आंशिक निर्देशांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 47: Line 47:
हालांकि, क्रिस्टल स्वरूप के पारंपरिक आधार को हमेशा अभाज्य होने के लिए नहीं चुना जाता है। इसके बजाय, इसे चुना जाता है ताकि ऑर्थोगोनल आधार सदिश की संख्या अधिकतम हो। इसका परिणाम उपरोक्त समीकरणों के कुछ गुणांक भिन्नात्मक होते हैं। जाली जिसमें पारंपरिक आधार अभाज्य होता है, उसे अभाज्य जाली कहा जाता है, जबकि गैर-अभाज्य पारंपरिक आधार वाली जाली को केंद्रित जाली कहा जाता है।
हालांकि, क्रिस्टल स्वरूप के पारंपरिक आधार को हमेशा अभाज्य होने के लिए नहीं चुना जाता है। इसके बजाय, इसे चुना जाता है ताकि ऑर्थोगोनल आधार सदिश की संख्या अधिकतम हो। इसका परिणाम उपरोक्त समीकरणों के कुछ गुणांक भिन्नात्मक होते हैं। जाली जिसमें पारंपरिक आधार अभाज्य होता है, उसे अभाज्य जाली कहा जाता है, जबकि गैर-अभाज्य पारंपरिक आधार वाली जाली को केंद्रित जाली कहा जाता है।


उत्पत्ति और आधार का चुनाव इकाई सेल की पसंद का तात्पर्य है जिसे क्रिस्टल स्वरूप का वर्णन करने के लिए आगे इस्तेमाल किया जा सकता है। यूनिट सेल को समांतरोटोप के रूप में परिभाषित किया गया है (अर्थात, उच्च आयामों में समांतर चतुर्भुज (2D) या समानांतर चतुर्भुज (3D) का सामान्यीकरण) जिसमें सभी बिंदुओं के निर्देशांक ऐसे हैं कि, <math>0 \leq x_1,x_2,\dots,x_d < 1</math>.
उत्पत्ति और आधार का चुनाव इकाई सेल की पसंद का तात्पर्य है जिसे क्रिस्टल स्वरूप का वर्णन करने के लिए आगे इस्तेमाल किया जा सकता है। इकाईयूनिट सेल को समांतरोटोप के रूप में परिभाषित किया गया है (अर्थात, उच्च आयामों में समांतर चतुर्भुज (2D) या समानांतर चतुर्भुज (3D) का सामान्यीकरण) जिसमें सभी बिंदुओं के निर्देशांक ऐसे हैं कि, <math>0 \leq x_1,x_2,\dots,x_d < 1</math>.


इसके अलावा, यूनिट सेल के बाहर के बिंदुओं को मानकीकरण के माध्यम से यूनिट सेल के अंदर रूपांतरित किया जा सकता है, यह सुनिश्चित करने के लिए <math>0 \leq x_1,x_2,\dots,x_d < 1</math> अंकों के निर्देशांक में पूर्णांकों का जोड़ या घटाव, भिन्नात्मक निर्देशांक प्रणाली में, आधार सदिशों की लंबाई <math>\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_d</math> और उनके बीच के कोण <math>\alpha_1, \alpha_2, \dots, \alpha_{\frac{d(d-1)}{2}}</math> जाली के जाली पैरामीटर (जाली स्थिरांक) कहलाते हैं। दो और तीन आयामों में, ये यूनिट सेल के किनारों के बीच की लंबाई और कोणों के अनुरूप हैं।<ref name=":1" />
इसके अलावा, इकाईयूनिट सेल के बाहर के बिंदुओं को मानकीकरण के माध्यम से इकाईयूनिट सेल के अंदर रूपांतरित किया जा सकता है, यह सुनिश्चित करने के लिए <math>0 \leq x_1,x_2,\dots,x_d < 1</math> अंकों के निर्देशांक में पूर्णांकों का जोड़ या घटाव, भिन्नात्मक निर्देशांक प्रणाली में, आधार सदिशों की लंबाई <math>\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_d</math> और उनके बीच के कोण <math>\alpha_1, \alpha_2, \dots, \alpha_{\frac{d(d-1)}{2}}</math> जाली के जाली पैरामीटर (जाली स्थिरांक) कहलाते हैं। दो और तीन आयामों में, ये इकाईयूनिट सेल के किनारों के बीच की लंबाई और कोणों के अनुरूप हैं।<ref name=":1" />


