अनुनाद-संवर्धित मल्टीफ़ोटोन आयनीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Spectroscopy technique}} | {{Short description|Spectroscopy technique}} | ||
{{Use American English|date = April 2019}}[[File:REMPI Scheme.jpg|thumb|right|ξ00 पीएक्स|(2+1) रेम्बी]]अनुनाद-वर्धित मल्टी [[फोटोन]] [[आयनीकरण]] (REMPI) प्रविधि है जो परमाणुओं और छोटे [[अणु|अणुओं]] की [[स्पेक्ट्रोस्कोपी|संरचना]] पर स्थापित होती है। व्यवहार में,उत्तेजित मध्यवर्ती अवस्था तक पहुँचने के लिए [[ट्यून करने योग्य लेजर]] का उपयोग किया जा सकता है। दो फोटॉन या अन्य मल्टीफ़ोटो [[अवशोषण स्पेक्ट्रोस्कोपी|अवशोषण संरचना]] से जुड़े [[चयन नियम]] एकल फोटॉन संक्रमण के लिए चयन नियमों से विपरीत हैं। REMPI प्रविधि में सामान्यतः इलेक्ट्रॉनिक रूप से उत्तेजित मध्यवर्ती अवस्था में | {{Use American English|date = April 2019}}[[File:REMPI Scheme.jpg|thumb|right|ξ00 पीएक्स|(2+1) रेम्बी]]अनुनाद-वर्धित मल्टी [[फोटोन]] [[आयनीकरण]] (REMPI) प्रविधि है जो परमाणुओं और छोटे [[अणु|अणुओं]] की [[स्पेक्ट्रोस्कोपी|संरचना]] पर स्थापित होती है। व्यवहार में,उत्तेजित मध्यवर्ती अवस्था तक पहुँचने के लिए [[ट्यून करने योग्य लेजर]] का उपयोग किया जा सकता है। दो फोटॉन या अन्य मल्टीफ़ोटो [[अवशोषण स्पेक्ट्रोस्कोपी|अवशोषण संरचना]] से जुड़े [[चयन नियम]] एकल फोटॉन संक्रमण के लिए चयन नियमों से विपरीत हैं। REMPI प्रविधि में सामान्यतः इलेक्ट्रॉनिक रूप से उत्तेजित मध्यवर्ती अवस्था में प्रतिध्वनित एकल या एकाधिक फोटॉन अवशोषण सम्मिलित होता है, जिसके पश्चात अन्य फोटॉन होता है जो परमाणु या अणु को आयनित करता है। विशिष्ट मल्टीफ़ोटो संक्रमण को प्राप्त करने के लिए प्रकाश की तीव्रता सामान्यतः एकल फोटॉन फोटो अवशोषण को प्राप्त करने के लिए प्रकाश की तीव्रता से अत्यधिक बड़ी होती है। इसी उद्देश्य से पश्चात में फोटो अवशोषण की संभावना बहुत अधिक होती है। आयन और मुक्त इलेक्ट्रॉन का परिणाम होगा,यदि फोटॉनों ने प्रणाली की आयनीकरण थ्रेशोल्ड ऊर्जा को उसकी ओर करने के लिए पर्याप्त ऊर्जा प्रदान की है। कई स्थितियों में, REMPI स्पेक्ट्रोस्कोपिक जानकारी प्रदान करता है जो एकल फोटॉन स्पेक्ट्रोस्कोपिक विधियों के लिए अनुपलब्ध हो सकती है, उदाहरण के लिए अणुओं में [[घूर्णी स्पेक्ट्रोस्कोपी|घूर्णी संरचना]] को इस प्रविधि से आसानी से देखा जा सकता है। | ||
