजन गैस प्राप्त होती है।
- 300 डिग्री सेल्सियस पर गर्म करने पर सोडियम एज़ाइड नाइट्रोजन और धात्विक सोडियम में हिंसक रूप से विघटित हो जाता है।
- सोडियम नाइट्रेट को गर्म करने पर सोडियम नाइट्राइट और ऑक्सीजन गैस बनती है।
- तृतीयक ऐमीन जैसे कार्बनिक यौगिकों को गर्म करने पर हॉफमैन विलोपन होता है और द्वितीयक ऐमीन और ऐल्कीन प्राप्त होते हैं।
अपघटन में आसानी
जब धातु प्रतिक्रियाशीलता श्रृंखला के नीचे होती है, तो उनके रासायनिक यौगिक सामान्यतः उच्च तापमान पर आसानी से विघटित हो जाते हैं। ऐसा इसलिए है क्योंकि प्रतिक्रियाशीलता श्रृंखला के शीर्ष की ओर परमाणुओं के बीच ठोस रासायनिक बंधन बनता है, और ठोस बंधनों को तोड़ना जटिल होता है। उदाहरण के लिए, ताँबा प्रतिक्रियाशीलता श्रृंखला के निचले भाग के पास है, और कॉपर सल्फेट (CuSO4), लगभग 200 °C पर विघटित होना प्रारंभ होता है, उच्च तापमान पर लगभग 560 °C तक तेज़ी से बढ़ता है। इसके विपरीत पोटैशियम प्रतिक्रियाशीलता श्रृंखला के शीर्ष के निकट है, और पोटेशियम सल्फेट (K2SO4) लगभग 1069 °C के अपने गलनांक पर विघटित नहीं होता है, और न ही इसके क्वथनांक पर विघटित होता है।
व्यावहारिक अनुप्रयोग
वास्तविक दुनिया में ऐसे कई परिदृश्य हैं जो थर्मल डिग्रेडेशन से प्रभावित होते हैं। प्रभावित चीजों में से एक है उंगलियों के निशान। जब कोई किसी चीज को छूता है तो उंगलियों से अवशेष रह जाते हैं। यदि उंगलियां पसीने से तर हैं, या उनमें अधिक तेल है, तो अवशेषों में कई रसायन होते हैं। डी पाओली और उनके सहयोगियों ने उंगलियों के निशान में पाए जाने वाले कुछ घटकों पर अध्ययन परीक्षण थर्मल गिरावट का आयोजन किया। गर्मी के खतरों के लिए, अमीनो एसिड और यूरिया के नमूने 100 डिग्री सेल्सियस पर गिरावट प्रारंभ कर देते हैं और लैक्टिक एसिड के लिए, अपघटन प्रक्रिया 50 डिग्री सेल्सियस के आसपास प्रारंभ होती है।[2] आगे के परीक्षण के लिए ये घटक आवश्यक हैं, इसलिए फोरेंसिक अनुशासन में, उंगलियों के निशान का अपघटन महत्वपूर्ण है।
यह भी देखें
- पॉलिमर का थर्मल क्षरण
- एलिंघम आरेख
- थर्मोकेमिकल चक्र
- थर्मल डीपोलीमराइजेशन
- रासायनिक ऊष्मप्रवैगिकी
- पायरोलिसिस - कार्बनिक पदार्थों का थर्मल अपघटन
- गैस जनरेटर
संदर्भ
- ↑ Baykara S (2004). "Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency". International Journal of Hydrogen Energy. 29 (14): 1451–1458. doi:10.1016/j.ijhydene.2004.02.014.
- ↑ De Paoli G, Lewis SA, Schuette EL, Lewis LA, Connatser RM, Farkas T (July 2010). "Photo- and thermal-degradation studies of select eccrine fingerprint constituents". Journal of Forensic Sciences. 55 (4): 962–969. doi:10.1111/j.1556-4029.2010.01420.x. PMID 20487155. S2CID 37942037.