कोफिनलिटी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Size of subsets in order theory}} | {{Short description|Size of subsets in order theory}} | ||
गणित में, विशेष रूप से [[आदेश सिद्धांत|क्रम सिद्धांत में,]] आंशिक रूप से | गणित में, विशेष रूप से [[आदेश सिद्धांत|क्रम सिद्धांत में,]] आंशिक रूप से ऑर्डर किए गए सेट A की कॉफ़िनालिटी सीएफ (A) A के कोफ़ाइनल सबसेट की कार्डिनैलिटी में से सबसे कम होती है। | ||
कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या|बुनियादी संख्याओ]] के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से [[क्रमसूचक संख्या]] ''x'' के रूप में परिभाषित किया जा सकता है, जैसे कि | कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या|बुनियादी संख्याओ]] के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से [[क्रमसूचक संख्या]] ''x'' के रूप में परिभाषित किया जा सकता है, जैसे कि x से A तक एक फलन होता है, जिसमें कोफ़ाइनल छवि होती है। विकल्पों के स्वीकृत के बिना यह दूसरी परिभाषा समझ में आती है। यदि विकल्पों को स्वीकृत किया जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य होती हैं। | ||
एक [[निर्देशित सेट]] के लिए समान रूप से परिभाषित किया जा सकता है और एक नेट में बाद की धारणा को सामान्य बनाने के लिए उपयोग किया जाता है। | |||
== उदाहरण == | == उदाहरण == |
Revision as of 11:18, 22 February 2023
गणित में, विशेष रूप से क्रम सिद्धांत में, आंशिक रूप से ऑर्डर किए गए सेट A की कॉफ़िनालिटी सीएफ (A) A के कोफ़ाइनल सबसेट की कार्डिनैलिटी में से सबसे कम होती है।
कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि बुनियादी संख्याओ के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से क्रमसूचक संख्या x के रूप में परिभाषित किया जा सकता है, जैसे कि x से A तक एक फलन होता है, जिसमें कोफ़ाइनल छवि होती है। विकल्पों के स्वीकृत के बिना यह दूसरी परिभाषा समझ में आती है। यदि विकल्पों को स्वीकृत किया जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य होती हैं।
एक निर्देशित सेट के लिए समान रूप से परिभाषित किया जा सकता है और एक नेट में बाद की धारणा को सामान्य बनाने के लिए उपयोग किया जाता है।
उदाहरण
- सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कॉफ़िनलिटी 1 है क्योंकि केवल सबसे सबसे बड़ा तत्व वाला सेट कॉफ़ाइनल है (और हर दूसरे कॉफ़िनल उपसमुच्चय में समाहित होना चाहिए)।
- विशेष रूप से, किसी भी गैर-शून्य परिमित क्रमिक, या वास्तव में किसी भी परिमित निर्देशित सेट की अंतिमता 1 है, क्योंकि इस तरह के सेट में सबसे बड़ा तत्व है।
- आंशिक रूप से आदेशित सेट के प्रत्येक कोफिनल उपसमुच्चय में उस सेट के सभी अधिकतम तत्व सम्मलितहोने चाहिए। इस प्रकार एक परिमित आंशिक रूप से आदेशित सेट की सह-संख्या इसके अधिकतम तत्वों की संख्या के बराबर होती है।
- विशेष रूप से, लेट आकार का एक सेट हो और के सबसेट के सेट पर विचार करें से अधिक नहीं है तत्व। यह आंशिक रूप से समावेशन और सबसेट के अनुसार आदेश दिया गया है तत्व अधिकतम हैं। इस प्रकार इस पोसेट की सह-अस्तित्व है इस प्रकार इस पोज़िट की कोफ़िनिटी है द्विपद गुणांक
- प्राकृतिक संख्याओं का एक सबसेट में कोफिनल है यदि और केवल यदि और केवल यदि यह अनंत है, और इसलिए की अंतिमता है इस प्रकार एक नियमित कार्डिनल है।