समतल में बिंदु के भिन्नात्मक निर्देशांक <math>\rho = (\rho_{x_1}, \rho_{x_2}, \dots, \rho_{x_d})</math> जाली आधार सदिश के रूप में परिभाषित किया गया है,
समतल में बिंदु के भिन्नात्मक निर्देशांक <math>\rho = (\rho_{x_1}, \rho_{x_2}, \dots, \rho_{x_d})</math> जाली आधार सदिश के रूप में परिभाषित किया गया है,
Line 57: Line 57:




== यूनिट सेल से जुड़ी गणना ==
== इकाईयूनिट सेल से जुड़ी गणना ==


'''आंशिक और कार्तीय निर्देशांक के बीच सामान्य परिवर्तन'''
'''आंशिक और कार्तीय निर्देशांक के बीच सामान्य परिवर्तन'''
Line 91: Line 91:
\begin{pmatrix} r_{x_1}  \\ r_{x_2} \\ r_{x_3} \end{pmatrix}  
\begin{pmatrix} r_{x_1}  \\ r_{x_2} \\ r_{x_3} \end{pmatrix}  
</math>
</math>




Line 104: Line 105:
<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} \\ a_{2,x_1} & a_{2,x_2} \end{pmatrix}</math>
<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} \\ a_{2,x_1} & a_{2,x_2} \end{pmatrix}</math>


[[यूनिट सेल]] का क्षेत्रफल, <math>A</math>, सेल आव्यूह के निर्धारक द्वारा दिया गया है:
[[यूनिट सेल|इकाईयूनिट सेल]] का क्षेत्रफल, <math>A</math>, सेल आव्यूह के निर्धारक द्वारा दिया गया है:


<math> A = \det(\mathbf{h}) = a_{1,x_1}a_{2,x_2} - a_{1,x_2}a_{2,x_2}</math>
<math> A = \det(\mathbf{h}) = a_{1,x_1}a_{2,x_2} - a_{1,x_2}a_{2,x_2}</math>
Line 140: Line 141:
<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} & a_{1,x_3} \\ a_{2,x_1} & a_{2,x_2} & a_{2,x_3} \\ a_{3,x_1} & a_{3,x_2} & a_{3,x_3} \end{pmatrix}</math>
<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} & a_{1,x_3} \\ a_{2,x_1} & a_{2,x_2} & a_{2,x_3} \\ a_{3,x_1} & a_{3,x_2} & a_{3,x_3} \end{pmatrix}</math>


यूनिट सेल का आयतन, <math>V</math>, सेल प्रदिश के निर्धारक द्वारा दिया गया है:
इकाईयूनिट सेल का आयतन, <math>V</math>, सेल प्रदिश के निर्धारक द्वारा दिया गया है:


<math>V = \det(\mathbf{h}) = a_{1,x_1}(a_{2,x_2}a_{3,x_3}-a_{2,x_3}a_{3,x_2}) - a_{1,x_2}(a_{2,x_1}a_{3,x_3} - a_{2,x_3}a_{3,x_1}) - a_{1,x_3}(a_{2,x_1}a_{3,x_2} - a_{2,x_2}a_{3,x_1})</math>
<math>V = \det(\mathbf{h}) = a_{1,x_1}(a_{2,x_2}a_{3,x_3}-a_{2,x_3}a_{3,x_2}) - a_{1,x_2}(a_{2,x_1}a_{3,x_3} - a_{2,x_3}a_{3,x_1}) - a_{1,x_3}(a_{2,x_1}a_{3,x_2} - a_{2,x_2}a_{3,x_1})</math>
Line 173: Line 174:


