ऑर्थोगोनल निर्देशांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Set of coordinates where the coordinate hypersurfaces all meet at right angles}} | {{short description|Set of coordinates where the coordinate hypersurfaces all meet at right angles}} | ||
गणित में, ऑर्थोगोनल निर्देशांक को सेट के रूप में परिभाषित किया जाता है जहाँ {{mvar|d}} निर्देशांक <math>\mathbf q = (q^1, q^2, \dots, q^d)</math> जिसमें समन्वय प्रणाली समन्वय सतह सभी [[समकोण]] पर मिलती हैं (ध्यान दें कि सुपरस्क्रिप्ट [[आइंस्टीन संकेतन]] हैं, न कि घातांक)। किसी विशेष निर्देशांक के लिए समन्वय सतह {{mvar|q<sup>k</sup>}} वह [[वक्र]], [[सतह]] या अतिसतह है जिस पर {{mvar|q<sup>k</sup>}} एक स्थिरांक है। उदाहरण के लिए, त्रि-आयामी कार्टेशियन समन्वय प्रणाली {{math|(''x'', ''y'', ''z'')}} इसकी समन्वय सतहों के बाद से ऑर्थोगोनल समन्वय प्रणाली है {{math|1=''x'' =}} नियत, {{math|1=''y'' =}} स्थिर, और {{math|1=''z'' =}} स्थिरांक वे तल होते हैं जो एक दूसरे से समकोण पर मिलते हैं, अर्थात् लम्बवत् होते हैं। लंबकोणीय निर्देशांक [[वक्रीय निर्देशांक]] का एक विशेष लेकिन अत्यंत सामान्य स्थितियों है। | गणित में, ऑर्थोगोनल निर्देशांक को सेट के रूप में परिभाषित किया जाता है जहाँ {{mvar|d}} निर्देशांक <math>\mathbf q = (q^1, q^2, \dots, q^d)</math> जिसमें समन्वय प्रणाली समन्वय सतह सभी [[समकोण]] पर मिलती हैं (ध्यान दें कि सुपरस्क्रिप्ट [[आइंस्टीन संकेतन]] हैं, न कि घातांक)। किसी विशेष निर्देशांक के लिए समन्वय सतह {{mvar|q<sup>k</sup>}} वह [[वक्र]], [[सतह]] या अतिसतह है जिस पर {{mvar|q<sup>k</sup>}} एक स्थिरांक है। उदाहरण के लिए, त्रि-आयामी कार्टेशियन समन्वय प्रणाली {{math|(''x'', ''y'', ''z'')}} इसकी समन्वय सतहों के बाद से ऑर्थोगोनल समन्वय प्रणाली है {{math|1=''x'' =}} नियत, {{math|1=''y'' =}} स्थिर, और {{math|1=''z'' =}} स्थिरांक वे तल होते हैं जो एक दूसरे से समकोण पर मिलते हैं, अर्थात् लम्बवत् होते हैं। लंबकोणीय निर्देशांक [[वक्रीय निर्देशांक]] का एक विशेष लेकिन अत्यंत सामान्य स्थितियों है। | ||
== '''प्रेरणा''' == | == '''प्रेरणा''' == | ||
Line 27: | Line 27: | ||
h_{k}(\mathbf{q})\ \stackrel{\mathrm{def}}{=}\ \sqrt{g_{kk}(\mathbf{q})} = |\mathbf e_k| | h_{k}(\mathbf{q})\ \stackrel{\mathrm{def}}{=}\ \sqrt{g_{kk}(\mathbf{q})} = |\mathbf e_k| | ||
</math> | </math> | ||
मीट्रिक टेन्सर के विकर्ण घटकों के वर्गमूल या स्थानीय आधार वैक्टर की लंबाई के बराबर <math>\mathbf e_k</math> नीचे वर्णित। ये स्केलिंग कार्य एच<sub>''i''</sub> नए निर्देशांक में विभेदक ऑपरेटरों की गणना करने के लिए उपयोग किया जाता है, उदाहरण के लिए, ढाल, [[वेक्टर लाप्लासियन]], [[विचलन]] और [[कर्ल (गणित)]] | मीट्रिक टेन्सर के विकर्ण घटकों के वर्गमूल या स्थानीय आधार वैक्टर की लंबाई के बराबर <math>\mathbf e_k</math> नीचे वर्णित। ये स्केलिंग कार्य एच<sub>''i''</sub> नए निर्देशांक में विभेदक ऑपरेटरों की गणना करने के लिए उपयोग किया जाता है, उदाहरण के लिए, ढाल, [[वेक्टर लाप्लासियन]], [[विचलन]] और [[कर्ल (गणित)]] हैं। | ||