- उनके सामान्य क्रम के साथ वास्तविक संख्याओं की सह-संख्या है तब से में कोफिनल है का सामान्य आदेश आइसोमॉर्फिक का आदेश नहीं है सातत्य की कार्डिनलिटी, जिसमें कॉफिनलिटी से अधिक से अधिक है यह दर्शाता है कि अंतिमता क्रम पर निर्भर करती है; एक ही सेट पर अलग-अलग ऑर्डर में अलग-अलग कॉफ़िनलिटी हो सकती है।
गुण
यदि पूरी तरह से ऑर्डर किए गए कोफाइनल सबसेट को स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं जो सुव्यवस्थित और कोफाइनल है का कोई उपसमुच्चय भी सुव्यवस्थित है। के दो कोफ़ाइनल उपसमुच्चय के दो कोफ़िनल सबसेट न्यूनतम कार्डिनैलिटी के साथ (अर्थात, उनकी कार्डिनैलिटी की सह-संबद्धता है ) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि फिर दोनों और के सबसेट के रूप में देखा गया की कोफिनलिटी की काउंटेबल कार्डिनैलिटी है लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट न्यूनतम आदेश प्रकार के साथ ऑर्डर आइसोमॉर्फिक होगा।
ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी
एक अध्यादेश की कोफ़िनिटी सबसे छोटा अध्यादेश है यह एक कोफिनल सबसेट का ऑर्डर प्रकार है ऑर्डिनल्स या किसी भी अन्य सुव्यवस्थित सेट के एक सेट की कोफ़िनिटी उस सेट के ऑर्डर प्रकार की कोफ़िनिटी है।
इस प्रकार एक सीमा के लिए वहाँ सम्मलित है -इंडेक्स्ड सख्ती से सीमा के साथ बढ़ते अनुक्रम उदाहरण के लिए, की कोफ़िनिटी है क्योंकि अनुक्रम (कहाँ प्राकृतिक संख्याओं पर रेंज) की ओर जाता है लेकिन, अधिक सामान्यतः, किसी भी गणना योग्य सीमा के क्रम में कोफ़िनिटी होती है एक असंख्य सीमा क्रम में या तो कोफ़िनिटी हो सकती है के रूप में करता है या असंख्य कोफ़िनिटी।
0 का कोफ़िनिटी 0. है। किसी भी परिणात्मक के क्रम में कोफ़िनिटी 1. है। किसी भी नॉनज़ेरो सीमा के क्रम में कोफ़िनिटी एक अनंत नियमित कार्डिनल है।
नियमित और एकवचन अध्यादेश
एक नियमित रूप से अध्यादेश एक अध्यादेश है जो इसकी कोफिनिटी के बराबर है।एक विलक्षण अध्यादेश कोई भी अध्यादेश है जो नियमित नहीं है।
प्रत्येक नियमित रूप से एक कार्डिनल का प्रारंभिक क्रम है।नियमित रूप से ऑर्डिनल्स की कोई भी सीमा प्रारंभिक ऑर्डिनल्स की एक सीमा है और इस प्रकार यह भी प्रारंभिक है लेकिन नियमित होने की आवश्यकता नहीं है। विकल्पों के स्वीकृत मानते हुए, प्रत्येक के लिए नियमित है इस स्थितियो में, ऑर्डिनल्स और नियमित हैं, जबकि और प्रारंभिक ऑर्डिनल हैं जो नियमित नहीं हैं।
किसी भी अध्यादेश की कोफ़िनिटी एक नियमित रूप से अध्यादेश है, अर्थात्, कोफिनलिटी का कोफ़िनिटी की कोफ़िनिटी के समान है तो कोफिनिटी ऑपरेशन इडेम्पोटेन्ट है।
कार्डिनल्स की कोफ़िनिटी
यदि एक अनंत कार्डिनल नंबर है, फिर कम से कम कार्डिनल ऐसा है कि एक बाउंडेड (सेट थ्योरी) फ़ंक्शन है को कड़ाई से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनलिटी भी है, जिसका योग है ज्यादा ठीक
कोनिग के प्रमेय (सेट थ्योरी) का उपयोग करना | कोनिग के प्रमेय, कोई भी सिद्ध कर सकता है और किसी भी अनंत कार्डिनल के लिए अंतिम असमानता का तात्पर्य है कि सातत्य के कार्डिनलिटी की कोफ़िनिटी असंख्य होनी चाहिए।वहीं दूसरी ओर,
इस तर्क को सामान्यीकृत करते हुए, कोई यह सिद्ध कर सकता है कि एक सीमा के लिए
यह भी देखें
संदर्भ
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.