परावैद्युत क्षति: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 63: Line 63:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: विद्युत चुंबकत्व]] [[Category: विद्युत अभियन्त्रण]]
 




Line 69: Line 69:
*[https://www.doitpoms.ac.uk/tlplib/dielectrics/loss.php Loss in dielectrics], frequency dependence
*[https://www.doitpoms.ac.uk/tlplib/dielectrics/loss.php Loss in dielectrics], frequency dependence


 
[[Category:All articles with bare URLs for citations]]
 
[[Category:Articles with PDF format bare URLs for citations]]
[[Category: Machine Translated Page]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Created On 06/02/2023]]
[[Category:Created On 06/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:विद्युत अभियन्त्रण]]
[[Category:विद्युत चुंबकत्व]]

Latest revision as of 16:40, 24 February 2023

विद्युत अभियन्त्रण में, परावैद्युत क्षति विद्युत चुम्बकीय ऊर्जा(जैसे गर्मी) के एक परावैद्युत पदार्थ के अंतर्निहित अपव्यय को मापता है।[1] इसे क्षति कोण δ या संबंधित क्षति स्पर्शरेखा tan(δ) के संदर्भ में पैरामिट्रीकृत किया जा सकता है। दोनों जटिल समतल में फ़ेजर(चरण) को संदर्भित करते हैं जिनके वास्तविक और काल्पनिक भाग विद्युत चुम्बकीय क्षेत्र के विद्युत प्रतिरोध(क्षतिपूर्ण) घटक और इसके प्रतिक्रियाशील(क्षतिरहित) समकक्ष हैं।

विद्युत चुम्बकीय क्षेत्र परिप्रेक्ष्य

समय-भिन्न विद्युत चुम्बकीय क्षेत्रों के लिए, विद्युत चुम्बकीय ऊर्जा को सामान्यतः मुक्त स्थान के माध्यम से, एक संचरण तार में, एक सूक्ष्म संचरण तार में, या एक तरंग पथक के माध्यम से प्रचारित तरंगों के रूप में देखा जाता है। इन सभी परिवेशों में विद्युत चालकों को यांत्रिक रूप से आश्रय देने और उन्हें एक निश्चित वियोजन पर रखने के लिए, या विभिन्न गैस दबावों के बीच बाधा प्रदान करने के लिए विद्युत चुम्बकीय शक्ति संचारित करने के लिए प्रायः परावैद्युत का उपयोग किया जाता है। मैक्सवेल के समीकरण विद्युत क्षेत्र और प्रसार तरंगों के चुंबकीय क्षेत्र घटकों के लिए हल किए जाते हैं जो विशिष्ट पर्यावरण की ज्यामिति की सीमा स्थितियों को पूर्ण करते हैं।[2] इस प्रकार के विद्युत चुम्बकीय विश्लेषण में, पैरामीटर परावैद्युतांक ε, पारगम्यता(विद्युत चुंबकत्व) μ, और विद्युत चालकता σ प्रकाशिक माध्यम के गुणों का प्रतिनिधित्व करता है जिसके माध्यम से तरंगें फैलती हैं। पारगम्यता में वास्तविक संख्या और काल्पनिक संख्या घटक हो सकते हैं(बाद वाले σ प्रभावों को छोड़कर, नीचे देखें) जैसे कि

यदि हम मान लें कि हमारे समीप एक तरंग फलन है जैसे कि

तब चुंबकीय क्षेत्र के लिए मैक्सवेल का तरंगित(गणित) समीकरण इस प्रकार लिखा जा सकता है:

जहाँ ε′′ अवश्यंभावी आवेश और द्विध्रुवीय शिथिलता घटना के लिए पारगम्यता का काल्पनिक घटक है, जो ऊर्जा क्षति को उत्पन्न करता है जो मुक्त आवेश चालन के कारण होने वाले क्षति से अप्रभेद्य है जो कि σ द्वारा परिमाणित है। घटक ε′ मुक्त स्थान परावैद्युतांक और सापेक्ष वास्तविक/पूर्ण परावैद्युतांक,या के उत्पाद द्वारा दी गई सापेक्षिक क्षतिरहित परावैद्युतांक का प्रतिनिधित्व करता है।


क्षति स्पर्शरेखा

क्षति स्पर्शरेखा को फिर क्षतिरहित प्रतिक्रिया के लिए तरंगित समीकरण में विद्युत क्षेत्र E के क्षतिपूर्ण प्रतिक्रिया के अनुपात(या एक जटिल समतल में कोण) के रूप में परिभाषित किया गया है :

विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का हल है

जहाँ:

  • ω तरंग की कोणीय आवृत्ति है, और
  • λ परावैद्युत पदार्थ में तरंग दैर्ध्य है।

छोटे क्षति के साथ परावैद्युत के लिए, द्विपद विस्तार के मात्र शून्य और पूर्व क्रम की शर्तों का उपयोग करके वर्गमूल का अनुमान लगाया जा सकता है। साथ ही,छोटे δ के लिए tan δδ