<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_d \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} & \dots & a_{1,x_d} \\ a_{2,x_1} & a_{2,x_2} & \dots & a_{2,x_d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,x_1} & a_{d,x_2} & \dots & a_{d,x_d} \end{pmatrix}</math>
<math>\mathbf{h} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_d \end{pmatrix}^\operatorname{T} = \begin{pmatrix} a_{1,x_1} & a_{1,x_2} & \dots & a_{1,x_d} \\ a_{2,x_1} & a_{2,x_2} & \dots & a_{2,x_d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d,x_1} & a_{d,x_2} & \dots & a_{d,x_d} \end{pmatrix}</math>
यूनिट सेल का हाइपरवोल्यूम, <math>V</math>, सेल प्रदिश के निर्धारक द्वारा दिया गया है:
इकाईयूनिट सेल का हाइपरवोल्यूम, <math>V</math>, सेल प्रदिश के निर्धारक द्वारा दिया गया है:


<math>V = \det(\mathbf{h})</math>
<math>V = \det(\mathbf{h})</math>
Line 197: Line 198:


=== मीट्रिक प्रदिश === का उपयोग करके दो और तीन आयामों में सेल गुणों का निर्धारण
=== मीट्रिक प्रदिश === का उपयोग करके दो और तीन आयामों में सेल गुणों का निर्धारण
मीट्रिक प्रदिश <math>\mathbf{G}</math> कभी-कभी यूनिट सेल से जुड़ी गणनाओं के लिए प्रयोग किया जाता है और इसे (आव्यूह फॉर्म में) परिभाषित किया जाता है:<ref name=":1">{{Cite book |last=Müller |first=Ulrich, July 6- |url=https://www.worldcat.org/oclc/850179696 |title=Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry |date=2013 |publisher=Oxford University Press |isbn=978-0-19-164879-3 |location=Oxford |oclc=850179696}}</ref>
मीट्रिक प्रदिश <math>\mathbf{G}</math> कभी-कभी इकाईयूनिट सेल से जुड़ी गणनाओं के लिए प्रयोग किया जाता है और इसे (आव्यूह फॉर्म में) परिभाषित किया जाता है:<ref name=":1">{{Cite book |last=Müller |first=Ulrich, July 6- |url=https://www.worldcat.org/oclc/850179696 |title=Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry |date=2013 |publisher=Oxford University Press |isbn=978-0-19-164879-3 |location=Oxford |oclc=850179696}}</ref>
दो आयामों में,
दो आयामों में,


Line 204: Line 205:


<math>\mathbf{G} = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1\cdot\mathbf{a}_1 & \mathbf{a}_1\cdot\mathbf{a}_2 & \mathbf{a}_1\cdot\mathbf{a}_3 \\ \mathbf{a}_2\cdot\mathbf{a}_1 & \mathbf{a}_2\cdot\mathbf{a}_2 & \mathbf{a}_2\cdot\mathbf{a}_3 \\ \mathbf{a}_3\cdot\mathbf{a}_1 & \mathbf{a}_3\cdot\mathbf{a}_2 & \mathbf{a}_3\cdot\mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} a_1^2 & a_1a_2\cos(\alpha_3) & a_1a_3\cos(\alpha_2) \\ a_1a_2\cos(\alpha_3) & a_2^2 & a_2a_3\cos(\alpha_1) \\ a_1a_3\cos(\alpha_2) & a_2a_3\cos(\alpha_1) & a_3^2 \end{pmatrix}</math>
<math>\mathbf{G} = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1\cdot\mathbf{a}_1 & \mathbf{a}_1\cdot\mathbf{a}_2 & \mathbf{a}_1\cdot\mathbf{a}_3 \\ \mathbf{a}_2\cdot\mathbf{a}_1 & \mathbf{a}_2\cdot\mathbf{a}_2 & \mathbf{a}_2\cdot\mathbf{a}_3 \\ \mathbf{a}_3\cdot\mathbf{a}_1 & \mathbf{a}_3\cdot\mathbf{a}_2 & \mathbf{a}_3\cdot\mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} a_1^2 & a_1a_2\cos(\alpha_3) & a_1a_3\cos(\alpha_2) \\ a_1a_2\cos(\alpha_3) & a_2^2 & a_2a_3\cos(\alpha_1) \\ a_1a_3\cos(\alpha_2) & a_2a_3\cos(\alpha_1) & a_3^2 \end{pmatrix}</math>
दो बिंदुओं के बीच की दूरी <math>Q</math> और <math>R</math> यूनिट सेल में संबंध से निर्धारित किया जा सकता है:<ref name=":1" />
दो बिंदुओं के बीच की दूरी <math>Q</math> और <math>R</math> इकाईयूनिट सेल में संबंध से निर्धारित किया जा सकता है:<ref name=":1" />


