पूर्ण कोणीय गति: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
:<math>\mathbf{L} = \mathbf{r} \times m \mathbf{v} </math> | :<math>\mathbf{L} = \mathbf{r} \times m \mathbf{v} </math> | ||
== परिभाषा == | == परिभाषा == | ||
Revision as of 10:23, 15 February 2023
मौसम विज्ञान में, पूर्ण कोणीय गति 'पूर्ण' समन्वय प्रणाली (पूर्ण समय और स्थान) में कोणीय गति को संदर्भित करती है।
परिचय
कोनेदार गति L स्थिति के क्रॉस उत्पाद के बराबर है (वेक्टर) r कण (या द्रव पार्सल) और इसकी पूर्ण रैखिक गति p, के बराबर mv, द्रव्यमान और वेग का गुणनफल। गणितीय रूप से,
परिभाषा
निरपेक्ष कोणीय संवेग सापेक्ष समन्वय प्रणाली में कण या द्रव पार्सल के कोणीय गति और उस सापेक्ष समन्वय प्रणाली के कोणीय गति का योग करता है।
मौसम विज्ञानी सामान्यतः वेग के तीन सदिश घटकों को व्यक्त करते हैं v = (u, v, w) (पूर्व, उत्तर और ऊपर)। पूर्ण कोणीय गति का परिमाण L प्रति यूनिट द्रव्यमान m
कहाँ
- M द्रव पार्सल के प्रति इकाई द्रव्यमान में पूर्ण कोणीय गति का प्रतिनिधित्व करता है (में m2/s),
- r पृथ्वी के केंद्र से द्रव पार्सल तक की दूरी का प्रतिनिधित्व करता है (में m),
- u द्रव पार्सल के वेग के पृथ्वी-सापेक्ष पूर्वमुखी घटक का प्रतिनिधित्व करता है (में m/s),
- φ अक्षांश का प्रतिनिधित्व करता है (में rad), और
- Ω पृथ्वी के घूर्णन की कोणीय दर का प्रतिनिधित्व करता है (में rad/s, सामान्यतः 2 π rad/1 sidereal day ≈ 72.921150 × 10−6 rad/s).
पहला शब्द पृथ्वी की सतह के संबंध में पार्सल की कोणीय गति का प्रतिनिधित्व करता है, जो कि मौसम पर दृढ़ता से निर्भर करता है। दूसरा शब्द पृथ्वी के कोणीय गति को विशेष अक्षांश पर दर्शाता है (अनिवार्य रूप से कम से कम अन्य -भूगर्भीय काल पर स्थिर)।
अनुप्रयोग
पृथ्वी के उथले क्षोभमंडल में, अनुमान लगाया जा सकता है r ≈ aद्रव खंड और पृथ्वी के केंद्र के मध्य की दूरी औसत पृथ्वी त्रिज्या के लगभग बराबर:
कहाँ
- a पृथ्वी त्रिज्या का प्रतिनिधित्व करता है (में m, सामान्यतः 6.371009 Mm)
- M द्रव पार्सल के प्रति इकाई द्रव्यमान में पूर्ण कोणीय गति का प्रतिनिधित्व करता है (में m2/s),
- u द्रव पार्सल के वेग के पृथ्वी-सापेक्ष पूर्वमुखी घटक का प्रतिनिधित्व करता है (में m/s),
- φ अक्षांश का प्रतिनिधित्व करता है (में rad), और
- Ω पृथ्वी के घूर्णन की कोणीय दर का प्रतिनिधित्व करता है (में rad/s, सामान्यतः 2 π rad/1 sidereal day ≈ 72.921150 × 10−6 rad/s).
उत्तरी ध्रुव और दक्षिणी ध्रुव पर (अक्षांश φ = ±90° = π/2rad), कोई पूर्ण कोणीय संवेग उपस्थित नहीं हो सकता (M = 0 m2/s क्योंकि cos(±90°) = 0). यदि कोई द्रव पार्सल बिना पूर्व की हवा की गति के (u0 = 0m/s) भूमध्य रेखा पर उत्पन्न (φ = 0 rad इसलिए cos(φ) = cos(0 rad) = 1) अपने कोणीय संवेग को संरक्षित रखता है (M0 = M) जैसे-जैसे यह ध्रुव की ओर बढ़ता है, तब इसकी पूर्व की ओर हवा की गति नाटकीय रूप से बढ़ जाती है: u0 a cos(φ0) + Ω a2 cos2(φ0) = u a cos(φ) + Ω a2 cos2(φ). उन प्रतिस्थापनों के बाद, Ω a2 = u a cos(φ) + Ω a2 cos2(φ), या आगे सरलीकरण के बाद, Ω a(1-cos2(φ)) = u cos(φ). के लिए समाधान u देता है Ω a(1/cos(φ) − cos(φ)) = u. अगर φ = 15° (cos(φ) = 1+√3/2√2), तब 72.921150 × 10−6 rad/s × 6.371009 Mm ×(2√2/1+√3 − 1+√3/2√2) ≈ 32.2m/s ≈ यू।
आंचलिक और मध्याह्न दबाव का माप और एड़ी (द्रव गतिकी) तनाव (यांत्रिकी) के कारण टॉर्कः होता है जो द्रव पार्सल के पूर्ण कोणीय गति को परिवर्तित कर देता है।
संदर्भ
Holton, James R.; Hakim, Gregory J. (2012), An introduction to dynamic meteorology, 5, Waltham, Massachusetts: Academic Press, pp. 342–343, ISBN 978-0-12-384866-6