दिष्ट तर्क: Difference between revisions
m (Abhishek moved page वेक्टर तर्क to दिष्ट तर्क without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
दिष्ट तर्क<ref name="miz92">Mizraji, E. (1992). [http://www.sciencedirect.com/science/article/pii/016501149290216Q Vector logics: the matrix-vector representation of logical calculus.] Fuzzy Sets and Systems, 50, 179–185</ref><ref name="miz08">Mizraji, E. (2008) [http://logcom.oxfordjournals.org/content/18/1/97.full.pdf Vector logic: a natural algebraic representation of the fundamental logical gates.] Journal of Logic and Computation, 18, 97–121</ref> [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] पर आधारित प्राथमिक [[तर्क]] का [[बीजगणित|बीजगणितीय]] गणितीय मॉडल है। दिष्ट तर्क मानता है कि सत्य मान [[वेक्टर (गणित और भौतिकी)|दिष्ट (गणित और भौतिकी)]] पर मैप करता है, और यह कि [[मोनाडिक विधेय कलन|एक अक विधेय कलन]] और [[बाइनरी फ़ंक्शन]] संक्रिया आव्यूह प्रचालकों द्वारा निष्पादित किए जाते हैं। सदिश स्थान के रूप में मौलिक प्रस्तावपरक तर्क के प्रतिनिधित्व को संदर्भित करने के लिए सदिश तर्क का भी उपयोग किया गया है,<ref>Westphal, J. and Hardy, J. (2005) Logic as a Vector System. Journal of Logic and Computation, 751-765</ref><ref>Westphal, J. Caulfield, H.J. Hardy, J. and Qian, L.(2005) Optical Vector Logic Theorem-Proving. Proceedings of the Joint Conference on Information Systems, Photonics, Networking and Computing Division.</ref> जिसमें इकाई वैक्टर [[प्रस्तावक चर]] हैं। [[विधेय तर्क]] को उसी प्रकार के सदिश स्थान के रूप में दर्शाया जा सकता है जिसमें अक्ष विधेय अक्षरों <math>S</math> और <math>P</math> का प्रतिनिधित्व करते हैं।<ref>Westphal, J (2010). The Application of Vector Theory to Syllogistic Logic. New Perspectives on the Square of Opposition, Bern, Peter Lang.</ref> प्रस्तावपरक तर्क के लिए सदिश स्थान में मूल असत्य, F, और अनंत परिधि सत्य, T का प्रतिनिधित्व करती है, चूंकि विधेय तर्क के लिए स्थान में मूल कुछ भी नहीं दर्शाता है और परिधि कुछ भी नहीं, या कुछ से उड़ान का प्रतिनिधित्व करती है। | |||
== अवलोकन == | == अवलोकन == | ||
Line 5: | Line 5: | ||
: <math>t\mapsto s</math>और<math>f\mapsto n</math> | : <math>t\mapsto s</math>और<math>f\mapsto n</math> | ||
(जहाँ <math> q \geq 2</math> स्वेच्छ प्राकृतिक संख्या है, और सामान्यीकृत का अर्थ है कि | (जहाँ <math> q \geq 2</math> स्वेच्छ प्राकृतिक संख्या है, और सामान्यीकृत का अर्थ है कि दिष्ट का [[यूक्लिडियन मानदंड]] 1 है; सामान्यतः S और N ऑर्थोगोनल वैक्टर हैं)। यह पत्राचार सदिश सत्य-मानों का स्थान उत्पन्न करता है: ''V''<sub>2</sub> = {''s'',''n''}। वैक्टर के इस समुच्चय का उपयोग करके परिभाषित मूलभूत तार्किक संक्रिया आव्यूह प्रचालकों की ओर ले जाते हैं। | ||
दिष्ट तर्क के संचालन क्यू-आयामी स्तंभ वैक्टर के बीच स्केलर उत्पाद पर आधारित होते हैं: <math>u^Tv=\langle u,v\rangle</math>: सदिशों s और n के बीच ऑर्थोनॉर्मलिटी का तात्पर्य है कि <math>\langle u,v\rangle=1</math> यदि <math>u = v</math>, और <math>\langle u,v\rangle=0</math> यदि <math>u \ne v</math>, जहाँ <math>u, v \in \{s, n\}</math>. | |||
=== एक अक संक्रिया === | === एक अक संक्रिया === | ||
एक अक प्रचालकों का परिणाम आवेदन <math>Mon: V_2 \to V_2</math> से होता है, और संबद्ध आव्यूहों में q पंक्तियाँ और q स्तंभ हैं। इस दो-मूल्यवान | एक अक प्रचालकों का परिणाम आवेदन <math>Mon: V_2 \to V_2</math> से होता है, और संबद्ध आव्यूहों में q पंक्तियाँ और q स्तंभ हैं। इस दो-मूल्यवान दिष्ट तर्क के लिए दो मूलभूत एक अक संकारक [[पहचान समारोह|पहचान फलन]] और [[तार्किक निषेध]] हैं: | ||
