त्रैराशिक (तीन का नियम): Difference between revisions

From Vigyanwiki
(New Hindi translated page created)
 
(content added)
Line 18: Line 18:
# सब्जी का वजन बढ़ने से सब्जी की कीमत बढ़ जाती है।
# सब्जी का वजन बढ़ने से सब्जी की कीमत बढ़ जाती है।
# मशीन के काम करने के घंटों के साथ मशीन द्वारा निर्मित इकाइयों की संख्या बढ़ जाती है।
# मशीन के काम करने के घंटों के साथ मशीन द्वारा निर्मित इकाइयों की संख्या बढ़ जाती है।
== ''त्रैराशिक'' (तीन का नियम) ==
तीन के नियम के लिए हिंदू नाम को "''त्रैराशिक''" कहा जाता है (तीन शब्द, इसलिए तीन का नियम)। ''त्रैराशिक''  शब्द बख्शाली पांडुलिपि, आर्यभटीय में आता है। भास्कर प्रथम (सी 525) ने इस नाम की उत्पत्ति पर टिप्पणी की "यहां तीन मात्राओं की आवश्यकता है (कथन और गणना में) इसलिए विधि को ''त्रैराशिक'' (तीन शब्दों का नियम) कहा जाता है"। तीन के नियम के साथ एक समस्या का यह रूप है: यदि ''p, f''  देता है, तो ''i'' क्या प्राप्त करेगा? इस्तेमाल किए गए तीन शब्द ''p, f'' , ''i'' हैं। हिंदुओं ने शब्द ''p'' (''प्रमाण'' - तर्क), ''f''  (''फल'' -परिणाम), और  ''i'' (''इच्छा'' - मांग) कहा। कभी-कभी उन्हें केवल क्रमशः पहले, दूसरे और तीसरे के रूप में संदर्भित किया जाता है।
आर्यभट द्वितीय ने तीन पदों को क्रमशः ''मन, विनिमय'' , और ''इच्छा''  के रूप में अलग-अलग नाम दिए।
ब्रह्मगुप्त नियम देता है "तीन ''प्रमाण'' (तर्क) के नियम में, ''फल'' (परिणाम) और ''इच्छा'' (आवश्यकता) (दिए गए) शब्द हैं; पहली और आखिरी शर्तें समान होनी चाहिए। ''इच्छा'' को ''फल''  से गुणा किया जाता है और विभाजित किया जाता है जो ''प्रमाण'' , ''फल'' देता है (अनुरोध का) "।
भास्कर प्रथम ने अपने आर्यभटीय-भाष्य में ''त्रैराशिक''  के बारे में बात की है
''त्रयो राशयः समाहृताः त्रिराशिः । त्रिराशिः प्रयोजनमस्य गणितस्येति त्रैराशिकः । त्रैराशिके फलराशिः त्रैराशिकफलराशिः ।'' ''<small>(आर्यभटीय -भाष्य ,भास्कर प्रथम द्वारा 11.26, पृष्ठ 116 पर)</small>''
"''त्रैराशि''  तीन मात्राओं को इकट्ठा किया गया है। इन मात्राओं के साथ इस गणना के कारण इसे ''त्रैराशिक'' कहा जाता है। ''त्रैराशिक''  -''फलाराशि''  तीन के नियम में वांछित परिणाम है।"
''त्रैराशिक''  में तीन ज्ञात मात्राएँ और एक अज्ञात मात्रा शामिल है। ज्ञात मात्राएँ हैं ''प्रमाण'' (ज्ञात माप), ''प्रमाणफल'' (ज्ञात माप से संबंधित परिणाम), और ''इच्छा'' (वांछित माप)। अज्ञात मात्रा के लिए प्रयुक्त शब्द ''इच्छाफल'' (वांछित माप से संबंधित परिणाम) है।

Revision as of 12:04, 22 June 2022

परिचय

प्राचीन भारतीय गणितीय ग्रंथों में अनुपात,  समानुपात आदि जैसे विषयों को तीन के खंड नियम के अधीन चलाया जाता है। जब भी तुलना में संख्याएँ शामिल होती हैं तो अनुपात का उपयोग किया जाता है।

उदाहरण के लिए; एक साइकिल की कीमत रु. 10,000 और एक मोटरबाइक की कीमत रु 1,00,000.