REMPI सामान्यतः छोटी-मात्रा प्लाज्मा बनाने के लिए केंद्रित आवृत्ति ट्यून करने योग्य लेजर बीम द्वारा उत्पन्न होता है। आरईएमपीआई में, | REMPI सामान्यतः छोटी-मात्रा प्लाज्मा बनाने के लिए केंद्रित आवृत्ति ट्यून करने योग्य लेजर बीम द्वारा उत्पन्न होता है। आरईएमपीआई में, प्रथम एम फोटॉनों के साथ उत्तेजित अवस्था में लाने के लिए प्रारूप में परमाणु या अणु द्वारा अवशोषित किया जाता है। इलेक्ट्रॉन और आयन जोड़ी उत्पन्न करने के लिए अन्य n फोटॉनों के पश्चात अवशोषित किया जाता है। तथाकथित m+n REMPI अरैखिक ऑप्टिकल प्रक्रिया है, जो केवल लेजर बीम केंद्र के अंदर ही हो सकती है। लेजर फोकल क्षेत्र के पास छोटी मात्रा में प्लाज्मा बनता है। यदि एम फोटोन की ऊर्जा किसी भी राज्य से मेल नहीं मिलती है, तो ऊर्जा दोष ΔE के साथ ऑफ-रेजोनेंट संक्रमण हो सकता है, चूंकि, इलेक्ट्रॉन के उस स्थिति में रहने की संभावना अत्यधिक कम है। बड़े विस्फोट के लिए, यह केवल Δt समय के सीमित वहां रहता है। अनिश्चितता सिद्धांत Δt के लिए संतुष्ट है, जहां ћ=h/2π और h प्लैंक स्थिरांक (6.6261×10^-34 J∙s) है। इस तरह के संक्रमण और अवस्थाओं को आभासी कहा जाता है, वास्तविक संक्रमणों के विपरीत लंबे जीवन काल वाले राज्यों में वास्तविक संक्रमण संभाव्यता आभासी संक्रमण की तुलना में अधिक परिमाण के कई आदेश हैं, जिसे अनुनाद बढ़ाया,प्रभाव कहा जाता है। | ||
== [[रिडबर्ग राज्य]] == | == [[रिडबर्ग राज्य]] == |
Revision as of 16:23, 17 February 2023
अनुनाद-वर्धित मल्टी फोटोन आयनीकरण (REMPI) प्रविधि है जो परमाणुओं और छोटे अणुओं की संरचना पर स्थापित होती है। व्यवहार में,उत्तेजित मध्यवर्ती अवस्था तक पहुँचने के लिए ट्यून करने योग्य लेजर का उपयोग किया जा सकता है। दो फोटॉन या अन्य मल्टीफ़ोटो अवशोषण संरचना से जुड़े चयन नियम एकल फोटॉन संक्रमण के लिए चयन नियमों से विपरीत हैं। REMPI प्रविधि में सामान्यतः इलेक्ट्रॉनिक रूप से उत्तेजित मध्यवर्ती अवस्था में प्रतिध्वनित एकल या एकाधिक फोटॉन अवशोषण सम्मिलित होता है, जिसके पश्चात अन्य फोटॉन होता है जो परमाणु या अणु को आयनित करता है। विशिष्ट मल्टीफ़ोटो संक्रमण को प्राप्त करने के लिए प्रकाश की तीव्रता सामान्यतः एकल फोटॉन फोटो अवशोषण को प्राप्त करने के लिए प्रकाश की तीव्रता से अत्यधिक बड़ी होती है। इसी उद्देश्य से पश्चात में फोटो अवशोषण की संभावना बहुत अधिक होती है। आयन और मुक्त इलेक्ट्रॉन का परिणाम होगा,यदि फोटॉनों ने प्रणाली की आयनीकरण थ्रेशोल्ड ऊर्जा को उसकी ओर करने के लिए पर्याप्त ऊर्जा प्रदान की है। कई स्थितियों में, REMPI स्पेक्ट्रोस्कोपिक जानकारी प्रदान करता है जो एकल फोटॉन स्पेक्ट्रोस्कोपिक विधियों के लिए अनुपलब्ध हो सकती है, उदाहरण के लिए अणुओं में घूर्णी संरचना को इस प्रविधि से आसानी से देखा जा सकता है।
