ओममीटर: Difference between revisions
(Created page with "{{short description|Tool for measuring electrical resistance}} {{distinguish|ohm metre}} {{Multiple issues| {{More citations needed|date=November 2012}} {{lead too short|date=...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Tool for measuring electrical resistance}} | {{short description|Tool for measuring electrical resistance}} | ||
{{distinguish|ohm metre}} | {{distinguish|ohm metre}}[[file:Ohmmeter.jpg|thumb|एनालॉग ओह्ममीटर]]ओममीटर [[बिजली]] मापने वाला उपकरण है जो विद्युत प्रतिरोध (सर्किट या घटक द्वारा [[विद्युत प्रवाह]] के प्रवाह के लिए प्रस्तावित विरोध) को मापता है। प्रतिरोध-माप मोड में होने पर मल्टीमीटर ओममीटर के रूप में भी कार्य करते हैं। ओममीटर उस सर्किट या घटक पर करंट लगाता है जिसका प्रतिरोध मापा जाना है। यह तब परिणामी वोल्टेज को मापता है और ओम के नियम का उपयोग करके प्रतिरोध की गणना करता है <math>V=IR</math>. | ||
[[file:Ohmmeter.jpg|thumb| | |||
ओह्ममीटर को किसी ऐसे सर्किट या घटक से नहीं जोड़ा जाना चाहिए जो करंट ले जा रहा हो या किसी शक्ति स्रोत से जुड़ा हो। [[ओम]]मीटर को जोड़ने से पहले बिजली काट दी जानी चाहिए। ओह्ममीटर या तो आवश्यकताओं के आधार पर श्रृंखला या समानांतर में जुड़े हो सकते हैं (चाहे मापा जा रहा प्रतिरोध सर्किट का हिस्सा हो या शंट प्रतिरोध हो।) | ओह्ममीटर को किसी ऐसे सर्किट या घटक से नहीं जोड़ा जाना चाहिए जो करंट ले जा रहा हो या किसी शक्ति स्रोत से जुड़ा हो। [[ओम]]मीटर को जोड़ने से पहले बिजली काट दी जानी चाहिए। ओह्ममीटर या तो आवश्यकताओं के आधार पर श्रृंखला या समानांतर में जुड़े हो सकते हैं (चाहे मापा जा रहा प्रतिरोध सर्किट का हिस्सा हो या शंट प्रतिरोध हो।) | ||
माइक्रो-ओममीटर (माइक्रोहमीटर या माइक्रो ओममीटर) कम प्रतिरोध का मापन करते हैं। Megohmmeters ( | माइक्रो-ओममीटर (माइक्रोहमीटर या माइक्रो ओममीटर) कम प्रतिरोध का मापन करते हैं। Megohmmeters ( ट्रेडमार्क डिवाइस [[मेगर]] भी) प्रतिरोध के बड़े मूल्यों को मापता है। प्रतिरोध के लिए माप की इकाई ओम (Ω) है। | ||
== डिजाइन विकास == | == डिजाइन विकास == | ||
पहले ओह्ममीटर एक प्रकार के मीटर संचलन पर आधारित थे जिन्हें 'रेशियोमीटर' के रूप में जाना जाता है।<ref>http://www.g1jbg.co.uk/pdf/MeggerBK.pdf {{Webarchive|url=https://web.archive.org/web/20120315011216/http://www.g1jbg.co.uk/pdf/MeggerBK.pdf |date=2012-03-15 }} A pocket book on the use of Megger insulation and continuity testers.