गतिशील विश्राम: Difference between revisions
No edit summary |
No edit summary |
||
Line 47: | Line 47: | ||
== भिगोना == | == भिगोना == | ||
डंपिंग का उपयोग करके गतिशील विश्राम को | डंपिंग का उपयोग करके गतिशील विश्राम को गणना के रूप से कुशल (पुनरावृत्तियों की संख्या को कम करना) बनाना संभव है। <ref name=lewis/> भिगोने की दो विधियाँ हैं- | ||
* विस्कस डंपिंग, जो मानता है कि | * विस्कस डंपिंग, जो मानता है कि प्रोप के बीच संबंध में चिपचिपा बल घटक होता है। | ||
* | *डंपिंग जहां चरम गतिज ऊर्जा पर निर्देशांक (संतुलन स्थिति) की गणना की जाती है, फिर ज्यामिति को इस स्थिति में सूचित करता है और वेग को शून्य पर ठोस करता है। | ||
विस्कोस डैम्पिंग का लाभ यह है कि यह विस्कोस गुणों वाले केबल की वास्तविकता का प्रतिनिधित्व करता है। इसके | विस्कोस डैम्पिंग का लाभ यह है कि यह विस्कोस गुणों वाले केबल की वास्तविकता का प्रतिनिधित्व करता है। इसके अतिरिक्त यह महसूस करता है कि गति की गणना पहले ही की जा चुकी है या नहीं। गतिज ऊर्जा अवमंदन की एक कृत्रिम ऊर्जा है जो वास्तविक प्रभाव नहीं है लेकिन समाधान खोजने के लिए आवश्यक पुनरावृत्तियों की संख्या में भारी कमी प्रदान करता है। जबकि एक गणना पेनल्टी है जिसमें गतिज ऊर्जा और शिखर स्थान की गणना की जानी चाहिए, जिसके बाद ज्यामिति को इस स्थिति में अद्यतन करना होगा। | ||
गतिज ऊर्जा अवमंदन एक कृत्रिम | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 08:28, 16 February 2023
गतिशील एक संख्यात्मक विधि है जो अन्य बातों के अलावा तनन संरचना के प्रपत्र की खोज करने के लिए उपयोग की जा सकती है। इसका उद्देश्य एक ऐसी ज्यामिति को खोजना है जहां सभी बल यांत्रिक संतुलन में हों। अतीत में इसका कार्य प्रत्यक्ष फ्रेमवर्क द्वारा किया जाता था, तथा हैंगिंग चेन (Gaudi) या साबुन फिल्म का उपयोग किया जाता था जिसमें न्यूनतम सतह खोजने के लिए समायोजन करने का गुण होता है।
गतिशील विश्राम विधि प्रोप पर द्रव्यमान को सम्मिलित करके और कठोरता के संदर्भ में प्रोप के बीच संबंध को परिभाषित करके (परिमित तत्व) विचाराधीन सातत्य को अलग किया जा सकता है। प्रणाली भार के प्रभाव में संतुलन की स्थिति के बारे में दोलन करती है। ज्यामिति के अद्यतन के आधार पर प्रत्येक पुनरावृत्ति के साथ समय में एक निवास-गतिकी (यांत्रिकी) प्रक्रिया का अनुकरण करके एक पुनरावृत्ति प्रक्रिया का पालन किया जाता है।[1]यह लीपफ्रॉग एकीकरण के समान और वेलोसिटी वेरलेट एकीकरण से संबंधित है।
मुख्य समीकरणों का प्रयोग करना
न्यूटन की गति का दूसरा नियम (बल, त्वरण द्वारा द्रव्यमान में गुणा किया जाता है)में एक्स पर दिशा आइ वें समय टी पर नहीं
जहाँ
- अवशिष्ट बल है
- नोडल द्रव्यमान है
- नोडल त्वरण है
यदि फॉर्म-फाइंडिंग की प्रक्रिया को तेज करने के लिए काल्पनिक नोडल मास को चुना जा सकता है।
गति के बीच संबंध वी ज्यामितीय एक्स अवशिष्टों को त्वरण के दोहरे संख्यात्मक एकीकरण का प्रदर्शन करके प्राप्त किया जा सकता है।( केंद्रीय अंतर) रूप में इस प्रकार है -
जब
- दो सूचनांक के बीच का समय अंतराल है।
बलों के संतुलन के सिद्धांत से, अवशिष्ट और ज्यामिति के बीच संबंध प्राप्त किया जा सकता है।
जहाँ
- लागू लोड घटक है
- के लिंक में तनाव है नोड्स बीच और
- लिंक की लंबाई है।
योग को नोड और अन्य प्रोप के बीच सभी संबंधों में बलों को सम्मिलित करना चाहिए। अवशिष्ट और ज्यामिति के बीच संबंध और ज्यामिति और अवशिष्ट के बीच संबंध के उपयोग को दोहराकर निवास-गतिशील प्रक्रिया का अनुकरण किया जाता है।
इटरेशन स्टेप्स
1. प्रारंभिक गतिज ऊर्जा और सभी नोडल वेग घटकों को शून्य पर सेट करें:
2. ज्यामिति सेट और लागू लोड घटक की गणना करें:
3. अवशिष्ट की गणना करें:
4. विवश नोड्स के अवशेषों को शून्य पर रीसेट करें
5. वेग और निर्देशांक अपडेट करें:
6. चरण 3 पर लौटें जब तक कि संरचना स्थैतिक यांत्रिक संतुलन में न हो
भिगोना
डंपिंग का उपयोग करके गतिशील विश्राम को गणना के रूप से कुशल (पुनरावृत्तियों की संख्या को कम करना) बनाना संभव है। [1] भिगोने की दो विधियाँ हैं-
- विस्कस डंपिंग, जो मानता है कि प्रोप के बीच संबंध में चिपचिपा बल घटक होता है।
- डंपिंग जहां चरम गतिज ऊर्जा पर निर्देशांक (संतुलन स्थिति) की गणना की जाती है, फिर ज्यामिति को इस स्थिति में सूचित करता है और वेग को शून्य पर ठोस करता है।
विस्कोस डैम्पिंग का लाभ यह है कि यह विस्कोस गुणों वाले केबल की वास्तविकता का प्रतिनिधित्व करता है। इसके अतिरिक्त यह महसूस करता है कि गति की गणना पहले ही की जा चुकी है या नहीं। गतिज ऊर्जा अवमंदन की एक कृत्रिम ऊर्जा है जो वास्तविक प्रभाव नहीं है लेकिन समाधान खोजने के लिए आवश्यक पुनरावृत्तियों की संख्या में भारी कमी प्रदान करता है। जबकि एक गणना पेनल्टी है जिसमें गतिज ऊर्जा और शिखर स्थान की गणना की जानी चाहिए, जिसके बाद ज्यामिति को इस स्थिति में अद्यतन करना होगा।
यह भी देखें
- तन्यता संरचनाएं
- अनुकूलन (गणित)
अग्रिम पठन
- A S Day, An introduction to dynamic relaxation. The Engineer 1965, 219:218–221
- H.A. BUCHHOLDT, An introduction to cable roof structures, 2nd ed, London, Telford, 1999
संदर्भ
- ↑ 1.0 1.1 W. J. Lewis, Tension Structures: Form and behaviour, London, Telford, 2003