इलेक्ट्रोटोनिक क्षमता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:1223 Graded Potentials-02.jpg|thumb|350px|इलेक्ट्रोटोनिक क्षमता के उदाहरण]][[शरीर क्रिया विज्ञान|शरीरिक क्रिया विज्ञान]] में, इलेक्ट्रोटोनस [[न्यूरॉन]] के अंदर और हृदय की मांसपेशियों की कोशिकाओं या मांसपेशियों की कोशिकाओं के बीच आवेश के निष्क्रिय प्रसार को संदर्भित करता है। " | [[File:1223 Graded Potentials-02.jpg|thumb|350px|इलेक्ट्रोटोनिक क्षमता के उदाहरण]][[शरीर क्रिया विज्ञान|शरीरिक क्रिया विज्ञान]] में, इलेक्ट्रोटोनस [[न्यूरॉन]] के अंदर और हृदय की मांसपेशियों की कोशिकाओं या मांसपेशियों की कोशिकाओं के बीच आवेश के निष्क्रिय प्रसार को संदर्भित करता है। "निष्क्रियता" का अर्थ है कि झिल्ली में वोल्टेज का निर्भर होने के कारण परिवर्तन योगदान नहीं करते हैं। इस प्रकार न्यूरॉन्स और अन्य उत्तेजनीय कोशिकाएं दो प्रकार की विद्युत क्षमताएँ उत्पन्न करती हैं: | ||
* ''इलेक्ट्रॉनिक'' क्षमता (या श्रेणीबद्ध क्षमता), गैर-प्रचारित स्थानीय क्षमता, जिसके परिणामस्वरूप आयनिक चालन में स्थानीय परिवर्तन होता है (उदाहरण के लिए सिनैप्टिक या संवेदी जो स्थानीय धारा उत्पन्न करता है)। जब यह झिल्ली के खिंचाव के साथ प्रसारित करता है, तो | * ''इलेक्ट्रॉनिक'' क्षमता (या श्रेणीबद्ध क्षमता), गैर-प्रचारित स्थानीय क्षमता, जिसके परिणामस्वरूप आयनिक चालन में स्थानीय परिवर्तन होता है (उदाहरण के लिए सिनैप्टिक या संवेदी जो स्थानीय धारा उत्पन्न करता है)। जब यह झिल्ली के खिंचाव के साथ प्रसारित करता है, तो इसमें चरघातांकी रूप से कमी हो जाती है। | ||
* ''कार्य'' क्षमता तथा प्रचारित आवेग। | * ''कार्य'' क्षमता तथा प्रचारित आवेग। | ||
इलेक्ट्रोटोनिक क्षमताएं न्यूरॉन की [[झिल्ली क्षमता]] में परिवर्तन का प्रतिनिधित्व करती हैं जो क्रिया क्षमता द्वारा नए प्रवाह की पीढ़ी का नेतृत्व नहीं करती हैं।<ref>[http://medical-dictionary.thefreedictionary.com/electrotonic electrotonic - definition of electrotonic in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia<!-- Bot generated title -->]</ref> चूंकि, सभी कार्य क्षमता इलेक्ट्रोटोनिक क्षमता द्वारा प्रांरभ होते हैं, [[दहलीज क्षमता]] के ऊपर झिल्ली का [[विध्रुवण]] होता है जो इलेक्ट्रोटोनिक क्षमता को | इलेक्ट्रोटोनिक क्षमताएं न्यूरॉन की [[झिल्ली क्षमता]] में परिवर्तन का प्रतिनिधित्व करती हैं जो क्रिया क्षमता द्वारा नए प्रवाह की पीढ़ी का नेतृत्व नहीं करती हैं।<ref>[http://medical-dictionary.thefreedictionary.com/electrotonic electrotonic - definition of electrotonic in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia<!-- Bot generated title -->]</ref> चूंकि, सभी कार्य क्षमता इलेक्ट्रोटोनिक क्षमता द्वारा प्रांरभ होते हैं, [[दहलीज क्षमता]] के ऊपर झिल्ली का [[विध्रुवण]] होता है जो इलेक्ट्रोटोनिक क्षमता को कार्य क्षमता में परिवर्तित करता है।