</ref><ref>[https://web.archive.org/web/20210225031037/http://www.prolexdesign.com/images/evohmmeter.jpg] Illustration of type. Note the absence of any zero adjustment and the changed scale direction between ranges. {{dead link|date=November 2013}}</ref> ये बाद के उपकरणों में पाए जाने वाले [[बिजली की शक्ति नापने का यंत्र]] प्रकार के आंदोलन के समान थे, लेकिन बालों के झरनों के बजाय | पहले ओह्ममीटर एक प्रकार के मीटर संचलन पर आधारित थे जिन्हें 'रेशियोमीटर' के रूप में जाना जाता है।<ref>http://www.g1jbg.co.uk/pdf/MeggerBK.pdf {{Webarchive|url=https://web.archive.org/web/20120315011216/http://www.g1jbg.co.uk/pdf/MeggerBK.pdf |date=2012-03-15 }} A pocket book on the use of Megger insulation and continuity testers.</ref><ref>[https://web.archive.org/web/20210225031037/http://www.prolexdesign.com/images/evohmmeter.jpg] Illustration of type. Note the absence of any zero adjustment and the changed scale direction between ranges. {{dead link|date=November 2013}}</ref> ये बाद के उपकरणों में पाए जाने वाले [[बिजली की शक्ति नापने का यंत्र]] प्रकार के आंदोलन के समान थे, लेकिन बालों के झरनों के बजाय पुनर्स्थापना बल की आपूर्ति करने के लिए उन्होंने 'लिगामेंट्स' का संचालन किया। इनसे आंदोलन को कोई शुद्ध घूर्णी बल नहीं मिला। साथ ही, आंदोलन को दो कुंडलियों से लपेटा गया था। बैटरी आपूर्ति के लिए श्रृंखला रोकनेवाला के माध्यम से जुड़ा था। दूसरा एक दूसरे अवरोधक और परीक्षण के तहत प्रतिरोधक के माध्यम से उसी बैटरी आपूर्ति से जुड़ा था। मीटर पर संकेत दो कॉइल के माध्यम से धाराओं के अनुपात के समानुपाती था। यह अनुपात परीक्षण के तहत रोकनेवाला के परिमाण द्वारा निर्धारित किया गया था। इस व्यवस्था के फायदे दो गुना थे। सबसे पहले, प्रतिरोध का संकेत बैटरी [[वोल्टेज]] से पूरी तरह से स्वतंत्र था (जब तक कि यह वास्तव में कुछ वोल्टेज का उत्पादन करता था) और शून्य समायोजन की आवश्यकता नहीं थी। दूसरा, हालांकि प्रतिरोध पैमाना गैर रेखीय था, पूर्ण विक्षेपण सीमा पर पैमाना सही रहा। दो कॉइल्स को इंटरचेंज करके एक दूसरी रेंज प्रदान की गई। यह पैमाना पहले की तुलना में उलटा था। इस प्रकार के उपकरण की विशेषता यह थी कि एक बार परीक्षण लीड के डिस्कनेक्ट हो जाने के बाद यह यादृच्छिक प्रतिरोध मान को इंगित करना जारी रखेगा (जिसकी क्रिया से बैटरी संचलन से अलग हो जाती है)। इस प्रकार के ओह्ममीटर केवल कभी प्रतिरोध मापते हैं क्योंकि उन्हें आसानी से [[मल्टीमीटर]] डिज़ाइन में शामिल नहीं किया जा सकता है। इन्सुलेशन परीक्षक जो s | ||
ओममीटर के बाद के डिजाइनों ने प्रतिरोध (बैटरी, गैल्वेनोमीटर और प्रतिरोध सभी श्रृंखला और समांतर सर्किट में जुड़े हुए) के माध्यम से वर्तमान को मापने के लिए गैल्वेनोमीटर के माध्यम से प्रतिरोध के लिए वोल्टेज लागू करने के लिए | ओममीटर के बाद के डिजाइनों ने प्रतिरोध (बैटरी, गैल्वेनोमीटर और प्रतिरोध सभी श्रृंखला और समांतर सर्किट में जुड़े हुए) के माध्यम से वर्तमान को मापने के लिए गैल्वेनोमीटर के माध्यम से प्रतिरोध