REMPI सामान्यतः छोटी-मात्रा प्लाज्मा बनाने के लिए केंद्रित आवृत्ति ट्यून करने योग्य लेजर बीम द्वारा उत्पन्न होता है। आरईएमपीआई में, प्रथम एम फोटॉनों के साथ उत्तेजित अवस्था में लाने के लिए प्रारूप में परमाणु या अणु द्वारा अवशोषित किया जाता है। इलेक्ट्रॉन और आयन जोड़ी उत्पन्न करने के लिए अन्य n फोटॉनों के पश्चात अवशोषित किया जाता है। तथाकथित m+n REMPI अरैखिक ऑप्टिकल प्रक्रिया है, जो केवल लेजर बीम केंद्र के अंदर ही हो सकती है। लेजर फोकल क्षेत्र के पास छोटी मात्रा में प्लाज्मा बनता है। यदि एम फोटोन की ऊर्जा किसी भी राज्य से मेल नहीं मिलती है, तो ऊर्जा दोष ΔE के साथ ऑफ-रेजोनेंट संक्रमण हो सकता है, चूंकि, इलेक्ट्रॉन के उस स्थिति में रहने की संभावना अत्यधिक कम है। बड़े विस्फोट के लिए, यह केवल Δt समय के सीमित वहां रहता है। अनिश्चितता सिद्धांत Δt के लिए संतुष्ट है, जहां ћ=h/2π और h प्लैंक स्थिरांक (6.6261×10^-34 J∙s) है। इस तरह के संक्रमण और अवस्थाओं को आभासी कहा जाता है, वास्तविक संक्रमणों के विपरीत लंबे जीवन काल वाले राज्यों में वास्तविक संक्रमण संभाव्यता आभासी संक्रमण की तुलना में अधिक परिमाण के कई आदेश हैं, जिसे अनुनाद बढ़ाया,प्रभाव कहा जाता है।
रिडबर्ग राज्य
उच्च फोटॉन तीव्रता प्रयोगों में फोटॉन ऊर्जा के पूर्णांक गुणकों के अवशोषण के साथ मल्टीफोटोन प्रक्रियाएं सम्मिलित हो सकती हैं। ऐसे प्रयोगों में जिनमें मल्टीफोटोन अनुनाद सम्मिलित होता है, मध्यवर्ती प्रायः निम्न-स्तरीय रिडबर्ग अवस्था होती है, और अंतिम अवस्था प्रायः आयन होती है। प्रणाली की प्रारंभिक अवस्था, फोटॉन ऊर्जा, कोणीय गति और अन्य चयन नियम मध्यवर्ती अवस्था की प्रकृति को निर्धारित करने में सहायता कर सकते हैं। अनुनाद-वर्धित मल्टीफोटोन आयनीकरण संरचना (REMPI) में इस दृष्टिकोण का उपयोग किया जाता है। प्रविधि परमाणु संरचना और आण्विक संरचना दोनों में व्यापक उपयोग में है। REMPI प्रविधि का लाभ यह है,कि आयनों को लगभग पूरी दक्षता के साथ पता लगाया जा सकता है और यहां तक कि उनके द्रव्यमान के लिए समय भीनिर्धारितकिया जा सकता है। इन प्रयोगों में मुक्त फोटोइलेक्ट्रॉन की ऊर्जा को देखने के लिए प्रयोग करके अतिरिक्त जानकारी प्राप्त करना भी संभव है।
माइक्रोवेव का पता लगाना
REMPI प्रेरित प्लाज्मा फिलामेंट्स से इन-फेज सुसंगत माइक्रोवेव स्कैटरिंग में उच्च स्थानिक और लौकिक रिज़ॉल्यूशन माप प्राप्त करने की क्षमता प्रदर्शित की गई है, जो भौतिक जांच या इलेक्ट्रोड के उपयोग के बिना संवेदनशील केअन्य अधिकार देने वाले निदान और एकाग्रता वर्णन के सटीक निर्धारण की अनुमति देता है। यह आर्गन, क्सीनन, नाइट्रिक ऑक्साइड, कार्बन मोनोऑक्साइड, परमाणु ऑक्सीजन, और मिथाइल रेडिकल्स जैसी प्रजातियों का पता करने के लिए संलग्न कोशिकाओं, शुद्ध वायु और वायुमंडलीय लपटों दोनों के अंदर स्थापितकिया गया है।