<ref name=":1" /> वे न्यूरॉन्स जो अपनी लंबाई के संबंध में छोटे होते हैं, जैसे कि मस्तिष्क में कुछ न्यूरॉन्स में केवल इलेक्ट्रोटोनिक क्षमता होती है (माना जाता है कि [[रेटिना]] [[स्टारबर्स्ट अमैक्राइन सेल]] कोशिकाओं में ये गुण होते हैं), इस प्रकार लंबे समय तक न्यूरॉन्स [[संभावित कार्रवाई]] को ट्रिगर करने के लिए इलेक्ट्रोटोनिक क्षमता का उपयोग करते हैं। | ||
इलेक्ट्रोटोनिक क्षमता में आयाम होता है जो सामान्यतः 5-20 मेगावोल्ट होता है और वे 1 माइक्रोसेकेंड से लेकर कई सेकंड के लिए लंबे समय तक रह सकते हैं।<ref>{{Cite book|title=Clinical Neuroscience|last=Pauls|first=John|publisher=Churchill Livingstone|year=2014|isbn=978-0-443-10321-6|pages=71–80}}</ref> इलेक्ट्रोटोनिक क्षमता के व्यवहार की मात्रा निर्धारित करने के लिए दो स्थिरांक हैं जिनका सामान्यतः उपयोग किया जाता है: इसमें मुख्यतः झिल्ली समय स्थिर τ और झिल्ली लंबाई स्थिर λ मुख्य होते हैं। मेम्ब्रेन टाइम कॉन्स्टेंट किसी इलेक्ट्रोटोनिक क्षमता के निष्क्रिय रूप से उसके अधिकतम के 1/e या 37% तक गिरने के समय की मात्रा को मापता है। इस प्रकार न्यूरॉन्स के लिए विशिष्ट मूल्य 1 से 20 एमएस तक हो सकता है। झिल्ली की लंबाई स्थिर मापती है कि इलेक्ट्रोटोनिक क्षमता को उस स्थान पर 1/e या उसके आयाम के 37% तक गिरने में कितना समय लगता है, जहां यह प्रांरभ हुआ था। इस प्रकार डेन्ड्राइट्स की लंबाई स्थिरांक के लिए सामान्य मान .1 से 1 मिमी तक होता हैं।<ref name=":1" /> इस प्रकार कार्य क्षमता की तुलना में इलेक्ट्रोटोनिक क्षमता तेजी से संचालित होते हैं, किन्तु तेजी से क्षीण होते हैं इसलिए लंबी दूरी के संकेत के लिए अनुपयुक्त होते हैं। इस घटना की खोज सबसे पहले एडुआर्ड फ्रेडरिक विल्हेम पफ्लुगर या एडुआर्ड पफ्लुगर ने की थी। | इलेक्ट्रोटोनिक क्षमता में आयाम होता है जो सामान्यतः 5-20 मेगावोल्ट होता है और वे 1 माइक्रोसेकेंड से लेकर कई सेकंड के लिए लंबे समय तक रह सकते हैं।<ref>{{Cite book|title=Clinical Neuroscience|last=Pauls|first=John|publisher=Churchill Livingstone|year=2014|isbn=978-0-443-10321-6|pages=71–80}}</ref> इलेक्ट्रोटोनिक क्षमता के व्यवहार की मात्रा निर्धारित करने के लिए दो स्थिरांक हैं जिनका सामान्यतः उपयोग किया जाता है: इसमें मुख्यतः झिल्ली समय स्थिर τ और झिल्ली लंबाई स्थिर λ मुख्य होते हैं। मेम्ब्रेन टाइम कॉन्स्टेंट किसी इलेक्ट्रोटोनिक क्षमता के निष्क्रिय रूप से उसके अधिकतम के 1/e या 37% तक गिरने के समय की मात्रा को मापता है। इस प्रकार न्यूरॉन्स के लिए विशिष्ट मूल्य 1 से 20 एमएस तक हो सकता है। झिल्ली की लंबाई स्थिर मापती है कि इलेक्ट्रोटोनिक क्षमता को उस स्थान पर 1/e या उसके आयाम के 37% तक गिरने में कितना समय लगता है, जहां यह प्रांरभ हुआ था। इस प्रकार डेन्ड्राइट्स की लंबाई स्थिरांक के लिए सामान्य मान .1 से 1 मिमी तक होता हैं।<ref name=":1" /> इस प्रकार कार्य क्षमता की तुलना में इलेक्ट्रोटोनिक क्षमता तेजी से संचालित होते हैं, किन्तु तेजी से क्षीण होते हैं इसलिए लंबी दूरी के संकेत के लिए अनुपयुक्त होते हैं। इस घटना की खोज सबसे पहले एडुआर्ड फ्रेडरिक विल्हेम पफ्लुगर या एडुआर्ड पफ्लुगर ने की थी। | ||