<math>
<math>
  d_{qr}^2 = \sum_{i, j} g_{ij} (r_i - q_i)(r_j - q_j)  
  d_{qr}^2 = \sum_{i, j} g_{ij} (r_i - q_i)(r_j - q_j)  
</math>
</math>
यूनिट सेल की उत्पत्ति से बिंदु तक की दूरी <math>Q</math> यूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:<ref name=":1" />
इकाईयूनिट सेल की उत्पत्ति से बिंदु तक की दूरी <math>Q</math> इकाईयूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:<ref name=":1" />


<math>
<math>
  OQ = r_q; r_q^2 = \sum_{i, j} g_{ij} q_i q_j
  OQ = r_q; r_q^2 = \sum_{i, j} g_{ij} q_i q_j
</math>
</math>
तीन बिंदुओं से बना कोण <math>Q</math>, <math>P</math> (शीर्ष), और <math>R</math> यूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:<ref name=":1" />
तीन बिंदुओं से बना कोण <math>Q</math>, <math>P</math> (शीर्ष), और <math>R</math> इकाईयूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:<ref name=":1" />


<math>\cos(QPR) = (r_{pq})^{-1}(r_{pr})^{-1}\sum_{i, j}g_{ij}(q_i - p_i)(r_j - p_j)</math>
<math>\cos(QPR) = (r_{pq})^{-1}(r_{pr})^{-1}\sum_{i, j}g_{ij}(q_i - p_i)(r_j - p_j)</math>
यूनिट सेल का आयतन, <math>V</math> संबंध से निर्धारित किया जा सकता है:<ref name=":1" />
इकाईयूनिट सेल का आयतन, <math>V</math> संबंध से निर्धारित किया जा सकता है:<ref name=":1" />


<math>V^2 = \det(\mathbf{G})</math>
<math>V^2 = \det(\mathbf{G})</math>

Revision as of 08:37, 15 February 2023

क्रिस्टलोग्राफी में, आंशिक निर्देशांक प्रणाली (क्रिस्टल निर्देशांक प्रणाली) एक निर्देशांक प्रणाली है जिसमें समतल का वर्णन करने के लिए उपयोग किए जाने वाले सदिश क्रिस्टल (आवधिक) स्वरूप के जाली सदिश हैं। मूल और आधार का चयन इकाई सेल को परिभाषित करता है, समानांतर चतुर्भुज (अर्थात, समानांतर चतुर्भुज का सामान्यीकरण (2D) या समानांतर चतुर्भुज (3D) उच्च आयामों में) जाली आधार सदिश द्वारा परिभाषित करता है, जहाँ समतल का आयाम है। ये आधार सदिश जाली मापदंडों (जाली स्थिरांक) द्वारा वर्णित हैं, जिसमें जाली आधार सदिश की लंबाई और उनके बीच के कोण शामिल है।

क्रिस्टलोग्राफी में अधिकांश मामलों में दो या तीन आयामी स्थान शामिल होते हैं जिसमें आधार सदिश होते हैं आमतौर पर के रूप में प्रदर्शित होते हैं, और उनकी लंबाई और कोण द्वारा निरूपित किया गया हैं।

तीन जाली आधार सदिश द्वारा परिभाषित 3-आयामों में इकाई सेल (धराशायी लाइनों में दिखाया गया है) , , और कार्तीय निर्देशांक प्रणाली के भीतर दिखाया गया है।