के लिए वोल्टेज लागू करने के लिए छोटी बैटरी प्रदान की। गैल्वेनोमीटर के पैमाने को ओम में चिह्नित किया गया था, क्योंकि बैटरी से निश्चित वोल्टेज ने आश्वासन दिया था कि प्रतिरोध बढ़ने पर, मीटर के माध्यम से धारा (और इसलिए विक्षेपण) कम हो जाएगी। ओह्ममीटर अपने आप सर्किट बनाते हैं, इसलिए उन्हें असेंबल्ड सर्किट में इस्तेमाल नहीं किया जा सकता है। यह डिज़ाइन पूर्व डिज़ाइन की तुलना में बहुत सरल और सस्ता है, और मल्टीमीटर डिज़ाइन में एकीकृत करना आसान था और फलस्वरूप एनालॉग ओममीटर का अब तक का सबसे सामान्य रूप था। इस प्रकार का ओममीटर दो अंतर्निहित नुकसानों से ग्रस्त है। सबसे पहले, माप बिंदुओं को एक साथ छोटा करके और प्रत्येक माप से पहले शून्य ओम संकेत के लिए समायोजन करके मीटर को शून्य करने की आवश्यकता होती है। ऐसा इसलिए है क्योंकि उम्र के साथ बैटरी वोल्टेज घटता जाता है, पूर्ण विक्षेपण पर शून्य संकेत बनाए रखने के लिए मीटर में श्रृंखला प्रतिरोध को कम करने की आवश्यकता होती है। दूसरा, और पहले के परिणामस्वरूप, आंतरिक प्रतिरोध में परिवर्तन के रूप में परीक्षण परिवर्तनों के तहत किसी भी प्रतिरोधक के लिए वास्तविक विक्षेपण। यह केवल पैमाने के केंद्र में ही सही रहता है, यही कारण है कि इस तरह के ओममीटर डिजाइन हमेशा सटीकता को केवल केंद्र पैमाने पर उद्धृत करते हैं। | ||
अधिक सटीक प्रकार के ओममीटर में इलेक्ट्रॉनिक सर्किट होता है जो प्रतिरोध के माध्यम से स्थिर धारा (I) पास करता है, और दूसरा सर्किट जो प्रतिरोध के पार वोल्टेज (V) को मापता है। इन मापों को फिर [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]]|एनालॉग डिजिटल कन्वर्टर (एडीसी) के साथ डिजिटाइज़ किया जाता है, जिसके बाद [[microcontroller]] या [[माइक्रोप्रोसेसर]] ओम के नियम के अनुसार करंट और वोल्टेज का विभाजन करते हैं और फिर उपयोगकर्ता को डिस्प्ले देने के लिए इन्हें डिकोड करते हैं। प्रतिरोध मूल्य का पढ़ना जो वे उस पल में माप रहे हैं। चूंकि इस प्रकार के मीटर पहले से ही वर्तमान, वोल्टेज और प्रतिरोध को एक साथ मापते हैं, इस प्रकार के सर्किट अक्सर [[डिज़िटल मल्टीमीटर]] में उपयोग किए जाते हैं। | |||
== सटीक ओह्ममीटर == | == सटीक ओह्ममीटर == | ||
बहुत छोटे प्रतिरोधों के उच्च-परिशुद्धता मापन के लिए, उपरोक्त प्रकार के मीटर अपर्याप्त हैं। यह आंशिक रूप से इसलिए है क्योंकि विक्षेपण में परिवर्तन स्वयं छोटा होता है जब मापा गया प्रतिरोध ओममीटर के आंतरिक प्रतिरोध के अनुपात में बहुत छोटा होता है (जिससे [[वर्तमान विभक्त]] के माध्यम से निपटा जा सकता है), लेकिन ज्यादातर इसलिए क्योंकि मीटर की रीडिंग प्रतिरोध का योग है मापने की लीड, संपर्क प्रतिरोध और मापा जा रहा प्रतिरोध। इस प्रभाव को कम करने के लिए, | बहुत छोटे प्रतिरोधों के उच्च-परिशुद्धता मापन के लिए, उपरोक्त प्रकार के मीटर अपर्याप्त हैं। यह आंशिक रूप से इसलिए है क्योंकि