* '''<nowiki/>'पहचान'''': तार्किक पहचान आईडी (p) आव्यूह <math>I=ss^T + nn^T</math> द्वारा दर्शाया गया है. यह आव्यूह निम्नानुसार संचालित होता है: ''Ip'' = ''p'', ''p'' ∈ ''V''<sub>2</sub>; n के संबंध में s की ओर्थोगोनलिटी के कारण, हमारे पास <math>Is=ss^Ts+nn^Ts=s\langle s,s\rangle+n\langle n,s\rangle=s</math> है, और इसी प्रकार <math>In=n</math> है. यह ध्यान रखना महत्वपूर्ण है कि यह सदिश तर्क पहचान आव्यूह सामान्यतः आव्यूह बीजगणित के अर्थ में पहचान आव्यूह नहीं है। | * '''<nowiki/>'पहचान'''': तार्किक पहचान आईडी (p) आव्यूह <math>I=ss^T + nn^T</math> द्वारा दर्शाया गया है. यह आव्यूह निम्नानुसार संचालित होता है: ''Ip'' = ''p'', ''p'' ∈ ''V''<sub>2</sub>; n के संबंध में s की ओर्थोगोनलिटी के कारण, हमारे पास <math>Is=ss^Ts+nn^Ts=s\langle s,s\rangle+n\langle n,s\rangle=s</math> है, और इसी प्रकार <math>In=n</math> है. यह ध्यान रखना महत्वपूर्ण है कि यह सदिश तर्क पहचान आव्यूह सामान्यतः आव्यूह बीजगणित के अर्थ में पहचान आव्यूह नहीं है। | ||
Line 26: | Line 26: | ||
इन गुणों का उपयोग करते हुए, द्विअर्थी तर्क कार्यों के लिए व्यंजक प्राप्त किए जा सकते हैं: | इन गुणों का उपयोग करते हुए, द्विअर्थी तर्क कार्यों के लिए व्यंजक प्राप्त किए जा सकते हैं: | ||
* '''संयोजक''': संयोजन (''p''∧''q'') आव्यूह द्वारा निष्पादित किया जाता है जो दो | * '''संयोजक''': संयोजन (''p''∧''q'') आव्यूह द्वारा निष्पादित किया जाता है जो दो दिष्ट सत्य-मानों: <math>C(u\otimes v)</math> पर कार्य करता है, यह आव्यूह मौलिक संयोजन सत्य-तालिका की विशेषताओं को इसके निर्माण में पुन: प्रस्तुत करता है: | ||
::<math>C=s(s\otimes s)^T + n(s\otimes n)^T + n(n\otimes s)^T + n(n\otimes n)^T </math> | ::<math>C=s(s\otimes s)^T + n(s\otimes n)^T + n(n\otimes s)^T + n(n\otimes n)^T </math> | ||
Line 87: | Line 87: | ||
::<math>C(u\otimes v)=ND(N\otimes N)(u\otimes v).</math> | ::<math>C(u\otimes v)=ND(N\otimes N)(u\otimes v).</math> | ||
फिर यह सिद्ध किया जा सकता है कि द्वि-आयामी | फिर यह सिद्ध किया जा सकता है कि द्वि-आयामी दिष्ट तर्क में डी मॉर्गन का नियम प्रचालकों से जुड़ा नियम है, न कि केवल संचालन से संबंधित नियम:<ref name="miz96">Mizraji, E. (1996) The operators of vector logic. Mathematical Logic Quarterly, 42, 27–39</ref> | ||
::<math>C=ND(N\otimes N)</math> | ::<math>C=ND(N\otimes N)</math> | ||
Line 106: | Line 106: | ||
=== | === दिष्ट आउटपुट के स्केलर अनुमान === | ||
इस बहु-मूल्यवान तर्क के आउटपुट को स्केलर कार्यों पर प्रक्षेपित किया जा सकता है और रीचेनबैक के बहु-मूल्यवान तर्क के साथ समानता के साथ [[संभाव्य तर्क]] का विशेष वर्ग उत्पन्न किया जा सकता है।<ref>Rescher, N. (1969) Many-Valued Logic. McGraw–Hill, New York</ref><ref>Blanché, R. (1968) Introduction à la Logique Contemporaine, Armand Colin, Paris</ref><ref>Klir, G.J., Yuan, G. (1995) Fuzzy Sets and Fuzzy Logic. Prentice–Hall, New Jersey</ref> दो वैक्टर दिए गए हैं <math>u=\alpha s + \beta n</math> और <math>v=\alpha's + \beta'n</math> और युग्मकीय तार्किक आव्यूह <math>G</math>, सदिशों पर प्रक्षेपण द्वारा अदिश संभाव्य तर्क प्रदान किया जाता है: | इस बहु-मूल्यवान तर्क के आउटपुट को स्केलर कार्यों पर प्रक्षेपित किया जा सकता है और रीचेनबैक के बहु-मूल्यवान तर्क के साथ समानता के साथ [[संभाव्य तर्क]] का विशेष वर्ग उत्पन्न किया जा सकता है।<ref>Rescher, N. (1969) Many-Valued Logic. McGraw–Hill, New York</ref><ref>Blanché, R. (1968) Introduction à la Logique Contemporaine, Armand Colin, Paris</ref><ref>Klir, G.J., Yuan, G. (1995) Fuzzy Sets and Fuzzy Logic. Prentice–Hall, New Jersey</ref> दो वैक्टर दिए गए हैं <math>u=\alpha s + \beta n</math> और <math>v=\alpha's + \beta'n</math> और युग्मकीय तार्किक आव्यूह <math>G</math>, सदिशों पर प्रक्षेपण द्वारा अदिश संभाव्य तर्क प्रदान किया जाता है: | ||
Line 136: | Line 136: | ||