Line 10: | Line 10: | ||
इलेक्ट्रोटोनिक क्षमता इलेक्ट्रोटोनिक प्रसार के माध्यम से यात्रा करती है, इस प्रकार जो सेल के भीतर समान आवेशित आयनों के विपरीत और प्रतिकर्षण के आकर्षण के बराबर होती है। इलेक्ट्रोटोनिक क्षमताएं स्थानिक या अस्थायी रूप से योग कर सकती हैं। स्थानिक योग आयन प्रवाह के कई स्रोतों ([[डेन्ड्राइट]] के भीतर कई चैनल, या कई डेंड्राइट के भीतर चैनल) का संयोजन होता हैं, जबकि ही स्थान पर बार-बार आने के कारण अस्थायी योग समग्र आवेश में क्रमिक वृद्धि है। क्योंकि आयनिक आवेश स्थान में प्रवेश करता है और दूसरों में प्रसारित हो जाता है, जैसे-जैसे यह प्रसारित होता है, इस प्रकार इसकी तीव्रता कम होती जाती है, इलेक्ट्रोटोनिक प्रसार श्रेणीबद्ध प्रतिक्रिया है। न्यूरॉन के अक्षतंतु के नीचे कार्य क्षमता के [[ऑल-ऑर-नो लॉ]] प्रोपेगेशन के साथ इसकी तुलना करना महत्वपूर्ण है।<ref name=":1" /> | इलेक्ट्रोटोनिक क्षमता इलेक्ट्रोटोनिक प्रसार के माध्यम से यात्रा करती है, इस प्रकार जो सेल के भीतर समान आवेशित आयनों के विपरीत और प्रतिकर्षण के आकर्षण के बराबर होती है। इलेक्ट्रोटोनिक क्षमताएं स्थानिक या अस्थायी रूप से योग कर सकती हैं। स्थानिक योग आयन प्रवाह के कई स्रोतों ([[डेन्ड्राइट]] के भीतर कई चैनल, या कई डेंड्राइट के भीतर चैनल) का संयोजन होता हैं, जबकि ही स्थान पर बार-बार आने के कारण अस्थायी योग समग्र आवेश में क्रमिक वृद्धि है। क्योंकि आयनिक आवेश स्थान में प्रवेश करता है और दूसरों में प्रसारित हो जाता है, जैसे-जैसे यह प्रसारित होता है, इस प्रकार इसकी तीव्रता कम होती जाती है, इलेक्ट्रोटोनिक प्रसार श्रेणीबद्ध प्रतिक्रिया है। न्यूरॉन के अक्षतंतु के नीचे कार्य क्षमता के [[ऑल-ऑर-नो लॉ]] प्रोपेगेशन के साथ इसकी तुलना करना महत्वपूर्ण है।<ref name=":1" /> | ||
== ईपीएसपी == | == ईपीएसपी == | ||
इलेक्ट्रोटोनिक क्षमता या तो झिल्ली क्षमता को धनात्मक आवेश के साथ बढ़ा सकती है या इसे ऋणात्मक आवेश के साथ घटा सकती है। इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को बढ़ाती हैं उन्हें [[उत्तेजक पोस्टसिनेप्टिक क्षमता]] (ईपीएसपी) कहा जाता है। ऐसा इसलिए है क्योंकि वे झिल्ली का विध्रुवण करते हैं, जिससे कार्य क्षमता की संभावना बढ़ जाती है। जैसा कि वे साथ योग करते हैं, वे झिल्ली को थ्रेसहोल्ड क्षमता से ऊपर धकेलने के लिए पर्याप्त रूप से विध्रुवण कर सकते हैं, जिससे कार्य क्षमता उत्पन्न होगा। इस प्रकार EPSP प्रायः सोडियम या Na<sup>+</sup> के कारण होता है या जीव विज्ञान में कैल्शियम Ca<sup>2+</sup> सेल में आ रहे हैं।