विक्षेपण में परिवर्तन स्वयं छोटा होता है जब मापा गया प्रतिरोध ओममीटर के आंतरिक प्रतिरोध के अनुपात में बहुत छोटा होता है (जिससे [[वर्तमान विभक्त]] के माध्यम से निपटा जा सकता है), लेकिन ज्यादातर इसलिए क्योंकि मीटर की रीडिंग प्रतिरोध का योग है मापने की लीड, संपर्क प्रतिरोध और मापा जा रहा प्रतिरोध। इस प्रभाव को कम करने के लिए, सटीक ओममीटर में चार टर्मिनल होते हैं, जिन्हें केल्विन संपर्क कहा जाता है। दो टर्मिनल करंट को और मीटर तक ले जाते हैं, जबकि अन्य दो मीटर को प्रतिरोधक के पार वोल्टेज को मापने की अनुमति देते हैं। इस व्यवस्था में, शक्ति स्रोत श्रृंखला में टर्मिनलों की बाहरी जोड़ी के माध्यम से मापा जाने वाले प्रतिरोध के साथ जुड़ा हुआ है, जबकि दूसरी जोड़ी गैल्वेनोमीटर के साथ समानांतर में जुड़ती है जो वोल्टेज ड्रॉप को मापती है। इस प्रकार के मीटर के साथ, लीड की पहली जोड़ी के प्रतिरोध और उनके संपर्क प्रतिरोधों के कारण किसी भी वोल्टेज की गिरावट को मीटर द्वारा अनदेखा कर दिया जाता है। इस चार-टर्मिनल सेंसिंग तकनीक को केल्विन सेंसिंग कहा जाता है, विलियम थॉमसन, प्रथम बैरन केल्विन | विलियम थॉमसन, लॉर्ड केल्विन के बाद, जिन्होंने 1861 में [[केल्विन ब्रिज]] का आविष्कार बहुत कम प्रतिरोधों को मापने के लिए किया था। कम प्रतिरोधों के सटीक मापन के लिए [[चार-टर्मिनल संवेदन]] पद्धति का भी उपयोग किया जा सकता है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 09:51, 20 February 2023
ओममीटर बिजली मापने वाला उपकरण है जो विद्युत प्रतिरोध (सर्किट या घटक द्वारा विद्युत प्रवाह के प्रवाह के लिए प्रस्तावित विरोध) को मापता है। प्रतिरोध-माप मोड में होने पर मल्टीमीटर ओममीटर के रूप में भी कार्य करते हैं। ओममीटर उस सर्किट या घटक पर करंट लगाता है जिसका प्रतिरोध मापा जाना है। यह तब परिणामी वोल्टेज को मापता है और ओम के नियम का उपयोग करके प्रतिरोध की गणना करता है .
ओह्ममीटर को किसी ऐसे सर्किट या घटक से नहीं जोड़ा जाना चाहिए जो करंट ले जा रहा हो या किसी शक्ति स्रोत से जुड़ा हो। ओममीटर को जोड़ने से पहले बिजली काट दी जानी चाहिए। ओह्ममीटर या तो आवश्यकताओं के आधार पर श्रृंखला या समानांतर में जुड़े हो सकते हैं (चाहे मापा जा रहा प्रतिरोध सर्किट का हिस्सा हो या शंट प्रतिरोध हो।)
माइक्रो-ओममीटर (माइक्रोहमीटर या माइक्रो ओममीटर) कम प्रतिरोध का मापन करते हैं। Megohmmeters ( ट्रेडमार्क डिवाइस मेगर भी) प्रतिरोध के बड़े मूल्यों को मापता है। प्रतिरोध के लिए माप की इकाई ओम (Ω) है।
डिजाइन विकास