तार्किक संचालन का प्रतिनिधित्व करने के लिए रैखिक बीजगणित का उपयोग करने के प्रारंभिक प्रयासों को विशेष रूप से [[तार्किक मैट्रिक्स|तार्किक आव्यूह]] के उपयोग में बीजगणितीय तर्क संबंधों की गणना की व्याख्या करने के लिए [[चार्ल्स सैंडर्स पियर्स]] और [[इरविंग कोपी]] के लिए संदर्भित किया जा सकता है।<ref>Copilowish, I.M. (1948) Matrix development of the calculus of relations. Journal of Symbolic Logic, 13, 193–203</ref> | तार्किक संचालन का प्रतिनिधित्व करने के लिए रैखिक बीजगणित का उपयोग करने के प्रारंभिक प्रयासों को विशेष रूप से [[तार्किक मैट्रिक्स|तार्किक आव्यूह]] के उपयोग में बीजगणितीय तर्क संबंधों की गणना की व्याख्या करने के लिए [[चार्ल्स सैंडर्स पियर्स]] और [[इरविंग कोपी]] के लिए संदर्भित किया जा सकता है।<ref>Copilowish, I.M. (1948) Matrix development of the calculus of relations. Journal of Symbolic Logic, 13, 193–203</ref> | ||
उच्च-आयामी आव्यूह और वैक्टर के उपयोग के आधार पर [[तंत्रिका नेटवर्क]] मॉडल में दृष्टिकोण को प्रेरित किया गया है।<ref>Kohonen, T. (1977) Associative Memory: A System-Theoretical Approach. Springer-Verlag, New York</ref><ref>Mizraji, E. (1989) [https://link.springer.com/article/10.1007%2FBF02458441 Context-dependent associations in linear distributed memories]. Bulletin of Mathematical Biology, 50, 195–205</ref> | उच्च-आयामी आव्यूह और वैक्टर के उपयोग के आधार पर [[तंत्रिका नेटवर्क]] मॉडल में दृष्टिकोण को प्रेरित किया गया है।<ref>Kohonen, T. (1977) Associative Memory: A System-Theoretical Approach. Springer-Verlag, New York</ref><ref>Mizraji, E. (1989) [https://link.springer.com/article/10.1007%2FBF02458441 Context-dependent associations in linear distributed memories]. Bulletin of Mathematical Biology, 50, 195–205</ref> दिष्ट तर्क मौलिक [[बूलियन बीजगणित]] के आव्यूह-दिष्ट औपचारिकता में सीधा अनुवाद है।<ref name="boole">Boole, G. (1854) An Investigation of the Laws of Thought, on which are Founded the Theories of Logic and Probabilities. Macmillan, London, 1854; Dover, New York Reedition, 1958</ref> इस प्रकार की औपचारिकता जटिल संख्याओं के संदर्भ में अस्पष्ट तर्क विकसित करने के लिए प्रायुक्त की गई है।<ref>Dick, S. (2005) Towards complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 15,405–414, 2005</ref> [[क्वांटम भौतिकी]], [[कंप्यूटर विज्ञान]] और [[प्रकाशिकी]] के संरचना में तार्किक कलन के लिए अन्य आव्यूह और दिष्ट दृष्टिकोण विकसित किए गए हैं।<ref>Mittelstaedt, P. (1968) Philosophische Probleme der Modernen Physik, Bibliographisches Institut, Mannheim</ref><ref>Stern, A. (1988) Matrix Logic: Theory and Applications. North-Holland, Amsterdam</ref> | ||
[[भारतीय लोग]] जैवभौतिकविज्ञानी जी.एन. रामचंद्रन ने मौलिक [[जैन सात-मूल्य तर्क]] के कई कार्यों का प्रतिनिधित्व करने के लिए बीजगणितीय आव्यूह और वैक्टर का उपयोग करके औपचारिकता विकसित की, जिसे स्याद और सप्तभंगी के रूप में जाना जाता है; [[भारतीय तर्क]] देखें।<ref>Jain, M.K. (2011) Logic of evidence-based inference propositions, Current Science, 1663–1672, 100</ref> इसे प्रस्ताव में प्रत्येक अभिकथन के लिए स्वतंत्र धनात्मक प्रमाण की आवश्यकता होती है, और यह द्विआधारी पूरकता के लिए धारणा नहीं बनाता है। | [[भारतीय लोग]] जैवभौतिकविज्ञानी जी.एन. रामचंद्रन ने मौलिक [[जैन सात-मूल्य तर्क]] के कई कार्यों का प्रतिनिधित्व करने के लिए बीजगणितीय आव्यूह और वैक्टर का उपयोग करके औपचारिकता विकसित की, जिसे स्याद और सप्तभंगी के रूप में जाना जाता है; [[भारतीय तर्क]] देखें।<ref>Jain, M.K. (2011) Logic of evidence-based inference propositions, Current Science, 1663–1672, 100</ref> इसे प्रस्ताव में प्रत्येक अभिकथन के लिए स्वतंत्र धनात्मक प्रमाण की आवश्यकता होती है, और यह द्विआधारी पूरकता के लिए धारणा नहीं बनाता है। | ||
Line 152: | Line 152: | ||
इन बूलियन बहुपदों को तुरंत किसी भी संख्या में चरों तक बढ़ाया जा सकता है, जिससे तार्किक प्रचालकों की बड़ी संभावित विविधता उत्पन्न होती है। | इन बूलियन बहुपदों को तुरंत किसी भी संख्या में चरों तक बढ़ाया जा सकता है, जिससे तार्किक प्रचालकों की बड़ी संभावित विविधता उत्पन्न होती है। | ||
दिष्ट तर्क में, तार्किक प्रचालकों की आव्यूह-दिष्ट संरचना इन बूलियन बहुपदों के रैखिक बीजगणित के प्रारूप का त्रुटिहीन अनुवाद है, जहां x और 1−x क्रमशः वैक्टर s और n के अनुरूप होते हैं (y और 1−y के लिए समान) ). नंद के उदाहरण में, f(1,1)=n और f(1,0)=f(0,1)=f(0,0)=s और आव्यूह संस्करण बन जाता है: | |||