<ref name=":1">{{Cite book|title=Cell Physiology Source Book|last=Sperelakis|first=Nicholas|publisher=Academic Press|year=2011|isbn=978-0-12-387738-3|pages=563–578}}</ref> | इलेक्ट्रोटोनिक क्षमता या तो झिल्ली क्षमता को धनात्मक आवेश के साथ बढ़ा सकती है या इसे ऋणात्मक आवेश के साथ घटा सकती है। इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को बढ़ाती हैं, उन्हें [[उत्तेजक पोस्टसिनेप्टिक क्षमता]] (ईपीएसपी) कहा जाता है। ऐसा इसलिए होता है क्योंकि वे झिल्ली का विध्रुवण करते हैं, जिससे कार्य क्षमता की संभावना बढ़ जाती है। जैसा कि वे साथ योग करते हैं, वे झिल्ली को थ्रेसहोल्ड क्षमता से ऊपर धकेलने के लिए पर्याप्त रूप से विध्रुवण कर सकते हैं, जिससे कार्य क्षमता उत्पन्न होगा। इस प्रकार EPSP प्रायः सोडियम या Na<sup>+</sup> के कारण होता है या जीव विज्ञान में कैल्शियम Ca<sup>2+</sup> सेल में आ रहे हैं।<ref name=":1">{{Cite book|title=Cell Physiology Source Book|last=Sperelakis|first=Nicholas|publisher=Academic Press|year=2011|isbn=978-0-12-387738-3|pages=563–578}}</ref> | ||
== आईपीएसपी == | == आईपीएसपी == | ||
इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को कम करती हैं उन्हें [[निरोधात्मक पोस्टसिनेप्टिक क्षमता]] (आईपीएसपी) कहा जाता है। वे झिल्ली को [[हाइपरपोलराइजेशन (जीव विज्ञान)]] करते हैं और कोशिका के लिए कार्य क्षमता होना कठिन बना देते हैं। इस प्रकार IPSPs क्लोराइड या सीएल के साथ संबद्ध हैं<sup>−</sup> जीव विज्ञान में कोशिका या पोटैशियम में प्रवेश करने से Ca<sup>+</sup> आयन सेल में छोड़ देता हैं। इस प्रकार IPSPs अपने प्रभाव को रद्द करने के लिए EPSPs के साथ बातचीत कर सकते हैं।<ref name=":1" /> | इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को कम करती हैं उन्हें [[निरोधात्मक पोस्टसिनेप्टिक क्षमता]] (आईपीएसपी) कहा जाता है। वे झिल्ली को [[हाइपरपोलराइजेशन (जीव विज्ञान)]] करते हैं और कोशिका के लिए कार्य क्षमता होना कठिन बना देते हैं। इस प्रकार IPSPs क्लोराइड या सीएल के साथ संबद्ध हैं<sup>−</sup> जीव विज्ञान में कोशिका या पोटैशियम में प्रवेश करने से Ca<sup>+</sup> आयन सेल में छोड़ देता हैं। इस प्रकार IPSPs अपने प्रभाव को रद्द करने के लिए EPSPs के साथ बातचीत कर सकते हैं।<ref name=":1" /> | ||
== सूचना हस्तांतरण == | == सूचना हस्तांतरण == | ||
कार्य क्षमता की बाइनरी प्रतिक्रिया बनाम इलेक्ट्रोटोनिक क्षमता की क्रमशः प्रकृति में होने वाले परिवर्तन के कारण, यह इस बात के निहितार्थ उत्पन्न करता है कि प्रत्येक संबंधित क्षमता द्वारा कितनी जानकारी को एन्कोड किया जाता हैं। इस प्रकार कार्य क्षमता की तुलना में इलेक्ट्रोटोनिक क्षमता निश्चित समय अवधि के भीतर अधिक जानकारी स्थानांतरित करने में सक्षम होता हैं। सूचना दरों में यह अंतर लगभग इलेक्ट्रोटोनिक क्षमता के लिए अधिक परिमाण के आदेश तक हो सकता है।