पहले ओह्ममीटर एक प्रकार के मीटर संचलन पर आधारित थे जिन्हें 'रेशियोमीटर' के रूप में जाना जाता है।[1][2] ये बाद के उपकरणों में पाए जाने वाले बिजली की शक्ति नापने का यंत्र प्रकार के आंदोलन के समान थे, लेकिन बालों के झरनों के बजाय पुनर्स्थापना बल की आपूर्ति करने के लिए उन्होंने 'लिगामेंट्स' का संचालन किया। इनसे आंदोलन को कोई शुद्ध घूर्णी बल नहीं मिला। साथ ही, आंदोलन को दो कुंडलियों से लपेटा गया था। बैटरी आपूर्ति के लिए श्रृंखला रोकनेवाला के माध्यम से जुड़ा था। दूसरा एक दूसरे अवरोधक और परीक्षण के तहत प्रतिरोधक के माध्यम से उसी बैटरी आपूर्ति से जुड़ा था। मीटर पर संकेत दो कॉइल के माध्यम से धाराओं के अनुपात के समानुपाती था। यह अनुपात परीक्षण के तहत रोकनेवाला के परिमाण द्वारा निर्धारित किया गया था। इस व्यवस्था के फायदे दो गुना थे। सबसे पहले, प्रतिरोध का संकेत बैटरी वोल्टेज से पूरी तरह से स्वतंत्र था (जब तक कि यह वास्तव में कुछ वोल्टेज का उत्पादन करता था) और शून्य समायोजन की आवश्यकता नहीं थी। दूसरा, हालांकि प्रतिरोध पैमाना गैर रेखीय था, पूर्ण विक्षेपण सीमा पर पैमाना सही रहा। दो कॉइल्स को इंटरचेंज करके एक दूसरी रेंज प्रदान की गई। यह पैमाना पहले की तुलना में उलटा था। इस प्रकार के उपकरण की विशेषता यह थी कि एक बार परीक्षण लीड के डिस्कनेक्ट हो जाने के बाद यह यादृच्छिक प्रतिरोध मान को इंगित करना जारी रखेगा (जिसकी क्रिया से बैटरी संचलन से अलग हो जाती है)। इस प्रकार के ओह्ममीटर केवल कभी प्रतिरोध मापते हैं क्योंकि उन्हें आसानी से मल्टीमीटर डिज़ाइन में शामिल नहीं किया जा सकता है। इन्सुलेशन परीक्षक जो s
ओममीटर के बाद के डिजाइनों ने प्रतिरोध (बैटरी, गैल्वेनोमीटर और प्रतिरोध सभी श्रृंखला और समांतर सर्किट में जुड़े हुए) के माध्यम से वर्तमान को मापने के लिए गैल्वेनोमीटर के माध्यम से प्रतिरोध के लिए वोल्टेज लागू करने के लिए छोटी बैटरी प्रदान की। गैल्वेनोमीटर के पैमाने को ओम में चिह्नित किया गया था, क्योंकि बैटरी से निश्चित वोल्टेज ने आश्वासन दिया था कि प्रतिरोध बढ़ने पर, मीटर के माध्यम से धारा (और इसलिए विक्षेपण) कम हो जाएगी। ओह्ममीटर अपने आप सर्किट बनाते हैं, इसलिए उन्हें असेंबल्ड सर्किट में इस्तेमाल नहीं किया जा सकता है। यह डिज़ाइन पूर्व डिज़ाइन की तुलना में बहुत सरल और सस्ता है, और मल्टीमीटर डिज़ाइन में एकीकृत करना आसान था और फलस्वरूप एनालॉग ओममीटर का अब तक का सबसे सामान्य रूप था। इस प्रकार का ओममीटर दो अंतर्निहित नुकसानों से ग्रस्त है। सबसे पहले, माप बिंदुओं को एक साथ छोटा करके और प्रत्येक माप से पहले शून्य ओम संकेत के लिए समायोजन करके मीटर को शून्य करने की आवश्यकता होती है। ऐसा इसलिए है क्योंकि उम्र के साथ बैटरी वोल्टेज घटता जाता है, पूर्ण विक्षेपण पर शून्य संकेत बनाए रखने के लिए मीटर में श्रृंखला प्रतिरोध को कम करने की आवश्यकता होती है। दूसरा, और पहले के परिणामस्वरूप, आंतरिक प्रतिरोध में परिवर्तन के रूप में परीक्षण परिवर्तनों के तहत किसी भी प्रतिरोधक के लिए वास्तविक विक्षेपण। यह केवल पैमाने के केंद्र में ही सही रहता है, यही कारण है कि इस तरह के ओममीटर डिजाइन हमेशा सटीकता को केवल केंद्र पैमाने पर उद्धृत करते हैं।