क्रिस्टल संरचना

क्रिस्टल संरचना को क्रिस्टल के भीतर परमाणुओं के स्थानिक वितरण के रूप में परिभाषित किया जाता है, आमतौर पर अनंत क्रिस्टल स्वरूप के विचार से तैयार किया जाता है। अनंत क्रिस्टल स्वरूप अनंत 3डी आवधिक सरणी को संदर्भित करता है जो क्रिस्टल से मेल खाता है, जिसमें सरणी की आवधिकताओं की लंबाई को मनमाने ढंग से छोटा नहीं किया जा सकता है। ज्यामितीय बदलाव जो क्रिस्टल संरचना को स्वयं के साथ संयोग करता है, को क्रिस्टल संरचना का समरूपता अनुवाद (अनुवाद) कहा जाता है। इस शिफ्ट से संबंधित सदिश को ट्रांसलेशन सदिश कहा जाता है। चूँकि क्रिस्टल स्वरूप आवधिक होता है, अनुवाद सदिश के सभी पूर्णांक रैखिक संयोजन भी स्वयं अनुवाद सदिश होते हैं,[1]


जाली

सदिश जाली (समूह) क्रिस्टल स्वरूप के सभी अनुवाद सदिशों से युक्त अनंत सेट के रूप में परिभाषित किया गया है। सदिश जालक में प्रत्येक सदिश को जालक सदिश कहा जाता है। सदिश जालक से बिंदु जालक का निर्माण संभव है। यह स्थिति सदिश के साथ मूल का चयन करके किया जाता है, समापन बिंदु प्रत्येक सदिश में से की बिंदु जाली बनाओ और बिंदु जालक में प्रत्येक बिंदु की आवधिकता होती है, अर्थात प्रत्येक बिंदु समान होता है और उसका परिवेश समान होता है। किसी भी सदिश जाली के लिए किसी भी मनमाने मूल के रूप में अनंत संख्या में बिंदु जाली मौजूद हैं, सदिश जाली के जाली सदिश के साथ चुना और जोड़ा जा सकता है। अनुवाद के माध्यम से दूसरे के साथ संयोग किए गए बिंदुओं या कणों को अनुवाद समतुल्य कहा जाता है।[1]


निर्देशांक प्रणाली

सामान्य निर्देशांक प्रणाली

आमतौर पर किसी स्थान का ज्यामितीय रूप से वर्णन करते समय, निर्देशांक प्रणाली का उपयोग किया जाता है जिसमें उत्पत्ति का विकल्प होता है और आधार (रैखिक बीजगणित) होता है। रैखिक रूप से स्वतंत्र, गैर समतलीय आधार सदिश , कहाँ वर्णित समतल का आयाम है। इस निर्देशांक प्रणाली के संदर्भ में, समतल में प्रत्येक बिंदु निर्देशांक (निर्देशांक -टुपल) को निर्दिष्ट किया जा सकता है। मूल में निर्देशांक हैं और मनमाने बिंदु के निर्देशांक हैं . स्थिति सदिश तब है,


में -आयाम, आधार सदिशों की लंबाई और उनके बीच के कोण निरूपित की जाती है. हालांकि, क्रिस्टलोग्राफी में ज्यादातर मामलों में दो या तीन आयामी स्थान शामिल होते हैं जिसमें आधार सदिश होते हैं, आमतौर पर के रूप में प्रदर्शित होते हैं उनकी लंबाई और को और द्वारा निरूपित किया गया।

कार्तीय निर्देशांक प्रणाली

व्यापक रूप से इस्तेमाल की जाने वाली निर्देशांक प्रणाली कार्तीय निर्देशांक प्रणाली है, जिसमें ऑर्थोनॉर्मलिटी आधार सदिश होते हैं। इस का मतलब है कि,

और

हालांकि, क्रिस्टलीय या आवधिक संरचना वाली वस्तुओं का वर्णन करते समय कार्तीय निर्देशांक प्रणाली अक्सर सबसे उपयोगी नहीं होती है क्योंकि यह अक्सर जाली के समरूपता को सरलतम तरीके से प्रतिबिंबित नहीं करती है।[1]


आंशिक (क्रिस्टल) निर्देशांक प्रणाली

क्रिस्टलोग्राफी में, क्रिस्टल स्वरूप (या समतल में किसी अन्य आवधिक स्वरूप) के अंतर्निहित जाली की समरूपता को बेहतर ढंग से दर्शाने के लिए भिन्नात्मक निर्देशांक प्रणाली का उपयोग किया जाता है। आंशिक निर्देशांक प्रणाली में निर्देशांक प्रणाली के आधार सदिश को जाली सदिश के रूप में चुना जाता है और आधार को तब क्रिस्टलोग्राफिक आधार (या जाली आधार) कहा जाता है।