चूँकि शक्ति विद्युत क्षेत्र की तीव्रता का वर्ग है, यह पता चलता है कि शक्ति प्रसार दूरी z के साथ क्षय होता है

जहाँ:

  • Po प्रारंभिक शक्ति है

विद्युत चुम्बकीय तरंगों के लिए प्रायः अन्य योगदान होते हैं जो इस अभिव्यक्ति में सम्मिलित नहीं होते हैं, जैसे कि संचार तार या तरंग पथक के चालकों की बाधा धाराओं के कारण। इसके अतिरिक्त, चुंबकीय पारगम्यता के लिए एक समान विश्लेषण लागू किया जा सकता है

चुंबकीय क्षति स्पर्शरेखा की बाद की परिभाषा के साथ

विद्युत क्षति स्पर्शरेखा को समान रूप से परिभाषित किया जा सकता है:[3]

एक प्रभावी परावैद्युत चालकता के प्रारम्भ पर पर(सापेक्ष पारगम्यता क्षतिपूर्ण माध्यम देखें)।

असतत परिपथ परिप्रेक्ष्य

संधारित्र एक असतत विद्युत परिपथ घटक होता है जो सामान्यतः चालकों के बीच रखे परावैद्युत से बना होता है। संधारित्र के स्थानीकृत तत्व मॉडल में श्रृंखला में एक क्षतिरहित आदर्श संधारित्र सम्मिलित होता है, जिसमें समतुल्य श्रृंखला प्रतिरोध ESR(ईएसआर) कहा जाता है, जैसा कि नीचे की आकृति में दिखाया गया है।[4] ईएसआर संधारित्र में क्षति का प्रतिनिधित्व करता है। एक कम क्षति संधारित्र में ईएसआर बहुत छोटा होता है(चालन कम प्रतिरोधकता के लिए उच्च होता है), और क्षतिपूर्ण संधारित्र में ईएसआर बड़ा हो सकता है। ध्यान दें कि ईएसआर मात्र प्रतिरोध नहीं है जिसे एक अमीटर द्वारा एक संधारित्र में मापा जाएगा। ईएसआर एक व्युत्पन्न मात्रा है जो परावैद्युत चालन इलेक्ट्रॉनों और ऊपर उल्लिखित बाध्य द्विध्रुव शिथिलता घटना दोनों के कारण होने वाली क्षति का प्रतिनिधित्व करता है। एक परावैद्युत में, चालन इलेक्ट्रॉनों में से एक या परावैद्युत स्पेक्ट्रोस्कोपी द्विध्रुवीय शिथिलता सामान्यतः एक विशेष परावैद्युत और निर्माण विधि में क्षति पर प्रभावी होता है। चालन इलेक्ट्रॉनों के प्रमुख क्षति होने की स्थिति में, तब

जहाँ C क्षतिरहित धारिता है।

एक वास्तविक संधारित्र में समतुल्य श्रृंखला प्रतिरोध(ईएसआर) के साथ श्रृंखला में क्षतिरहित आदर्श संधारित्र का एक स्थानीकृत तत्व मॉडल होता है। क्षति स्पर्शरेखा को संधारित्र के प्रतिबाधा सदिश और नकारात्मक प्रतिक्रियाशील अक्ष के बीच के कोण द्वारा परिभाषित किया गया है।

जटिल संख्या समतल में सदिश के रूप में विद्युत परिपथ मापदंडों का प्रतिनिधित्व करते समय, जिसे फेजर(साइन तरंग) के रूप में जाना जाता है, एक संधारित्र की क्षति स्पर्शरेखा संधारित्र के प्रतिबाधा सदिश और नकारात्मक प्रतिक्रियाशील अक्ष के बीच के कोण के स्पर्शरेखा(त्रिकोणमितीय फलन) के बराबर होती है, जैसा कि आसन्न आरेख में दिखाया गया है। क्षति स्पर्शरेखा तब है

.

चूँकि समान प्रत्यावर्ती धारा ईएसआर और Xc दोनों के माध्यम से प्रवाहित होता है, इसलिए क्षति ईएसआर में प्रतिरोधक शक्ति क्षति का अनुपात है जो संधारित्र में प्रतिक्रियाशील शक्ति को दोलन करती है। इस कारण से, एक संधारित्र की क्षति स्पर्शरेखा को कभी-कभी इसके अपव्यय कारक, या इसके गुणवत्ता कारक Q के पारस्परिक रूप से

के रूप में कहा जाता है।


संदर्भ

  1. http://www.ece.rutgers.edu/~orfanidi/ewa/ch01.pdf[bare URL PDF]
  2. Ramo, S.; Whinnery, J.R.; Van Duzer, T. (1994). Fields and Waves in Communication Electronics (3rd ed.). New York: John Wiley and Sons. ISBN 0-471-58551-3.
  3. Chen, L. F.; Ong, C. K.; Neo, C. P.; Varadan, V. V.; Varadan, Vijay K. (19 November 2004). Microwave Electronics: Measurement and Materials Characterization. eq. (1.13). ISBN 9780470020456.
  4. "Considerations for a High Performance Capacitor". Archived from the original on 2008-11-19.


बाहरी संबंध