::<math>S=n(s\otimes s)^T + s[(s\otimes n)^T+(n\otimes s)^T+(n\otimes n)^T]</math> | ::<math>S=n(s\otimes s)^T + s[(s\otimes n)^T+(n\otimes s)^T+(n\otimes n)^T]</math> | ||
Line 163: | Line 163: | ||
* तार्किक संगणनाओं के बारे में कुछ संज्ञानात्मक समस्याओं का इस औपचारिकता का उपयोग करके विश्लेषण किया जा सकता है, विशेष रूप से पुनरावर्ती निर्णयों में। मौलिक प्रस्तावपरक कलन की कोई भी तार्किक अभिव्यक्ति स्वाभाविक रूप से वृक्ष संरचना द्वारा प्रस्तुत की जा सकती है।<ref name="suppes" /> इस तथ्य को सदिश तर्क द्वारा निरंतर रखा गया है, और प्राकृतिक भाषाओं की शाखित संरचना की जांच में केंद्रित तंत्रिका मॉडल में आंशिक रूप से उपयोग किया गया है।<ref>Mizraji, E., Lin, J. (2002) The dynamics of logical decisions. Physica D, 168–169, 386–396</ref><ref>beim Graben, P., Potthast, R. (2009). Inverse problems in dynamic cognitive modeling. Chaos, 19, 015103</ref><ref>beim Graben, P., Pinotsis, D., Saddy, D., Potthast, R. (2008). Language processing with dynamic fields. Cogn. Neurodyn., 2, 79–88</ref><ref>beim Graben, P., Gerth, S., Vasishth, S.(2008) Towards dynamical system models of language-related brain potentials. Cogn. Neurodyn., 2, 229–255</ref><ref>beim Graben, P., Gerth, S. (2012) Geometric representations for minimalist grammars. Journal of Logic, Language and Information, 21, 393-432 . | * तार्किक संगणनाओं के बारे में कुछ संज्ञानात्मक समस्याओं का इस औपचारिकता का उपयोग करके विश्लेषण किया जा सकता है, विशेष रूप से पुनरावर्ती निर्णयों में। मौलिक प्रस्तावपरक कलन की कोई भी तार्किक अभिव्यक्ति स्वाभाविक रूप से वृक्ष संरचना द्वारा प्रस्तुत की जा सकती है।<ref name="suppes" /> इस तथ्य को सदिश तर्क द्वारा निरंतर रखा गया है, और प्राकृतिक भाषाओं की शाखित संरचना की जांच में केंद्रित तंत्रिका मॉडल में आंशिक रूप से उपयोग किया गया है।<ref>Mizraji, E., Lin, J. (2002) The dynamics of logical decisions. Physica D, 168–169, 386–396</ref><ref>beim Graben, P., Potthast, R. (2009). Inverse problems in dynamic cognitive modeling. Chaos, 19, 015103</ref><ref>beim Graben, P., Pinotsis, D., Saddy, D., Potthast, R. (2008). Language processing with dynamic fields. Cogn. Neurodyn., 2, 79–88</ref><ref>beim Graben, P., Gerth, S., Vasishth, S.(2008) Towards dynamical system models of language-related brain potentials. Cogn. Neurodyn., 2, 229–255</ref><ref>beim Graben, P., Gerth, S. (2012) Geometric representations for minimalist grammars. Journal of Logic, Language and Information, 21, 393-432 . | ||
</ref><ref>Binazzi, A.(2012) [http://www.fupress.net/index.php/sf/article/view/11649 Cognizione logica e modelli mentali.] Studi sulla formazione, 1–2012, pag. 69–84</ref> | </ref><ref>Binazzi, A.(2012) [http://www.fupress.net/index.php/sf/article/view/11649 Cognizione logica e modelli mentali.] Studi sulla formazione, 1–2012, pag. 69–84</ref> | ||
* [[फ्रेडकिन गेट]] के रूप में प्रतिवर्ती संचालन के माध्यम से गणना को | * [[फ्रेडकिन गेट]] के रूप में प्रतिवर्ती संचालन के माध्यम से गणना को दिष्ट तर्क में प्रायुक्त किया जा सकता है। ऐसा कार्यान्वयन आव्यूह प्रचालकों के लिए स्पष्ट अभिव्यक्ति प्रदान करता है जो गणना प्राप्त करने के लिए आवश्यक इनपुट प्रारूप और आउटपुट फ़िल्टरिंग का उत्पादन करता है।<ref name="miz08" /><ref name="miz96" /> | ||
* | *दिष्ट तर्क के संकारक संरचना का उपयोग करके [[प्राथमिक सेलुलर automaton|प्राथमिक सेलुलर स्वचलित]] का विश्लेषण किया जा सकता है; यह विश्लेषण इसकी गतिशीलता को नियंत्रित करने वाले नियमों के वर्णक्रमीय अपघटन की ओर ले जाता है।<ref>Mizraji, E. (2006) The parts and the whole: inquiring how the interaction of simple subsystems generates complexity. International Journal of General Systems, 35, pp. 395–415.</ref><ref>Arruti, C., Mizraji, E. (2006) Hidden potentialities. International Journal of General Systems, 35, 461–469.</ref> | ||