जाली के आधार पर, कोई जाली सदिश के रूप में प्रतिनिधित्व किया जा सकता है,

 

क्रिस्टल स्वरूप के लिए अनंत संख्या में जालीदार आधार होते हैं। हालाँकि, इन्हें इस तरह से चुना जा सकता है कि स्वरूप का सबसे सरल विवरण प्राप्त किया जा सके। इन आधारों का उपयोग क्रिस्टलोग्राफी वॉल्यूम ए के अंतर्राष्ट्रीय तालिकाओं में किया जाता है और इन्हें पारंपरिक आधार कहा जाता है। जालीदार आधार अभाज्य कहा जाता है यदि आधार सदिश जाली सदिश और सभी जाली सदिश हैं के रूप में व्यक्त किया जा सकता है,

हालांकि, क्रिस्टल स्वरूप के पारंपरिक आधार को हमेशा अभाज्य होने के लिए नहीं चुना जाता है। इसके बजाय, इसे चुना जाता है ताकि ऑर्थोगोनल आधार सदिश की संख्या अधिकतम हो। इसका परिणाम उपरोक्त समीकरणों के कुछ गुणांक भिन्नात्मक होते हैं। जाली जिसमें पारंपरिक आधार अभाज्य होता है, उसे अभाज्य जाली कहा जाता है, जबकि गैर-अभाज्य पारंपरिक आधार वाली जाली को केंद्रित जाली कहा जाता है।

उत्पत्ति और आधार का चुनाव इकाई सेल की पसंद का तात्पर्य है जिसे क्रिस्टल स्वरूप का वर्णन करने के लिए आगे इस्तेमाल किया जा सकता है। इकाईयूनिट सेल को समांतरोटोप के रूप में परिभाषित किया गया है (अर्थात, उच्च आयामों में समांतर चतुर्भुज (2D) या समानांतर चतुर्भुज (3D) का सामान्यीकरण) जिसमें सभी बिंदुओं के निर्देशांक ऐसे हैं कि, .

इसके अलावा, इकाईयूनिट सेल के बाहर के बिंदुओं को मानकीकरण के माध्यम से इकाईयूनिट सेल के अंदर रूपांतरित किया जा सकता है, यह सुनिश्चित करने के लिए अंकों के निर्देशांक में पूर्णांकों का जोड़ या घटाव, भिन्नात्मक निर्देशांक प्रणाली में, आधार सदिशों की लंबाई और उनके बीच के कोण जाली के जाली पैरामीटर (जाली स्थिरांक) कहलाते हैं। दो और तीन आयामों में, ये इकाईयूनिट सेल के किनारों के बीच की लंबाई और कोणों के अनुरूप हैं।[1]

समतल में बिंदु के भिन्नात्मक निर्देशांक जाली आधार सदिश के रूप में परिभाषित किया गया है,


इकाईयूनिट सेल से जुड़ी गणना

आंशिक और कार्तीय निर्देशांक के बीच सामान्य परिवर्तन

तीन आयाम

आंशिक और कार्तीय निर्देशांक के बीच संबंध को आव्यूह परिवर्तन द्वारा वर्णित किया जा सकता है :[2]

इसी तरह, कार्तीय निर्देशांक को आव्यूह परिवर्तन का उपयोग करके भिन्नात्मक निर्देशांक में परिवर्तित किया जा सकता है:[2]


सेल प्रदिश का उपयोग कर परिवर्तन

भिन्नात्मक और कार्तीय निर्देशांक के बीच परिवर्तित करने की अन्य सामान्य विधि में सेल टेन्सर का उपयोग शामिल है, जिसमें कार्तीय निर्देशांक में व्यक्त समतल के प्रत्येक आधार सदिश शामिल हैं।