<ref>{{Cite journal|last=Juusola|first=Mikko|date=July 1996|title=Information processing by graded-potential transmission through tonically active synapses|journal=Trends in Neurosciences|volume=19|issue=7|pages=292–7|doi=10.1016/S0166-2236(96)10028-X|pmid=8799975|s2cid=13180990}}</ref><ref>{{Cite journal|last=Niven|first=Jeremy Edward|date=January 2014|title=Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency|journal=PLOS Computational Biology|volume=10|issue=1|pages=e1003439|doi=10.1371/journal.pcbi.1003439 |pmc=3900385|bibcode=2014PLSCB..10E3439S|s2cid=15385561|doi-access=free}}</ref> | |||
== केबल सिद्धांत == | == केबल सिद्धांत == | ||
[[File:Cable_theory_Neuron_RC_circuit_v3.svg|alt=A diagram showing the resistance and capacitance across the cell membrane of an axon. कोशिका झिल्ली को निकटवर्ती क्षेत्रों में विभाजित किया जाता है, जिनमें से प्रत्येक का अपना प्रतिरोध और झिल्ली के पार साइटोसोल और बाह्य तरल पदार्थ के बीच समाई होती है। इन क्षेत्रों में से प्रत्येक बदले में एक प्रतिरोध के साथ एक इंट्रासेल्युलर सर्किट से जुड़ा हुआ है।|अंगूठा|300x300px एक न्यूरॉन का निर्माण सरल केबल सिद्धांत की मान्यताओं के साथ किया गया है।]] | [[File:Cable_theory_Neuron_RC_circuit_v3.svg|alt=A diagram showing the resistance and capacitance across the cell membrane of an axon. कोशिका झिल्ली को निकटवर्ती क्षेत्रों में विभाजित किया जाता है, जिनमें से प्रत्येक का अपना प्रतिरोध और झिल्ली के पार साइटोसोल और बाह्य तरल पदार्थ के बीच समाई होती है। इन क्षेत्रों में से प्रत्येक बदले में एक प्रतिरोध के साथ एक इंट्रासेल्युलर सर्किट से जुड़ा हुआ है।|अंगूठा|300x300px एक न्यूरॉन का निर्माण सरल केबल सिद्धांत की मान्यताओं के साथ किया गया है।]] |
Revision as of 23:08, 20 February 2023
शरीरिक क्रिया विज्ञान में, इलेक्ट्रोटोनस न्यूरॉन के अंदर और हृदय की मांसपेशियों की कोशिकाओं या मांसपेशियों की कोशिकाओं के बीच आवेश के निष्क्रिय प्रसार को संदर्भित करता है। "निष्क्रियता" का अर्थ है कि झिल्ली में वोल्टेज का निर्भर होने के कारण परिवर्तन योगदान नहीं करते हैं। इस प्रकार न्यूरॉन्स और अन्य उत्तेजनीय कोशिकाएं दो प्रकार की विद्युत क्षमताएँ उत्पन्न करती हैं:
- इलेक्ट्रॉनिक क्षमता (या श्रेणीबद्ध क्षमता), गैर-प्रचारित स्थानीय क्षमता, जिसके परिणामस्वरूप आयनिक चालन में स्थानीय परिवर्तन होता है (उदाहरण के लिए सिनैप्टिक या संवेदी जो स्थानीय धारा उत्पन्न करता है)। जब यह झिल्ली के खिंचाव के साथ प्रसारित करता है, तो इसमें चरघातांकी रूप से कमी हो जाती है।
- कार्य क्षमता तथा प्रचारित आवेग।