जब हम दोनों वस्तुओं की लागत की तुलना करते हैं।

अतः मोटरबाइक की कीमत साइकिल की कीमत का दस गुना है। अनुपात विभाजन द्वारा तुलना है। अनुपात ":" द्वारा दर्शाया गया है। एक अनुपात एक मात्रा को दूसरी मात्रा से गुणा करने की संख्या को व्यक्त करता है। दो मात्राएँ एक ही इकाई में होनी चाहिए।

दो मूल्यों को प्रत्यक्ष समानुपात में कहा जाता है जब एक में वृद्धि/कमी के परिणामस्वरूप एक ही कारक द्वारा दूसरे में वृद्धि/कमी होती है।

निम्नलिखित उदाहरणों में प्रत्यक्ष अनुपात देखा जाता है।

  1. ईंधन की मात्रा बढ़ने पर ईंधन की लागत बढ़ जाती है
  2. टाइप किए जाने वाले पृष्ठों में वृद्धि के साथ लगने वाला समय बढ़ जाता है।
  3. सब्जी का वजन बढ़ने से सब्जी की कीमत बढ़ जाती है।
  4. मशीन के काम करने के घंटों के साथ मशीन द्वारा निर्मित इकाइयों की संख्या बढ़ जाती है।

त्रैराशिक (तीन का नियम)

तीन के नियम के लिए हिंदू नाम को "त्रैराशिक" कहा जाता है (तीन शब्द, इसलिए तीन का नियम)। त्रैराशिक शब्द बख्शाली पांडुलिपि, आर्यभटीय में आता है। भास्कर प्रथम (सी 525) ने इस नाम की उत्पत्ति पर टिप्पणी की "यहां तीन मात्राओं की आवश्यकता है (कथन और गणना में) इसलिए विधि को त्रैराशिक (तीन शब्दों का नियम) कहा जाता है"। तीन के नियम के साथ एक समस्या का यह रूप है: यदि p, f देता है, तो i क्या प्राप्त करेगा? इस्तेमाल किए गए तीन शब्द p, f , i हैं। हिंदुओं ने शब्द p (प्रमाण - तर्क), f (फल -परिणाम), और i (इच्छा - मांग) कहा। कभी-कभी उन्हें केवल क्रमशः पहले, दूसरे और तीसरे के रूप में संदर्भित किया जाता है।

आर्यभट द्वितीय ने तीन पदों को क्रमशः मन, विनिमय , और इच्छा के रूप में अलग-अलग नाम दिए।

ब्रह्मगुप्त नियम देता है "तीन प्रमाण (तर्क) के नियम में, फल (परिणाम) और इच्छा (आवश्यकता) (दिए गए) शब्द हैं; पहली और आखिरी शर्तें समान होनी चाहिए। इच्छा को फल से गुणा किया जाता है और विभाजित किया जाता है जो प्रमाण , फल देता है (अनुरोध का) "।

भास्कर प्रथम ने अपने आर्यभटीय-भाष्य में त्रैराशिक के बारे में बात की है

त्रयो राशयः समाहृताः त्रिराशिः । त्रिराशिः प्रयोजनमस्य गणितस्येति त्रैराशिकः । त्रैराशिके फलराशिः त्रैराशिकफलराशिः । (आर्यभटीय -भाष्य ,भास्कर प्रथम द्वारा 11.26, पृष्ठ 116 पर)

"त्रैराशि तीन मात्राओं को इकट्ठा किया गया है। इन मात्राओं के साथ इस गणना के कारण इसे त्रैराशिक कहा जाता है। त्रैराशिक -फलाराशि तीन के नियम में वांछित परिणाम है।"

त्रैराशिक में तीन ज्ञात मात्राएँ और एक अज्ञात मात्रा शामिल है। ज्ञात मात्राएँ हैं प्रमाण (ज्ञात माप), प्रमाणफल (ज्ञात माप से संबंधित परिणाम), और इच्छा (वांछित माप)। अज्ञात मात्रा के लिए प्रयुक्त शब्द इच्छाफल (वांछित माप से संबंधित परिणाम) है।