दो आयाम

सेल प्रदिश

कार्तीय निर्देशांक प्रणाली में 2 आधार सदिशों को a सेल प्रदिश द्वारा प्रदर्शित किया जाता है:[3]

इकाईयूनिट सेल का क्षेत्रफल, , सेल आव्यूह के निर्धारक द्वारा दिया गया है:

वर्ग या आयताकार इकाई सेल के विशेष मामले के लिए, आव्यूह विकर्ण है, और हमारे पास वह है:


भिन्नात्मक और कार्तीय निर्देशांक के बीच संबंध

आंशिक और कार्तीय निर्देशांक के बीच संबंध को आव्यूह परिवर्तन द्वारा वर्णित किया जा सकता है:[3]

इसी तरह, कार्तीय निर्देशांक को आव्यूह परिवर्तन का उपयोग करके भिन्नात्मक निर्देशांक में परिवर्तित किया जा सकता है:[3]


तीन आयाम

सेल प्रदिश

कार्तीय निर्देशांक प्रणाली में 3 आधार सदिशों को a सेल प्रदिश द्वारा प्रदर्शित किया जाता है:[3]

इकाईयूनिट सेल का आयतन, , सेल प्रदिश के निर्धारक द्वारा दिया गया है:

घनीय, चतुष्कोण या ऑर्थोरोम्बिक सेल के विशेष मामले के लिए, आव्यूह विकर्ण है, और हमारे पास वह है:


भिन्नात्मक और कार्तीय निर्देशांक के बीच संबंध

आंशिक और कार्तीय निर्देशांक के बीच संबंध को आव्यूह परिवर्तन द्वारा वर्णित किया जा सकता है :[3]

इसी तरह, कार्तीय निर्देशांक को आव्यूह परिवर्तन का उपयोग करके भिन्नात्मक निर्देशांक में परिवर्तित किया जा सकता है :[3]


आयामों की मनमानी संख्या

सेल प्रदिश

कार्तीय निर्देशांक प्रणाली में आधार सदिश द्वारा प्रतिनिधित्व कर रहे हैं सेल प्रदिश :[3]

इकाईयूनिट सेल का हाइपरवोल्यूम, , सेल प्रदिश के निर्धारक द्वारा दिया गया है:


भिन्नात्मक और कार्तीय निर्देशांक के बीच संबंध

आंशिक और कार्तीय निर्देशांक के बीच संबंध को आव्यूह परिवर्तन द्वारा वर्णित किया जा सकता है :[3]

इसी तरह, कार्तीय निर्देशांक को परिवर्तन का उपयोग करके वापस भिन्नात्मक निर्देशांक में परिवर्तित किया जा सकता है :[3]


=== मीट्रिक प्रदिश === का उपयोग करके दो और तीन आयामों में सेल गुणों का निर्धारण मीट्रिक प्रदिश कभी-कभी इकाईयूनिट सेल से जुड़ी गणनाओं के लिए प्रयोग किया जाता है और इसे (आव्यूह फॉर्म में) परिभाषित किया जाता है:[1] दो आयामों में,

तीन आयामों में,

दो बिंदुओं के बीच की दूरी और इकाईयूनिट सेल में संबंध से निर्धारित किया जा सकता है:[1]

इकाईयूनिट सेल की उत्पत्ति से बिंदु तक की दूरी इकाईयूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:[1]

तीन बिंदुओं से बना कोण , (शीर्ष), और इकाईयूनिट सेल के भीतर संबंध से निर्धारित किया जा सकता है:[1]

इकाईयूनिट सेल का आयतन, संबंध से निर्धारित किया जा सकता है:[1]


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Müller, Ulrich, July 6- (2013). Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry. Oxford: Oxford University Press. ISBN 978-0-19-164879-3. OCLC 850179696.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 2.0 2.1 McKie, Duncan (1986). Essentials of crystallography. Christine McKie. Oxford: Blackwell Scientific. ISBN 0-632-01566-7. OCLC 14131056.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Alavi, Saman (2020). Molecular Simulations Fundamentals and Practice. Wiley-VCH (1. Auflage ed.). Weinheim. ISBN 978-3-527-34105-4. OCLC 1128103696.{{cite book}}: CS1 maint: location missing publisher (link)