मोटर स्थिरांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
: <math>K_\text{v} = \frac{\omega_\text{no-load}}{V_\text{peak}}</math> | : <math>K_\text{v} = \frac{\omega_\text{no-load}}{V_\text{peak}}</math> | ||
<math>K_\text{v}</math> h> एक [[brushless मोटर]] की रेटिंग कुंडली से जुड़े तारों (काउंटर-इलेक्ट्रोमोटिव बल) पर मोटर की | <math>K_\text{v}</math> h> एक [[brushless मोटर]] की रेटिंग कुंडली से जुड़े तारों (काउंटर-इलेक्ट्रोमोटिव बल) पर मोटर की अभारित घूर्णी गति (आरपीएम में मापी गई) का चरम (RMS नहीं) वोल्टेज का अनुपात है। उदाहरण के लिए, एक अभारित मोटर {{nowrap|<math>K_\text{v}</math> {{=}} 5,700 rpm/V}} 11.1 V के साथ आपूर्ति की गई 63,270 आरपीएम (= 5,700 rpm/V × 11.1 V) की साधारण गति से चलेगी। | ||
मोटर इस सैद्धांतिक गति तक नहीं पहुँच सकता है क्योंकि गैर-रैखिक यांत्रिक नुकसान हैं। दूसरी ओर, यदि मोटर को जनित्र के रूप में चलाया जाता है, तो टर्मिनलों के बीच नो-लोड वोल्टेज आरपीएम के पूर्णतया आनुपातिक होता है और इसके लिए सत्य होता है। <math>K_\text{v}</math> मोटर / जनित्र की। | मोटर इस सैद्धांतिक गति तक नहीं पहुँच सकता है क्योंकि गैर-रैखिक यांत्रिक नुकसान हैं। दूसरी ओर, यदि मोटर को जनित्र के रूप में चलाया जाता है, तो टर्मिनलों के बीच नो-लोड वोल्टेज आरपीएम के पूर्णतया आनुपातिक होता है और इसके लिए सत्य होता है। <math>K_\text{v}</math> मोटर / जनित्र की। |
Revision as of 11:31, 17 February 2023
मोटर आकार स्थिर () और मोटर वेग स्थिरांक (, वैकल्पिक रूप से काउंटर-इलेक्ट्रोमोटिव बल स्थिरांक कहा जाता है) विद्युत मोटर्स की विशेषताओं का वर्णन करने के लिए उपयोग किए जाने वाले मान हैं।
मोटर स्थिरांक
मोटर स्थिर है[1] (कभी-कभी, मोटर आकार स्थिर)। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, मोटर स्थिरांक न्यूटन मीटर प्रति वर्गमूल वाट () में व्यक्त किया जाता है।
जहाँ
- मोटर बल आघूर्णː है (इकाइयों की अंतर्राष्ट्रीय प्रणाली: न्यूटन-मीटर)
- जूल प्रतिरोधी शक्ति हानि है (इकाइयों की अंतर्राष्ट्रीय प्रणाली: वाट)
मोटर स्थिरांक कुंडली स्वतंत्र है (जब तक कि तारों के लिए समान प्रवाहकीय सामग्री का उपयोग किया जाता है); उदाहरण के लिए, 12 घुमावों के बजाय 2 समानांतर तारों के साथ 6 घुमावों वाली मोटर को घुमाने वाला एकल तार वेग स्थिरांक को दोगुना कर देगा, , लेकिन अपरिवर्तित रहता है। किसी अनुप्रयोग में उपयोग करने के लिए मोटर के आकार का चयन करने के लिए उपयोग किया जा सकता है। मोटर में उपयोग करने के लिए कुंडली का चयन करने के लिए इस्तेमाल किया जा सकता है।
बल आघूर्ण के बाद से चालू है से गुणा तब बन जाता है
जहाँ
- विद्युत प्रवाह है (इकाइयों की अंतर्राष्ट्रीय प्रणाली, एम्पीयर)
- विद्युत प्रतिरोध और चालन है (इकाइयों की अंतर्राष्ट्रीय प्रणाली, ओम)
- मोटर बल आघूर्ण स्थिरांक है (इकाइयों की अंतर्राष्ट्रीय प्रणाली, न्यूटन-मीटर प्रति एम्पीयर, N·m/A), नीचे देखें