इलेक्ट्रोटोनिक क्षमताएं न्यूरॉन की झिल्ली क्षमता में परिवर्तन का प्रतिनिधित्व करती हैं जो क्रिया क्षमता द्वारा नए प्रवाह की पीढ़ी का नेतृत्व नहीं करती हैं।[1] चूंकि, सभी कार्य क्षमता इलेक्ट्रोटोनिक क्षमता द्वारा प्रांरभ होते हैं, दहलीज क्षमता के ऊपर झिल्ली का विध्रुवण होता है जो इलेक्ट्रोटोनिक क्षमता को कार्य क्षमता में परिवर्तित करता है।[2] वे न्यूरॉन्स जो अपनी लंबाई के संबंध में छोटे होते हैं, जैसे कि मस्तिष्क में कुछ न्यूरॉन्स में केवल इलेक्ट्रोटोनिक क्षमता होती है (माना जाता है कि रेटिना स्टारबर्स्ट अमैक्राइन सेल कोशिकाओं में ये गुण होते हैं), इस प्रकार लंबे समय तक न्यूरॉन्स संभावित कार्रवाई को ट्रिगर करने के लिए इलेक्ट्रोटोनिक क्षमता का उपयोग करते हैं।
इलेक्ट्रोटोनिक क्षमता में आयाम होता है जो सामान्यतः 5-20 मेगावोल्ट होता है और वे 1 माइक्रोसेकेंड से लेकर कई सेकंड के लिए लंबे समय तक रह सकते हैं।[3] इलेक्ट्रोटोनिक क्षमता के व्यवहार की मात्रा निर्धारित करने के लिए दो स्थिरांक हैं जिनका सामान्यतः उपयोग किया जाता है: इसमें मुख्यतः झिल्ली समय स्थिर τ और झिल्ली लंबाई स्थिर λ मुख्य होते हैं। मेम्ब्रेन टाइम कॉन्स्टेंट किसी इलेक्ट्रोटोनिक क्षमता के निष्क्रिय रूप से उसके अधिकतम के 1/e या 37% तक गिरने के समय की मात्रा को मापता है। इस प्रकार न्यूरॉन्स के लिए विशिष्ट मूल्य 1 से 20 एमएस तक हो सकता है। झिल्ली की लंबाई स्थिर मापती है कि इलेक्ट्रोटोनिक क्षमता को उस स्थान पर 1/e या उसके आयाम के 37% तक गिरने में कितना समय लगता है, जहां यह प्रांरभ हुआ था। इस प्रकार डेन्ड्राइट्स की लंबाई स्थिरांक के लिए सामान्य मान .1 से 1 मिमी तक होता हैं।[2] इस प्रकार कार्य क्षमता की तुलना में इलेक्ट्रोटोनिक क्षमता तेजी से संचालित होते हैं, किन्तु तेजी से क्षीण होते हैं इसलिए लंबी दूरी के संकेत के लिए अनुपयुक्त होते हैं। इस घटना की खोज सबसे पहले एडुआर्ड फ्रेडरिक विल्हेम पफ्लुगर या एडुआर्ड पफ्लुगर ने की थी।
योग
इलेक्ट्रोटोनिक क्षमता इलेक्ट्रोटोनिक प्रसार के माध्यम से यात्रा करती है, इस प्रकार जो सेल के भीतर समान आवेशित आयनों के विपरीत और प्रतिकर्षण के आकर्षण के बराबर होती है। इलेक्ट्रोटोनिक क्षमताएं स्थानिक या अस्थायी रूप से योग कर सकती हैं। स्थानिक योग आयन प्रवाह के कई स्रोतों (डेन्ड्राइट के भीतर कई चैनल, या कई डेंड्राइट के भीतर चैनल) का संयोजन होता हैं, जबकि ही स्थान पर बार-बार आने के कारण अस्थायी योग समग्र आवेश में क्रमिक वृद्धि है। क्योंकि आयनिक आवेश स्थान में प्रवेश करता है और दूसरों में प्रसारित हो जाता है, जैसे-जैसे यह प्रसारित होता है, इस प्रकार इसकी तीव्रता कम होती जाती है, इलेक्ट्रोटोनिक प्रसार श्रेणीबद्ध प्रतिक्रिया है। न्यूरॉन के अक्षतंतु के नीचे कार्य क्षमता के ऑल-ऑर-नो लॉ प्रोपेगेशन के साथ इसकी तुलना करना महत्वपूर्ण है।[2]
ईपीएसपी