* इसके अतिरिक्त, इस औपचारिकता के आधार पर, असतत [[अंतर और अभिन्न कलन]] विकसित किया गया है।<ref>Mizraji, E. (2015) [http://logcom.oxfordjournals.org/content/25/3/613.full.pdf+html Differential and integral calculus for logical operations. A matrix–vector approach] Journal of Logic and Computation 25, 613-638, 2015</ref> | * इसके अतिरिक्त, इस औपचारिकता के आधार पर, असतत [[अंतर और अभिन्न कलन]] विकसित किया गया है।<ref>Mizraji, E. (2015) [http://logcom.oxfordjournals.org/content/25/3/613.full.pdf+html Differential and integral calculus for logical operations. A matrix–vector approach] Journal of Logic and Computation 25, 613-638, 2015</ref> | ||
Revision as of 14:11, 21 February 2023
दिष्ट तर्क[1][2] आव्यूह (गणित) पर आधारित प्राथमिक तर्क का बीजगणितीय गणितीय मॉडल है। दिष्ट तर्क मानता है कि सत्य मान दिष्ट (गणित और भौतिकी) पर मैप करता है, और यह कि एक अक विधेय कलन और बाइनरी फ़ंक्शन संक्रिया आव्यूह प्रचालकों द्वारा निष्पादित किए जाते हैं। सदिश स्थान के रूप में मौलिक प्रस्तावपरक तर्क के प्रतिनिधित्व को संदर्भित करने के लिए सदिश तर्क का भी उपयोग किया गया है,[3][4] जिसमें इकाई वैक्टर प्रस्तावक चर हैं। विधेय तर्क को उसी प्रकार के सदिश स्थान के रूप में दर्शाया जा सकता है जिसमें अक्ष विधेय अक्षरों और का प्रतिनिधित्व करते हैं।[5] प्रस्तावपरक तर्क के लिए सदिश स्थान में मूल असत्य, F, और अनंत परिधि सत्य, T का प्रतिनिधित्व करती है, चूंकि विधेय तर्क के लिए स्थान में मूल कुछ भी नहीं दर्शाता है और परिधि कुछ भी नहीं, या कुछ से उड़ान का प्रतिनिधित्व करती है।
अवलोकन
क्लासिक बाइनरी लॉजिक को एक (एक अक) या दो (युग्मकीय) वेरिएबल्स के आधार पर गणितीय कार्यों के एक छोटे से समुच्चय द्वारा दर्शाया गया है। बाइनरी समुच्चय में, मान 1 सत्य (तर्क) और मान 0 से असत्य (तर्क) से मेल खाता है। दो-मूल्यवान सदिश तर्क के लिए सत्य-मूल्य सत्य (टी) और असत्य (एफ) और दो क्यू-आयामी सामान्यीकृत वास्तविक संख्या-मूल्यवान स्तंभ वैक्टर एस और एन के बीच पत्राचार की आवश्यकता होती है, इसलिए:
- और
(जहाँ स्वेच्छ प्राकृतिक संख्या है, और सामान्यीकृत का अर्थ है कि दिष्ट का यूक्लिडियन मानदंड 1 है; सामान्यतः S और N ऑर्थोगोनल वैक्टर हैं)। यह पत्राचार सदिश सत्य-मानों का स्थान उत्पन्न करता है: V2 = {s,n}। वैक्टर के इस समुच्चय का उपयोग करके परिभाषित मूलभूत तार्किक संक्रिया आव्यूह प्रचालकों की ओर ले जाते हैं।
दिष्ट तर्क के संचालन क्यू-आयामी स्तंभ वैक्टर के बीच स्केलर उत्पाद पर आधारित होते हैं: : सदिशों s और n के बीच ऑर्थोनॉर्मलिटी का तात्पर्य है कि यदि , और यदि , जहाँ .
एक अक संक्रिया
एक अक प्रचालकों का परिणाम आवेदन से होता है, और संबद्ध आव्यूहों में q पंक्तियाँ और q स्तंभ हैं। इस दो-मूल्यवान दिष्ट तर्क के लिए दो मूलभूत एक अक संकारक पहचान फलन और तार्किक निषेध हैं:
- 'पहचान': तार्किक पहचान आईडी (p) आव्यूह द्वारा दर्शाया गया है. यह आव्यूह निम्नानुसार संचालित होता है: Ip = p, p ∈ V2; n के संबंध में s की ओर्थोगोनलिटी के कारण, हमारे पास है, और इसी प्रकार है. यह ध्यान रखना महत्वपूर्ण है कि यह सदिश तर्क पहचान आव्यूह सामान्यतः आव्यूह बीजगणित के अर्थ में पहचान आव्यूह नहीं है।
- निषेध: तार्किक निषेध ¬p आव्यूह द्वारा दर्शाया गया है परिणामस्वरूप, Ns = n और Nn = s। तार्किक निषेध का समावेशन (गणित) व्यवहार, अर्थात् ¬(¬p) p के बराबर है, इस तथ्य से मेल खाता है कि N2 = I।
युग्मकीय संकारक
16 दो-मूल्यवान युग्मकीय संकारक प्रकार के कार्यों के अनुरूप हैं; युग्मकीय आव्यूह में q2 पंक्तियाँ और q कॉलम होते हैं। आव्यूह जो इन डायाडिक ऑपरेशंस को अंजाम देते हैं, क्रोनकर उत्पाद के गुणों पर आधारित होते हैं। सदिश तर्क की औपचारिकता के लिए इस उत्पाद के दो गुण आवश्यक हैं:
- मिश्रित उत्पाद संपत्ति
यदि A, B, C and D ऐसे आकार के आव्यूह हैं कि कोई आव्यूह गुणनफल AC और BD बना सकता है, तब
- वितरक आव्यूह परिवर्तन प्रतिस्थापन का संचालन क्रोनकर उत्पाद पर वितरणात्मक है:
इन गुणों का उपयोग करते हुए, द्विअर्थी तर्क कार्यों के लिए व्यंजक प्राप्त किए जा सकते हैं:
- संयोजक: संयोजन (p∧q) आव्यूह द्वारा निष्पादित किया जाता है जो दो दिष्ट सत्य-मानों: पर कार्य करता है, यह आव्यूह मौलिक संयोजन सत्य-तालिका की विशेषताओं को इसके निर्माण में पुन: प्रस्तुत करता है:
- और सत्यापित करता है
- और
- वियोजन: संयोजन (p∨q) आव्यूह द्वारा निष्पादित किया जाता है
- जिसके परिणामस्वरूप
- और
- तार्किक निहितार्थ: निहितार्थ मौलिक तर्क में अभिव्यक्ति p → q ≡ ¬p ∨ q के अनुरूप है। इस तुल्यता का सदिश तर्क संस्करण आव्यूह की ओर जाता है जो सदिश तर्क में इस निहितार्थ का प्रतिनिधित्व करता है: . इस निहितार्थ के लिए स्पष्ट अभिव्यक्ति है:
- और मौलिक निहितार्थ के गुण संतुष्ट हैं:
- और
- तार्किक तुल्यता और अनन्य या सदिश तर्क में तुल्यता p≡q निम्नलिखित आव्यूह द्वारा दर्शाया गया है:
- साथ
- और
- अनन्य या तुल्यता का निषेध है, ¬(p≡q); यह द्वारा दिए गए आव्यूह से मेल खाता है
- साथ और
मेट्रिसेस S और P क्रमशः शेफर स्ट्रोक (एनएएनडी) और तार्किक (एनओआर) संचालन के अनुरूप हैं:
- ::
संख्यात्मक उदाहरण
एस और एन के लिए 2-आयामी ऑर्थोनॉर्मल वैक्टर के दो अलग-अलग समुच्चयों के लिए मेट्रिसेस के रूप में प्रायुक्त किए गए कुछ मूलभूत तार्किक गेट्स के संख्यात्मक उदाहरण यहां दिए गए हैं।
'समुच्चय 1':
समुच्चय 2:
डी मॉर्गन का नियम
दो-मूल्यवान तर्क में, संयोजन और संयोजन संचालन डी मॉर्गन के नियमों को संतुष्ट करते हैं | क्यू))। दो-मूल्यवान सदिश तर्क के लिए यह नियम भी सत्यापित है:
- , जहाँ u और v दो तार्किक सदिश हैं।
क्रोनकर उत्पाद का तात्पर्य निम्नलिखित गुणनखंड से है:
फिर यह सिद्ध किया जा सकता है कि द्वि-आयामी दिष्ट तर्क में डी मॉर्गन का नियम प्रचालकों से जुड़ा नियम है, न कि केवल संचालन से संबंधित नियम:[6]
विरोधाभास का नियम
मौलिक तर्कवाक्य कलन में, विरोधाभास (पारंपरिक तर्क) p → q ≡ ¬q → ¬p सिद्ध होता है क्योंकि समानता p और q के सत्य-मानों के सभी संभावित संयोजनों के लिए होती है।[7] इसके अतिरिक्त, सदिश तर्क में, विरोधाभास का नियम आव्यूह बीजगणित और क्रोनकर उत्पादों के नियमों के अन्दर समानता की श्रृंखला से उभरता है, जैसा कि निम्न में दिखाया गया है:
यह परिणाम इस तथ्य पर आधारित है कि डी, संयोजन आव्यूह, क्रम विनिमय संचालन का प्रतिनिधित्व करता है।
बहु-मूल्यवान द्वि-आयामी तर्क
कई-मूल्यवान तर्क कई शोधकर्ताओं द्वारा विकसित किए गए थे, विशेष रूप से जन लुकासिविक्ज़ द्वारा और तार्किक संचालन को सत्य-मूल्यों तक विस्तारित करने की अनुमति देता है जिसमें अनिश्चितताएं सम्मिलित हैं।[8] दो-मूल्यवान सदिश तर्क के स्थितियों में, सत्य मानों में अनिश्चितताओं को संभाव्यताओं द्वारा भारित s और n वाले सदिशों का उपयोग करके प्रस्तुत किया जा सकता है।
मान लीजिए , साथ इस प्रकार के संभाव्य वैक्टर बनें। यहाँ, तर्क के कई-मूल्यवान चरित्र को इनपुट में प्रस्तुत की गई अनिश्चितताओं के माध्यम से प्राथमिकता और पश्च प्रस्तुत किया गया है।[1]
दिष्ट आउटपुट के स्केलर अनुमान
इस बहु-मूल्यवान तर्क के आउटपुट को स्केलर कार्यों पर प्रक्षेपित किया जा सकता है और रीचेनबैक के बहु-मूल्यवान तर्क के साथ समानता के साथ संभाव्य तर्क का विशेष वर्ग उत्पन्न किया जा सकता है।[9][10][11] दो वैक्टर दिए गए हैं और और युग्मकीय तार्किक आव्यूह , सदिशों पर प्रक्षेपण द्वारा अदिश संभाव्य तर्क प्रदान किया जाता है:
यहाँ इन अनुमानों के मुख्य परिणाम हैं:
संबद्ध निषेध हैं:
यदि स्केलर मान समुच्चय {0, ½, 1} से संबंधित हैं, तो यह कई-मूल्यवान स्केलर तर्क कई प्रचालकों के लिए लगभग लुकासिविक्ज़ के 3-मूल्यवान तर्क के समान है। इसके अतिरिक्त, यह भी सिद्ध हो गया है कि जब एक अक या युग्मकीय संकारक इस समुच्चय से संबंधित संभाव्य वैक्टर पर कार्य करते हैं, तो आउटपुट भी इस समुच्चय का तत्व होता है।[6]
एनओटी का वर्गमूल
यह संकारक मूल रूप से क्वांटम कम्प्यूटिंग के संरचना में क्यूबिट्स के लिए परिभाषित किया गया था।[12][13] सदिश तर्क में, इस संकारक को स्वैच्छिक रूप से ऑर्थोनॉर्मल सत्य मानों के लिए बढ़ाया जा सकता है।[2][14] वास्तविक में, एनओटी के दो वर्गमूल हैं:
- , और
- ,
साथ . और जटिल संयुग्म: हैं, और ध्यान दें कि , और . और रोचक बिंदु -1 के दो वर्गमूलों के साथ समानता है। धनात्मक मूल से मेल खाती है, और ऋणात्मक मूल से मेल खाती है; परिणाम के रूप में, .