यदि दो मोटर समान हैं और बल आघूर्ण कठोर रूप से जुड़े शाफ्ट के साथ मिलकर काम करता है, एक समानांतर विद्युत कनेक्शन मानते हुए सिस्टम अभी भी समान है। h> संयुक्त प्रणाली की वृद्धि हुई क्योंकि बल आघूर्ण और लॉस दोनों दोगुना हो जाते हैं। वैकल्पिक रूप से, सिस्टम पहले की तरह ही बल आघूर्ण पर चल सकता है, बल आघूर्ण और धारा दो मोटरों में समान रूप से विभाजित होता है, जो प्रतिरोधक नुकसान को आधा कर देता है।आपके आवेदन के लिए आवश्यक मोटर स्थिरांक की गणना की जा सकती है और एक मोटर का चयन करने के लिए उपयोग किया जा सकता है जहां महत्वपूर्ण थर्मल सीमाएं हैं, इस मामले में सीमित तापमान पर रेट किए जाने पर डेटाशीट पर टोक़ विनिर्देश पर्याप्त नहीं हो सकते हैं।
मोटर वेग स्थिर, पीछे इलेक्ट्रोमोटिव बल स्थिरांक
मोटर वेग, या मोटर गति है,[2]निरंतर (केवी के साथ भ्रमित नहीं होना चाहिए, किलोवोल्ट के लिए प्रतीक), परिक्रमण प्रति मिनट (आरपीएम) प्रति वोल्ट या रेडियंस प्रति वोल्ट सेकंड, रेड/वी·एस में मापा जाता है:[3]
h> एक brushless मोटर की रेटिंग कुंडली से जुड़े तारों (काउंटर-इलेक्ट्रोमोटिव बल) पर मोटर की अभारित घूर्णी गति (आरपीएम में मापी गई) का चरम (RMS नहीं) वोल्टेज का अनुपात है। उदाहरण के लिए, एक अभारित मोटर = 5,700 rpm/V 11.1 V के साथ आपूर्ति की गई 63,270 आरपीएम (= 5,700 rpm/V × 11.1 V) की साधारण गति से चलेगी।
मोटर इस सैद्धांतिक गति तक नहीं पहुँच सकता है क्योंकि गैर-रैखिक यांत्रिक नुकसान हैं। दूसरी ओर, यदि मोटर को जनित्र के रूप में चलाया जाता है, तो टर्मिनलों के बीच नो-लोड वोल्टेज आरपीएम के पूर्णतया आनुपातिक होता है और इसके लिए सत्य होता है। मोटर / जनित्र की।
शर्तें ,[2] भी उपयोग किया जाता है,[4] जैसा कि शर्तें वापस ईएमएफ स्थिर हैं,[5][6] या सामान्य विद्युत स्थिरांक।[2]के विपरीत मूल्य प्रायः SI इकाइयों वोल्ट-सेकंड प्रति रेडियन (Vs/rad) में व्यक्त किया जाता है, इस प्रकार यह एक व्युत्क्रम माप है .[7] कभी-कभी इसे गैर एसआई इकाइयों वोल्ट प्रति किलो परिक्रमण प्रति मिनट(वी/केआरपीएम)में व्यक्त किया जाता है।[8]
क्षेत्र प्रवाह को सूत्र में भी एकीकृत किया जा सकता है:[9]
जहाँ ईएमएफ वापस आ गया है, स्थिर है, चुंबकीय प्रवाह है, और कोणीय वेग है।
लेन्ज़ के नियम के अनुसार, एक चलती हुई मोटर गति के अनुपात में एक बैक-ईएमएफ उत्पन्न करती है। एक बार जब मोटर का घूर्णी वेग ऐसा होता है कि बैक-ईएमएफ बैटरी वोल्टेज (जिसे डीसी लाइन वोल्टेज भी कहा जाता है) के बराबर होता है, तो मोटर अपनी सीमा गति तक पहुँच जाती है। मोटर स्थिरांक (किमी) प्रतिरोधक शक्ति हानियों के वर्गमूल से विभाजित बल आघूर्ण के बराबर होता है। यह मोटर की दक्षता दिखाने में मदद करता है (उदाहरण: उच्च मोटर स्थिरांक का अर्थ है उच्च दक्षता)।
मोटर बल आघूर्ण स्थिर
आर्मेचर धारा द्वारा विभाजित उत्पादित बल आघूर्ण है।[10] इसकी गणना मोटर वेग स्थिरांक से की जा सकती है .