इलेक्ट्रोटोनिक क्षमता या तो झिल्ली क्षमता को धनात्मक आवेश के साथ बढ़ा सकती है या इसे ऋणात्मक आवेश के साथ घटा सकती है। इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को बढ़ाती हैं, उन्हें उत्तेजक पोस्टसिनेप्टिक क्षमता (ईपीएसपी) कहा जाता है। ऐसा इसलिए होता है क्योंकि वे झिल्ली का विध्रुवण करते हैं, जिससे कार्य क्षमता की संभावना बढ़ जाती है। जैसा कि वे साथ योग करते हैं, वे झिल्ली को थ्रेसहोल्ड क्षमता से ऊपर धकेलने के लिए पर्याप्त रूप से विध्रुवण कर सकते हैं, जिससे कार्य क्षमता उत्पन्न होगा। इस प्रकार EPSP प्रायः सोडियम या Na+ के कारण होता है या जीव विज्ञान में कैल्शियम Ca2+ सेल में आ रहे हैं।[2]
आईपीएसपी
इलेक्ट्रोटोनिक क्षमताएं जो झिल्ली क्षमता को कम करती हैं उन्हें निरोधात्मक पोस्टसिनेप्टिक क्षमता (आईपीएसपी) कहा जाता है। वे झिल्ली को हाइपरपोलराइजेशन (जीव विज्ञान) करते हैं और कोशिका के लिए कार्य क्षमता होना कठिन बना देते हैं। इस प्रकार IPSPs क्लोराइड या सीएल के साथ संबद्ध हैं− जीव विज्ञान में कोशिका या पोटैशियम में प्रवेश करने से Ca+ आयन सेल में छोड़ देता हैं। इस प्रकार IPSPs अपने प्रभाव को रद्द करने के लिए EPSPs के साथ बातचीत कर सकते हैं।[2]
सूचना हस्तांतरण
कार्य क्षमता की बाइनरी प्रतिक्रिया बनाम इलेक्ट्रोटोनिक क्षमता की क्रमशः प्रकृति में होने वाले परिवर्तन के कारण, यह इस बात के निहितार्थ उत्पन्न करता है कि प्रत्येक संबंधित क्षमता द्वारा कितनी जानकारी को एन्कोड किया जाता हैं। इस प्रकार कार्य क्षमता की तुलना में इलेक्ट्रोटोनिक क्षमता निश्चित समय अवधि के भीतर अधिक जानकारी स्थानांतरित करने में सक्षम होता हैं। सूचना दरों में यह अंतर लगभग इलेक्ट्रोटोनिक क्षमता के लिए अधिक परिमाण के आदेश तक हो सकता है।[4][5]
केबल सिद्धांत
केबल सिद्धांत यह समझने के लिए उपयोगी हो सकता है कि न्यूरॉन के अक्षतंतु के माध्यम से धाराएं कैसे प्रवाहित होती हैं।[6] 1855 में, लॉर्ड केल्विन ने इस सिद्धांत को ट्रान्साटलांटिक टेलीग्राफ केबलों के विद्युत गुणों का वर्णन करने के विधि के रूप में तैयार किया जाता हैं।[7] इस प्रकार सन् 1946 में, एलन लॉयड हॉजकिन और W. A. H. रशटन ने खोजा कि केबल सिद्धांत को न्यूरॉन्स पर भी लागू किया जा सकता है।[8] इस सिद्धांत में केबल के रूप में अनुमानित न्यूरॉन है जिसका त्रिज्या परिवर्तित नहीं करता है, और इसे आंशिक अंतर समीकरण के साथ प्रदर्शित करने की अनुमति देता है[6][9]
जहाँ वी (एक्स, टी) समय टी पर झिल्ली में वोल्टेज है और न्यूरॉन की लंबाई के साथ स्थिति एक्स है, और जहां λ और τ विशिष्ट लंबाई और समय के पैमाने हैं, जिस पर उत्तेजना के कारण मिलने वाले मान के लिए वोल्टेज क्षय होने लगता हैं, इस प्रकार दाईं ओर दिए गए परिपथ के आरेख को प्रकट करते हुए, इन पैमानों को प्रतिरोधों और धारिता प्रति यूनिट लंबाई से निर्धारित किया जा सकता है।[10]
इन समीकरणों से कोई भी यह समझ सकता है कि कैसे न्यूरॉन के गुण इसके माध्यम से गुजरने वाली धारा को प्रभावित करते हैं। जैसे-जैसे झिल्ली का प्रतिरोध बढ़ता जाता है और आंतरिक प्रतिरोध छोटा होता जाता है, वैसे-वैसे लंबाई स्थिर λ बढ़ती जाती है, जिससे धारा न्यूरॉन के कारण नीचे की ओर यात्रा करता हैं। इस प्रकार समय स्थिर को τ द्वारा तथा झिल्ली के प्रतिरोध और धारिता में वृद्धि के रूप में बढ़ता है, जो न्यूरॉन के माध्यम से धारा को धीरे-धीरे यात्रा करने का कारण बनता है।[2]