इतिहास
तार्किक संचालन का प्रतिनिधित्व करने के लिए रैखिक बीजगणित का उपयोग करने के प्रारंभिक प्रयासों को विशेष रूप से तार्किक आव्यूह के उपयोग में बीजगणितीय तर्क संबंधों की गणना की व्याख्या करने के लिए चार्ल्स सैंडर्स पियर्स और इरविंग कोपी के लिए संदर्भित किया जा सकता है।[15]
उच्च-आयामी आव्यूह और वैक्टर के उपयोग के आधार पर तंत्रिका नेटवर्क मॉडल में दृष्टिकोण को प्रेरित किया गया है।[16][17] दिष्ट तर्क मौलिक बूलियन बीजगणित के आव्यूह-दिष्ट औपचारिकता में सीधा अनुवाद है।[18] इस प्रकार की औपचारिकता जटिल संख्याओं के संदर्भ में अस्पष्ट तर्क विकसित करने के लिए प्रायुक्त की गई है।[19] क्वांटम भौतिकी, कंप्यूटर विज्ञान और प्रकाशिकी के संरचना में तार्किक कलन के लिए अन्य आव्यूह और दिष्ट दृष्टिकोण विकसित किए गए हैं।[20][21]
भारतीय लोग जैवभौतिकविज्ञानी जी.एन. रामचंद्रन ने मौलिक जैन सात-मूल्य तर्क के कई कार्यों का प्रतिनिधित्व करने के लिए बीजगणितीय आव्यूह और वैक्टर का उपयोग करके औपचारिकता विकसित की, जिसे स्याद और सप्तभंगी के रूप में जाना जाता है; भारतीय तर्क देखें।[22] इसे प्रस्ताव में प्रत्येक अभिकथन के लिए स्वतंत्र धनात्मक प्रमाण की आवश्यकता होती है, और यह द्विआधारी पूरकता के लिए धारणा नहीं बनाता है।
बूलियन बहुपद
जॉर्ज बूले ने बहुपदों के रूप में तार्किक संक्रियाओं के विकास की स्थापना किया था।[18] एक अक प्रचालकों के स्थितियों में (जैसे पहचान फलन या तार्किक निषेध), बूलियन बहुपद इस प्रकार दिखते हैं:
चार अलग-अलग एक अक संचालन गुणांक के लिए अलग-अलग बाइनरी मानों से उत्पन्न होते हैं। आइडेंटिटी संचालन के लिए f(1) = 1 और f(0) = 0 की आवश्यकता होती है, और f(1) = 0 और f(0) = 1 होने पर निषेध होता है। 16 युग्मकीय प्रचालकों के लिए, बूलियन बहुपद इस रूप में हैं:
युग्मकीय संक्रिया को इस बहुपद प्रारूप में अनुवादित किया जा सकता है जब गुणांक एफ संबंधित सत्य तालिकाओं में दर्शाए गए मानों को लेते हैं। उदाहरण के लिए: शेफ़र स्ट्रोक संचालन के लिए आवश्यक है कि:
- और .
इन बूलियन बहुपदों को तुरंत किसी भी संख्या में चरों तक बढ़ाया जा सकता है, जिससे तार्किक प्रचालकों की बड़ी संभावित विविधता उत्पन्न होती है।
दिष्ट तर्क में, तार्किक प्रचालकों की आव्यूह-दिष्ट संरचना इन बूलियन बहुपदों के रैखिक बीजगणित के प्रारूप का त्रुटिहीन अनुवाद है, जहां x और 1−x क्रमशः वैक्टर s और n के अनुरूप होते हैं (y और 1−y के लिए समान) ). नंद के उदाहरण में, f(1,1)=n और f(1,0)=f(0,1)=f(0,0)=s और आव्यूह संस्करण बन जाता है:
विस्तारण
- सदिश तर्क को कई सत्य मानों को सम्मिलित करने के लिए विस्तारित किया जा सकता है क्योंकि बड़े-आयामी सदिश स्थान कई ऑर्थोगोनल सत्य मूल्यों और संबंधित तार्किक आव्यूहों के निर्माण की अनुमति देते हैं।[2]
- कृत्रिम न्यूरॉन में प्रेरित पुनरावर्ती प्रक्रिया के साथ, इस संदर्भ में तार्किक विधियों का पूरी तरह से प्रतिनिधित्व किया जा सकता है।[2][23]
- तार्किक संगणनाओं के बारे में कुछ संज्ञानात्मक समस्याओं का इस औपचारिकता का उपयोग करके विश्लेषण किया जा सकता है, विशेष रूप से पुनरावर्ती निर्णयों में। मौलिक प्रस्तावपरक कलन की कोई भी तार्किक अभिव्यक्ति स्वाभाविक रूप से वृक्ष संरचना द्वारा प्रस्तुत की जा सकती है।[7] इस तथ्य को सदिश तर्क द्वारा निरंतर रखा गया है, और प्राकृतिक भाषाओं की शाखित संरचना की जांच में केंद्रित तंत्रिका मॉडल में आंशिक रूप से उपयोग किया गया है।[24][25][26][27][28][29]
- फ्रेडकिन गेट के रूप में प्रतिवर्ती संचालन के माध्यम से गणना को दिष्ट तर्क में प्रायुक्त किया जा सकता है। ऐसा कार्यान्वयन आव्यूह प्रचालकों के लिए स्पष्ट अभिव्यक्ति प्रदान करता है जो गणना प्राप्त करने के लिए आवश्यक इनपुट प्रारूप और आउटपुट फ़िल्टरिंग का उत्पादन करता है।[2][6]
- दिष्ट तर्क के संकारक संरचना का उपयोग करके प्राथमिक सेलुलर स्वचलित का विश्लेषण किया जा सकता है; यह विश्लेषण इसकी गतिशीलता को नियंत्रित करने वाले नियमों के वर्णक्रमीय अपघटन की ओर ले जाता है।[30][31]
- इसके अतिरिक्त, इस औपचारिकता के आधार पर, असतत अंतर और अभिन्न कलन विकसित किया गया है।[32]
यह भी देखें
- बीजगणितीय तर्क
- बूलियन बीजगणित
- प्रस्तावक कलन
- क्वांटम तर्क
- जोनाथन वेस्टफाल
संदर्भ
- ↑ 1.0 1.1 Mizraji, E. (1992). Vector logics: the matrix-vector representation of logical calculus. Fuzzy Sets and Systems, 50, 179–185
- ↑ 2.0 2.1 2.2 2.3 2.4 Mizraji, E. (2008) Vector logic: a natural algebraic representation of the fundamental logical gates. Journal of Logic and Computation, 18, 97–121
- ↑ Westphal, J. and Hardy, J. (2005) Logic as a Vector System. Journal of Logic and Computation, 751-765
- ↑ Westphal, J. Caulfield, H.J. Hardy, J. and Qian, L.(2005) Optical Vector Logic Theorem-Proving. Proceedings of the Joint Conference on Information Systems, Photonics, Networking and Computing Division.