जहाँ मशीन का आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) धारा है (SI यूनिट: एम्पेयर)। मुख्य रूप से किसी दिए गए बल आघूर्ण डिमांड के लिए आर्मेचर धारा की गणना करने के लिए उपयोग किया जाता है:
बल आघूर्ण स्थिरांक के लिए SI इकाइयाँ न्यूटन मीटर प्रति एम्पीयर (N·m/A) हैं। चूँकि 1 N·m = 1 J, और 1 A = 1 C/s, तो 1 N·m/A = 1 J·s/C = 1 V·s (वापस EMF स्थिरांक के समान इकाइयाँ)।
बीच के रिश्ते और सहज ज्ञान युक्त नहीं है, इस हद तक कि बहुत से लोग केवल उस बलाघूर्ण का दावा करते हैं और बिल्कुल संबंधित नहीं हैं। एक काल्पनिक रैखिक मोटर के साथ एक सादृश्य यह समझाने में मदद कर सकता है कि यह सच है। मान लीजिए कि एक रैखिक मोटर में ए है 2 (m/s)/V का, यानी लीनियर एक्चुएटर 2 m/s की दर से स्थानांतरित (या संचालित) होने पर एक वोल्ट बैक-EMF उत्पन्न करता है। इसके विपरीत, ( रैखिक मोटर की गति है, वोल्टेज है)।
इस रैखिक मोटर की उपयोगी शक्ति है , शक्ति होने के नाते, उपयोगी वोल्टेज (लागू वोल्टेज माइनस बैक-ईएमएफ वोल्टेज), और द करेंट। लेकिन, चूँकि शक्ति भी गति से गुणा बल के बराबर होती है, बल रैखिक मोटर का है या . प्रति यूनिट धारा और बल के बीच व्युत्क्रम संबंध एक रैखिक मोटर का प्रदर्शन किया गया है।
इस मॉडल को घूर्णन मोटर में अनुवाद करने के लिए, मोटर आर्मेचर के लिए एक मनमाना व्यास का श्रेय दिया जा सकता है उदा। एक डीसी मोटर का आउटपुट बल आघूर्ण कुंडली के माध्यम से करंट के सीधे आनुपातिक होता है, और मोटर की कोणीय गति सीधे उत्पन्न होने वाले ईएमएफ के समानुपाती होती है। 2 मीटर और सरलता के लिए मान लें कि रोटर के बाहरी परिधि पर सभी बल लागू होते हैं, जिससे 1 मीटर उत्तोलन मिलता है।
अब, मान लीजिए मोटर की (कोणीय गति प्रति यूनिट वोल्टेज) 3600 आरपीएम/वी है, इसे 2π m (रोटर की परिधि) से गुणा करके और 60 से विभाजित करके रैखिक में अनुवादित किया जा सकता है, क्योंकि कोणीय गति प्रति मिनट है। यह रेखीय है .
अब, यदि इस मोटर को 2 ए के धारा से खिलाया जाता है और यह मानते हुए कि बैक-ईएमएफ ठीक 2 V है, तो यह 7200 आरपीएम पर घूम रहा है और यांत्रिक शक्ति 4 W है, और रोटर पर बल है N या 0.0053 N. रोटर की कल्पित त्रिज्या (बिल्कुल 1 m) के कारण शाफ्ट पर बल आघूर्ण 2 A पर 0.0053 N⋅m है। एक अलग त्रिज्या मानने से रैखिक बदल जाएगा लेकिन अंतिम टोक़ परिणाम नहीं बदलेगा। परिणाम चेक करने के लिए यह याद रखें .
तो, एक मोटर के साथ इसके आकार या अन्य विशेषताओं की परवाह किए बिना वर्तमान के प्रति एम्पीयर 0.00265 N⋅m का बल आघूर्ण उत्पन्न करेगा। यह वास्तव में द्वारा अनुमानित मूल्य है सूत्र पहले कहा गया है।
diameter = 2r | r = 0.5 m | r = 1 m | r = 2 m | Formula () | Formula () | Formula () | shorthand |
---|---|---|---|---|---|---|---|
= motor torque (N.m/s) | 0.005305 N·m | 0.005305 N·m | 0.005305 N·m | ||||
linear (m/s/V) @ diameter | 188.5 (m/s)/V | 377.0 (m/s)/V | 754.0 (m/s)/V | ||||
linear (N.m/A) @ diameter | 0.005305 N·m/A | 0.002653 N·m/A | 0.001326 N·m/A | ||||
speed m/s @ diameter
(linear speed) |
377.0 m/s | 754.0 m/s | 1508.0 m/s | linear | |||
speed km/h @ diameter
(linear speed) |
1357 km/h | 2714 km/h | 5429 km/h | linear | |||
torque (N.m) @ diameter
(linear torque) |
0.01061 N·m | 0.005305 N·m | 0.002653 N·m | ||||
shorthand | half diameter = half speed
* double torque |
full diameter = full speed
* full torque |
double diameter = double speed
* half torque |
संदर्भ
- ↑ "Archived copy" (PDF). Archived from the original (PDF) on 2021-04-13. Retrieved 2014-01-04.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ 2.0 2.1 2.2 "Mystery Motor Data Sheet" (PDF), hades.mech.northwest.edu
- ↑ "Brushless Motor Kv Constant Explained • LearningRC". 29 July 2015.
- ↑ "GENERAL MOTOR TERMINOLOGY" (PDF), www.smma.org
- ↑ "DC motor model with electrical and torque characteristics - Simulink", www.mathworks.co.uk
- ↑ "Technical Library > DC Motors Tutorials > Motor Calculations", www.micro-drives.com, archived from the original on 2012-04-04
- ↑ "Home". www.precisionmicrodrives.com. Archived from the original on 2014-10-28.
- ↑ http://www.smma.org/pdf/SMMA_motor_glossary.pdf[bare URL PDF]
- ↑ "DC motor starting and braking", iitd.vlab.co.in, archived from the original on 2012-11-13
- ↑ Understanding motor constants Kt and Kemf for comparing brushless DC motors
बाहरी संबंध
- "Development of Electromotive Force" (PDF), biosystems.okstate.edu, archived from the original (PDF) on 2010-06-04