अधिक सटीक प्रकार के ओममीटर में इलेक्ट्रॉनिक सर्किट होता है जो प्रतिरोध के माध्यम से स्थिर धारा (I) पास करता है, और दूसरा सर्किट जो प्रतिरोध के पार वोल्टेज (V) को मापता है। इन मापों को फिर एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण|एनालॉग डिजिटल कन्वर्टर (एडीसी) के साथ डिजिटाइज़ किया जाता है, जिसके बाद microcontroller या माइक्रोप्रोसेसर ओम के नियम के अनुसार करंट और वोल्टेज का विभाजन करते हैं और फिर उपयोगकर्ता को डिस्प्ले देने के लिए इन्हें डिकोड करते हैं। प्रतिरोध मूल्य का पढ़ना जो वे उस पल में माप रहे हैं। चूंकि इस प्रकार के मीटर पहले से ही वर्तमान, वोल्टेज और प्रतिरोध को एक साथ मापते हैं, इस प्रकार के सर्किट अक्सर डिज़िटल मल्टीमीटर में उपयोग किए जाते हैं।
सटीक ओह्ममीटर
बहुत छोटे प्रतिरोधों के उच्च-परिशुद्धता मापन के लिए, उपरोक्त प्रकार के मीटर अपर्याप्त हैं। यह आंशिक रूप से इसलिए है क्योंकि विक्षेपण में परिवर्तन स्वयं छोटा होता है जब मापा गया प्रतिरोध ओममीटर के आंतरिक प्रतिरोध के अनुपात में बहुत छोटा होता है (जिससे वर्तमान विभक्त के माध्यम से निपटा जा सकता है), लेकिन ज्यादातर इसलिए क्योंकि मीटर की रीडिंग प्रतिरोध का योग है मापने की लीड, संपर्क प्रतिरोध और मापा जा रहा प्रतिरोध। इस प्रभाव को कम करने के लिए, सटीक ओममीटर में चार टर्मिनल होते हैं, जिन्हें केल्विन संपर्क कहा जाता है। दो टर्मिनल करंट को और मीटर तक ले जाते हैं, जबकि अन्य दो मीटर को प्रतिरोधक के पार वोल्टेज को मापने की अनुमति देते हैं। इस व्यवस्था में, शक्ति स्रोत श्रृंखला में टर्मिनलों की बाहरी जोड़ी के माध्यम से मापा जाने वाले प्रतिरोध के साथ जुड़ा हुआ है, जबकि दूसरी जोड़ी गैल्वेनोमीटर के साथ समानांतर में जुड़ती है जो वोल्टेज ड्रॉप को मापती है। इस प्रकार के मीटर के साथ, लीड की पहली जोड़ी के प्रतिरोध और उनके संपर्क प्रतिरोधों के कारण किसी भी वोल्टेज की गिरावट को मीटर द्वारा अनदेखा कर दिया जाता है। इस चार-टर्मिनल सेंसिंग तकनीक को केल्विन सेंसिंग कहा जाता है, विलियम थॉमसन, प्रथम बैरन केल्विन | विलियम थॉमसन, लॉर्ड केल्विन के बाद, जिन्होंने 1861 में केल्विन ब्रिज का आविष्कार बहुत कम प्रतिरोधों को मापने के लिए किया था। कम प्रतिरोधों के सटीक मापन के लिए चार-टर्मिनल संवेदन पद्धति का भी उपयोग किया जा सकता है।
संदर्भ
- ↑ http://www.g1jbg.co.uk/pdf/MeggerBK.pdf Archived 2012-03-15 at the Wayback Machine A pocket book on the use of Megger insulation and continuity testers.
- ↑ [1] Illustration of type. Note the absence of any zero adjustment and the changed scale direction between ranges.[dead link]
https://www.codrey.com/electrical/ohmmeter-working-and-types/
बाहरी संबंध
- DC Metering Circuits chapter from Lessons In Electric Circuits Vol 1 DC free ebook and Lessons In Electric Circuits series.