उत्थापित कोसाइन फिल्टर: Difference between revisions

From Vigyanwiki
Line 40: Line 40:


=== रोल-ऑफ कारक ===
=== रोल-ऑफ कारक ===
रोल-ऑफ कारक, <math>\beta</math> फिल्टर की अतिरिक्त बैंडविड्थ का एक माप है, अर्थात बैंडविड्थ की नाइक्विस्ट बैंडविड्थ से अतिरिक्त अधिकृत लिया गया है <math>\frac{1}{2T}</math>.
रोल-ऑफ कारक <math>\beta</math>, फिल्टर की अतिरिक्त बैंड विस्तार का माप है, अर्थात नाइक्विस्ट बैंडविड्थ <math>\frac{1}{2T}</math> से अतिरिक्त अधिकृत किया गया है .
जो कुछ लेखक उपयोग करते हैं <math>\alpha=\beta</math>.<ref>[[:de:Raised-Cosine-Filter]] German version of Raised-Cosine-Filter</ref>
 
यदि हम अतिरिक्त बैंडविड्थ को निरूपित करते हैं <math>\Delta f</math>, पुनः
जो कुछ लेखक <math>\alpha=\beta</math> का उपयोग करते हैं .<ref>[[:de:Raised-Cosine-Filter]] German version of Raised-Cosine-Filter</ref>
 
यदि हम अतिरिक्त विस्तार माप <math>\Delta f</math> को निरूपित करते हैं, पुनः


:<math>\beta = \frac{\Delta f}{\left(\frac{1}{2T}\right)} = \frac{\Delta f}{R_S/2} = 2T\,\Delta f</math>
:<math>\beta = \frac{\Delta f}{\left(\frac{1}{2T}\right)} = \frac{\Delta f}{R_S/2} = 2T\,\Delta f</math>
जहाँ <math>R_S = \frac{1}{T}</math> प्रतीक-दर है।
जहाँ <math>R_S = \frac{1}{T}</math> प्रतीक-दर है।


ग्राफ आयाम प्रतिक्रिया को इस प्रकार दिखाता है <math>\beta</math> 0 और 1 के बीच भिन्न होता है, और आवेग प्रतिक्रिया पर संबंधित प्रभाव। जैसा कि देखा जा सकता है, टाइम-डोमेन रिपल स्तर जैसे -जैसे बढ़ता है <math>\beta</math> घटता है। इससे पता चलता है कि फिल्टर की अतिरिक्त बैंडविड्थ को कम किया जा सकता है, लेकिन केवल एक लंबी आवेग प्रतिक्रिया की मूल्य पर।
ग्राफ आयाम प्रतिक्रिया को इस प्रकार दिखाता है <math>\beta</math>, 0 और 1 के बीच भिन्न होता है, और आवेग प्रतिक्रिया पर संबंधित प्रभाव जैसा कि देखा जा सकता है, समय संचालित तरंग स्तर जैसे -जैसे बढ़ता है <math>\beta</math> घटता है। इससे पता चलता है कि फिल्टर की अतिरिक्त बैंडविड्थ को कम किया जा सकता है, लेकिन केवल एक लंबी आवेग प्रतिक्रिया की मूल्य पर।


====β = 0====
====β = 0====
जैसा <math>\beta</math> 0 के करीब, रोल-ऑफ ज़ोन असीम रूप से संकीर्ण हो जाता है, इसलिए:
जैसा <math>\beta</math> 0 के करीब, रोल-ऑफ क्षेत्र असीमित रूप से संकीर्ण हो जाता है, इसलिए:


:<math>\lim_{\beta \rightarrow 0}H(f) = \operatorname{rect}(fT)</math>
:<math>\lim_{\beta \rightarrow 0}H(f) = \operatorname{rect}(fT)</math>

Revision as of 11:22, 15 February 2023

उत्थापित कोसाइन फिल्टर एक फिल्टर है जिसका उपयोग प्रायः अंकीय निरूपण बलाघात परिवर्तन में स्पंद संरूपण के लिए किया जाता है, क्योंकि इसमें अंतःप्रतीक हस्तक्षेप को कम करने की क्षमता होती है। इसका नाम इस तथ्य से उत्पन्न हुआ है कि इसके सरलतम रूप की आवृत्ति स्पेक्ट्रम का गैर-शून्य भाग (β =1) एक कोसाइन फलन है, जो के क्षैतिज अक्ष के ऊपर स्थित होने के लिए 'उत्थित' हुआ है ।

गणितीय विवरण

विभिन्न रोल-ऑफ कारकों के साथ उठाए गए कोसाइन फ़िल्टर की आवृत्ति प्रतिक्रिया
विभिन्न रोल-ऑफ कारकों के साथ उठाए गए-कोसाइन फ़िल्टर की आवेग प्रतिक्रिया

उत्थापित कोसाइन फिल्टर एक निम्न-पास नाइक्विस्ट मानदंड का कार्यान्वयन है, अर्थात, जिसमें अवशिष्ट समरूपता का गुण होता है। इसका तात्पर्य यह है कि इसका वर्णक्रम विषम समरूपता प्रदर्शित करता है , जहाँ संचार प्रणाली का प्रतीक-काल है।