- ↑ Westphal, J (2010). The Application of Vector Theory to Syllogistic Logic. New Perspectives on the Square of Opposition, Bern, Peter Lang.
- ↑ 6.0 6.1 6.2 Mizraji, E. (1996) The operators of vector logic. Mathematical Logic Quarterly, 42, 27–39
- ↑ 7.0 7.1 Suppes, P. (1957) Introduction to Logic, Van Nostrand Reinhold, New York.
- ↑ Łukasiewicz, J. (1980) Selected Works. L. Borkowski, ed., pp. 153–178. North-Holland, Amsterdam, 1980
- ↑ Rescher, N. (1969) Many-Valued Logic. McGraw–Hill, New York
- ↑ Blanché, R. (1968) Introduction à la Logique Contemporaine, Armand Colin, Paris
- ↑ Klir, G.J., Yuan, G. (1995) Fuzzy Sets and Fuzzy Logic. Prentice–Hall, New Jersey
- ↑ Hayes, B. (1995) The square root of NOT. American Scientist, 83, 304–308
- ↑ Deutsch, D., Ekert, A. and Lupacchini, R. (2000) Machines, logic and quantum physics. The Bulletin of Symbolic Logic, 6, 265-283.
- ↑ Mizraji, E. (2020). Vector logic allows counterfactual virtualization by the square root of NOT, Logic Journal of the IGPL. Online version (doi:10.1093/jigpal/jzaa026)
- ↑ Copilowish, I.M. (1948) Matrix development of the calculus of relations. Journal of Symbolic Logic, 13, 193–203
- ↑ Kohonen, T. (1977) Associative Memory: A System-Theoretical Approach. Springer-Verlag, New York
- ↑ Mizraji, E. (1989) Context-dependent associations in linear distributed memories. Bulletin of Mathematical Biology, 50, 195–205
- ↑ 18.0 18.1 Boole, G. (1854) An Investigation of the Laws of Thought, on which are Founded the Theories of Logic and Probabilities. Macmillan, London, 1854; Dover, New York Reedition, 1958
- ↑ Dick, S. (2005) Towards complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 15,405–414, 2005
- ↑ Mittelstaedt, P. (1968) Philosophische Probleme der Modernen Physik, Bibliographisches Institut, Mannheim
- ↑ Stern, A. (1988) Matrix Logic: Theory and Applications. North-Holland, Amsterdam
- ↑ Jain, M.K. (2011) Logic of evidence-based inference propositions, Current Science, 1663–1672, 100
- ↑ Mizraji, E. (1994) Modalities in vector logic Archived 2014-08-11 at the Wayback Machine. Notre Dame Journal of Formal Logic, 35, 272–283
- ↑ Mizraji, E., Lin, J. (2002) The dynamics of logical decisions. Physica D, 168–169, 386–396
- ↑ beim Graben, P., Potthast, R. (2009). Inverse problems in dynamic cognitive modeling. Chaos, 19, 015103
- ↑ beim Graben, P., Pinotsis, D., Saddy, D., Potthast, R. (2008). Language processing with dynamic fields. Cogn. Neurodyn., 2, 79–88
- ↑ beim Graben, P., Gerth, S., Vasishth, S.(2008) Towards dynamical system models of language-related brain potentials. Cogn. Neurodyn., 2, 229–255
- ↑ beim Graben, P., Gerth, S. (2012) Geometric representations for minimalist grammars. Journal of Logic, Language and Information, 21, 393-432 .
- ↑ Binazzi, A.(2012) Cognizione logica e modelli mentali. Studi sulla formazione, 1–2012, pag. 69–84
- ↑ Mizraji, E. (2006) The parts and the whole: inquiring how the interaction of simple subsystems generates complexity. International Journal of General Systems, 35, pp. 395–415.
- ↑ Arruti, C., Mizraji, E. (2006) Hidden potentialities. International Journal of General Systems, 35, 461–469.
- ↑ Mizraji, E. (2015) Differential and integral calculus for logical operations. A matrix–vector approach Journal of Logic and Computation 25, 613-638, 2015