[1][2]माइक्रोवेव का पता लगाना होमोडाइन या हेटेरोडाइन प्रौद्योगिकियों पर आधारित है। वे आवाज के निवारण और उप-नैनोसेकंद प्लाज्मा पीढ़ी और विकास का पालन करके पहचान संवेदनशीलता में अधिक वृद्धि कर सकते हैं। होमोडाइन डिटेक्शन विधि दो के उत्पाद के लिए आनुपातिक संकेत उत्पन्न करने के लिए स्वयं के स्रोत के साथ पता लगाए गए माइक्रोवेव विद्युत क्षेत्र को मिलाती है। सिग्नल फ्रीक्वेंसी को दस गीगाहर्ट्ज़ से नीचे गीगाहर्ट्ज़ में परिवर्तित किया जाता है जिससे सिग्नल को बढ़ाया जा सके और मानक इलेक्ट्रॉनिक उपकरणों के साथ देखा जा सके। होमोडाइन डिटेक्शन विधि से जुड़ी उच्च संवेदनशीलता, माइक्रोवेव व्यवस्था में पृष्ठभूमि आवाजकी कमी, और लेजर पल्स के साथ सिंक्रोनस डिटेक्शन इलेक्ट्रॉनिक्स की समयगेटिंग की क्षमता के कारण मिलिवाट माइक्रोवेव स्रोतों के साथ भी बहुत उच्च एसएनआर संभव हैं। ये उच्च एसएनआर उप-नैनोसेकंद समय के स्तर पर माइक्रोवेव सिग्नल के अस्थायी व्यवहार का पालन करने की अनुमति देते हैं। इस प्रकार प्लाज्मा के अंदर इलेक्ट्रॉनों का जीवनकाल पंजीकृत किया जा सकता है। माइक्रोवेव परिसंचारी का उपयोग करके, एकल माइक्रोवेव हॉर्न ट्रांसीवर बनाया गया है, जो प्रयोगात्मक सेटअप को अधिक सरल करता है।
माइक्रोवेव क्षेत्र में जांच के ऑप्टिकल पहचान के कई लाभ हैं। होमोडाइन या हेटेरोडाइन प्रविधियों का उपयोग करके, शक्ति के अतिरिक्त विद्युत क्षेत्र का पता किया जा सकता है, इसलिए श्रेष्ठ आवाज़ की अस्वीकृति प्राप्त की जा सकती है। ऑप्टिकल हेटेरोडाइन प्रविधियों के विपरीत, संदर्भ का कोई संरेखण या मोड मिलान आवश्यक नहीं है। माइक्रोवेव की लंबी तरंग दैर्ध्य लेजर फोकल आवाज़ में प्लाज्मा से प्रभावी बिंदु सुसंगत बिखरने की ओर ले जाती है, इसलिए चरण मिलान महत्वहीन है और पिछड़ी दिशा में बिखराव मजबूत है।इलेक्ट्रॉन से कई माइक्रोवेव फोटॉनों को प्रकीर्णित किया जा सकता है, इसलिए माइक्रोवेव ट्रांसमीटर की शक्ति को बढ़ाकर प्रकीर्णन के आयाम को बढ़ाया जा सकता है। माइक्रोवेव फोटॉनों की कम ऊर्जा दृश्य क्षेत्र की तुलना में प्रति यूनिट ऊर्जा के हजारों अधिक फोटॉन से मिलती है, इसलिए तेज आवाज अत्यधिक कम हो जाती है। ट्रेस प्रजाति डायग्नोस्टिक्स की कमजोर आयनीकरण विशेषता के लिए, मापा विद्युत क्षेत्र इलेक्ट्रॉनों की संख्या का रैखिक कार्य है जो ट्रेस प्रजातियों की एकाग्रता के सीधे आनुपातिक है। इसके अतिरिक्त, माइक्रोवेव वर्णक्रमीय क्षेत्र में बहुत कम सौर या अन्य प्राकृतिक पृष्ठभूमि विकिरण होता है।
यह भी देखें
- रिडबर्ग आयनीकरण संरचना CX
- लेजर-प्रेरित प्रतिदीप्ति (एलआईएफ) के साथ तुलना करें
संदर्भ
- ↑ Zhili Zhang, Mikhail N. Shneider, Sohail H. Zaidi, Richard B. Miles, "Experiments on Microwave Scattering of REMPI in Argon, Xenon and Nitric Oxide", AIAA 2007-4375, Miami, FL
- ↑ Dogariu, A. ; Michael, J. ; Stockman, E. ; Miles, R., “Atomic oxygen detection using radar REMPI,” in The Conference on Lasers and Electro‐Optics (CLEO)/The International Quantum Electronics Conference (IQEC) (Optical Society of America, Washington, DC, 2009)