इसका आवृत्ति-अनुक्षेत्र विवरण एक खंडशः परिभाषित फलन है, जो इसके द्वारा दिया गया है:

या हैवरकोसाइन के संदर्भ में:

के लिये

और दो मूल्यों की विशेषता; , रोल-ऑफ़ कारक, और , प्रतीक-दर का व्युत्क्रम है।

ऐसे फिल्टर की आवेग प्रतिक्रिया [1] द्वारा दिया गया है:

सामान्यीकरण के उपरांत गणितीय फलन के विपरीत एक सिंक फलन है।

रोल-ऑफ कारक

रोल-ऑफ कारक , फिल्टर की अतिरिक्त बैंड विस्तार का माप है, अर्थात नाइक्विस्ट बैंडविड्थ से अतिरिक्त अधिकृत किया गया है .

जो कुछ लेखक का उपयोग करते हैं .[2]

यदि हम अतिरिक्त विस्तार माप को निरूपित करते हैं, पुनः

जहाँ प्रतीक-दर है।

ग्राफ आयाम प्रतिक्रिया को इस प्रकार दिखाता है , 0 और 1 के बीच भिन्न होता है, और आवेग प्रतिक्रिया पर संबंधित प्रभाव जैसा कि देखा जा सकता है, समय संचालित तरंग स्तर जैसे -जैसे बढ़ता है घटता है। इससे पता चलता है कि फिल्टर की अतिरिक्त बैंडविड्थ को कम किया जा सकता है, लेकिन केवल एक लंबी आवेग प्रतिक्रिया की मूल्य पर।

β = 0

जैसा 0 के करीब, रोल-ऑफ क्षेत्र असीमित रूप से संकीर्ण हो जाता है, इसलिए:

जहाँ आयताकार कार्य है, इसलिए आवेग प्रतिक्रिया निकट आती है . इसलिए, यह इस मामले में एक आदर्श या ईंट-दीवार फिल्टर में परिवर्तित हो जाता है।

β = 1

कब , वर्णक्रम का गैर-शून्य भाग एक शुद्ध उत्थित कोसाइन है, जिससे सरलीकरण होता है:

या


बैंडविड्थ

उठाए हुए कोसाइन फिल्टर की बैंडविड्थ को आमतौर पर इसके स्पेक्ट्रम के गैर-शून्य आवृत्ति-सकारात्मक हिस्से की चौड़ाई के रूप में परिभाषित किया जाता है, अर्थात:

जैसा कि एक स्पेक्ट्रम विश्लेषक का उपयोग करके मापा जाता है, विनियमित संकेत के हर्ट्ज में रेडियो बैंडविड्थ बी बेसबैंड बैंडविड्थ बीडब्ल्यू से दोगुना है अर्थात:


-सहसंबंध समारोह

उठाए गए कोसाइन फलन का -सहसंबंध कार्य इस प्रकार है:

सहसंबंध के साथ विश्लेषण किए जाने पर स्वतः-सहसंबंध परिणाम का उपयोग विभिन्न नमूना अन्तर्लम्ब परिणामों का विश्लेषण करने के लिए किया जा सकता है।

आवेदन

शून्य-आईएसआई संपत्ति का प्रदर्शन करते हुए लगातार उठाए गए-कोसाइन आवेग

जब एक प्रतीक धारा को फिल्टर करने के लिए उपयोग किया जाता है, तो एक नाइक्विस्ट फिल्टर में आईएसआई को समाप्त करने की गुण होती है, क्योंकि इसकी आवेग प्रतिक्रिया शून्य होती है (जहाँ एक पूर्णांक है), सिवाय .

इसलिए, यदि संचारित तरंग को अदाता पर सही ढंग से नमूना लिया जाता है, तो मूल प्रतीक मूल्यों को पूरी तरह से पुन:प्राप्त किया जा सकता है।

यद्यपि, कई व्यावहारिक संचार प्रणालियों में, स्वेत रव के प्रभाव के कारण, अदाता में एक सुमेलित फिल्टर' का उपयोग किया जाता है, शून्य आईएसआई के लिए, यह संचारित और फिल्टर प्राप्त करने की शुद्ध प्रतिक्रिया है जो बराबर होनी चाहिए :

और इसीलिए:

इन फिल्टरओं को उत्थित वर्णमूल -कोसाइन कहा जाता है।

उत्थित कोसाइन फाइबर ब्रैग ग्रेटिंग संरचना के लिए सामान्यतः प्रयोग किया जाने वाला एनोडिकरण फिल्टर है।

संदर्भ

  • Glover, I.; Grant, P. (2004). Digital Communications (2nd ed.). Pearson Education Ltd. ISBN 0-13-089399-4.
  • Proakis, J. (1995). Digital Communications (3rd ed.). McGraw-Hill Inc. ISBN 0-07-113814-5.
  • Tavares, L.M.; Tavares G.N. (1998) Comments on "Performance of Asynchronous Band-Limited DS/SSMA Systems" . IEICE Trans. Commun., Vol. E81-B, No. 9


बाहरी संबंध