रिबन सिनैप्स
रिबन सिनैप्स प्रकार का सिनैप्स है जो प्रायः संवेदी न्यूरॉन्स में पाया जाता है और अनूठी संरचना का होता है जो विशेष रूप से उन्हें इलेक्ट्रोटोनिक क्षमता से इनपुट के लिए गतिशील रूप से प्रतिक्रिया देने के लिए सुसज्जित करता है। उनका नाम ऑर्गेनेल के नाम पर रखा गया है, जिसमें सिनैप्टिक रिबन होता है। यह ऑर्गेनेल हजारों सिनैप्टिक पुटिकाओं को प्रीसानेप्टिक झिल्ली के समीप रख सकता है, जिससे न्यूरोट्रांसमीटर प्रेषण को सक्षम किया जाता है जो झिल्ली क्षमता में व्यापक रूप से परिवर्तन पर प्रतिक्रिया कर सकता है।[11][12]
यह भी देखें
- पठार क्षमता
- केबल सिद्धांत
- बायोइलेक्ट्रोकैमिस्ट्री
- वोल्टेज-गेटेड आयन चैनल
संदर्भ
- ↑ electrotonic - definition of electrotonic in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Sperelakis, Nicholas (2011). Cell Physiology Source Book. Academic Press. pp. 563–578. ISBN 978-0-12-387738-3.
- ↑ Pauls, John (2014). Clinical Neuroscience. Churchill Livingstone. pp. 71–80. ISBN 978-0-443-10321-6.
- ↑ Juusola, Mikko (July 1996). "Information processing by graded-potential transmission through tonically active synapses". Trends in Neurosciences. 19 (7): 292–7. doi:10.1016/S0166-2236(96)10028-X. PMID 8799975. S2CID 13180990.
- ↑ Niven, Jeremy Edward (January 2014). "Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency". PLOS Computational Biology. 10 (1): e1003439. Bibcode:2014PLSCB..10E3439S. doi:10.1371/journal.pcbi.1003439. PMC 3900385. S2CID 15385561.
- ↑ 6.0 6.1 Rall, W in Koch & Segev 1989, Cable Theory for Dendritic Neurons, pp. 9–62.
- ↑ Kelvin WT (1855). "On the theory of the electric telegraph". Proceedings of the Royal Society. 7: 382–99.
- ↑ Hodgkin, AL (1946). "The electrical constants of a crustacean nerve fibre". Proceedings of the Royal Society B. 133 (873): 444–79. Bibcode:1946RSPSB.133..444H. doi:10.1098/rspb.1946.0024. PMID 20281590.
- ↑ Gabbiani, Fabrizio (2017). Mathematics for Neuroscientists. Academic Press. pp. 73–91. ISBN 978-0-12-801895-8.
- ↑ Purves et al. 2008, pp. 52–53.
- ↑ Matthews, Gary (January 2005). "Structure and function of ribbon synapses". Trends in Neurosciences. 28 (1): 20–29. doi:10.1016/j.tins.2004.11.009. PMID 15626493. S2CID 16576501.
- ↑ Lagnado, Leon (August 2013). "Spikes and ribbon synapses in early vision". Trends in Neurosciences. 36 (8): 480–488. doi:10.1016/j.tins.2013.04.006. PMID 23706152. S2CID 28383128.