दो आयामों में ऑर्थोगोनल निर्देशांक प्रणाली उत्पन्न करने के लिए सरल विधि कार्तीय निर्देशांक के मानक द्वि-आयामी ग्रिड के [[अनुरूप मानचित्रण]] द्वारा है। {{nowrap|(''x'', ''y'')}}. वास्तविक निर्देशांक x और y से एक [[जटिल संख्या]] z = x + iy बनाई जा सकती है, जहाँ i [[काल्पनिक इकाई]] का प्रतिनिधित्व करता है। कोई भी [[होलोमॉर्फिक फ़ंक्शन]] w = f(z) गैर-शून्य जटिल व्युत्पन्न के साथ अनुरूप मानचित्रण का उत्पादन करेगा; यदि परिणामी सम्मिश्र संख्या लिखी जाती है {{nowrap|1=''w'' = ''u'' + ''iv''}}, तो अचर u और v के वक्र समकोण पर प्रतिच्छेद करते हैं, ठीक वैसे ही जैसे अचर x और y की मूल रेखाओं ने किया था। | दो आयामों में ऑर्थोगोनल निर्देशांक प्रणाली उत्पन्न करने के लिए सरल विधि कार्तीय निर्देशांक के मानक द्वि-आयामी ग्रिड के [[अनुरूप मानचित्रण]] द्वारा है। {{nowrap|(''x'', ''y'')}}. वास्तविक निर्देशांक x और y से एक [[जटिल संख्या]] z = x + iy बनाई जा सकती है, जहाँ i [[काल्पनिक इकाई]] का प्रतिनिधित्व करता है। कोई भी [[होलोमॉर्फिक फ़ंक्शन]] w = f(z) गैर-शून्य जटिल व्युत्पन्न के साथ अनुरूप मानचित्रण का उत्पादन करेगा; यदि परिणामी सम्मिश्र संख्या लिखी जाती है {{nowrap|1=''w'' = ''u'' + ''iv''}}, तो अचर u और v के वक्र समकोण पर प्रतिच्छेद करते हैं, ठीक वैसे ही जैसे अचर x और y की मूल रेखाओं ने किया था। | ||
Line 42: | Line 42: | ||
ये आधार वैक्टर परिभाषा के अनुसार वक्रों के विभेदक ज्यामिति हैं निर्देशांक को अलग करके प्राप्त वक्रों के स्पर्शरेखा वैक्टर, दूसरों को स्थिर रखते हुए: | ये आधार वैक्टर परिभाषा के अनुसार वक्रों के विभेदक ज्यामिति हैं निर्देशांक को अलग करके प्राप्त वक्रों के स्पर्शरेखा वैक्टर, दूसरों को स्थिर रखते हुए: | ||
[[Image:OrthogonalCoordinates.png|thumb|upright=1.3| | [[Image:OrthogonalCoordinates.png|thumb|upright=1.3|2D ऑर्थोगोनल निर्देशांक का विज़ुअलाइज़ेशन निर्देशांक स्थिरांक को छोड़कर सभी को धारण करके प्राप्त वक्र आधार सदिशों के साथ दर्शाए गए हैं। ध्यान दें कि आधार सदिश समान लंबाई के नहीं हैं: उन्हें होने की आवश्यकता नहीं है, उन्हें केवल ओर्थोगोनल होने की आवश्यकता है।]]:<math>\mathbf e_i = \frac{\partial \mathbf r}{\partial q^i}</math> | ||
जहाँ r कोई बिंदु है और ''q''<sup>i</sup> वह निर्देशांक है जिसके लिए आधार सदिश निकाला जाता है। दूसरे शब्दों में, निर्देशांक को छोड़कर सभी को स्थिर करके वक्र प्राप्त किया जाता है; [[पैरामीट्रिक वक्र]] के रूप में अनिर्धारित निर्देशांक भिन्न होता है, और पैरामीटर (अलग-अलग समन्वय) के संबंध में वक्र का व्युत्पन्न उस समन्वय के लिए आधार वेक्टर होता है। | जहाँ r कोई बिंदु है और ''q''<sup>i</sup> वह निर्देशांक है जिसके लिए आधार सदिश निकाला जाता है। दूसरे शब्दों में, निर्देशांक को छोड़कर सभी को स्थिर करके वक्र प्राप्त किया जाता है; [[पैरामीट्रिक वक्र]] के रूप में अनिर्धारित निर्देशांक भिन्न होता है,और पैरामीटर (अलग-अलग समन्वय) के संबंध में वक्र का व्युत्पन्न उस समन्वय के लिए आधार वेक्टर होता है। | ||
ध्यान दें कि जरूरी नहीं कि वेक्टर समान लंबाई के हों। निर्देशांक के मापन कारक के रूप में जाना जाने वाला उपयोगी कार्य केवल लंबाई है <math>h_i</math> आधार वैक्टर की <math>\hat{\mathbf e}_i</math> (नीचे दी गई तालिका देखें)। मापन के कारकों को कभी-कभी लैम गुणांक कहा जाता है, लैम पैरामीटर (ठोस यांत्रिकी) से भ्रमित नहीं होना चाहिए। | ध्यान दें कि जरूरी नहीं कि वेक्टर समान लंबाई के हों। निर्देशांक के मापन कारक के रूप में जाना जाने वाला उपयोगी कार्य केवल लंबाई है <math>h_i</math> आधार वैक्टर की <math>\hat{\mathbf e}_i</math> (नीचे दी गई तालिका देखें)। मापन के कारकों को कभी-कभी लैम गुणांक कहा जाता है, लैम पैरामीटर (ठोस यांत्रिकी) से भ्रमित नहीं होना चाहिए। | ||
Line 495: | Line 495: | ||
* Margenau H. and Murphy GM. (1956) ''The Mathematics of Physics and Chemistry'', 2nd. ed., Van Nostrand, pp. 172–192. | * Margenau H. and Murphy GM. (1956) ''The Mathematics of Physics and Chemistry'', 2nd. ed., Van Nostrand, pp. 172–192. | ||
* Leonid P. Lebedev and Michael J. Cloud (2003) ''Tensor Analysis'', pp. 81 – 88. | * Leonid P. Lebedev and Michael J. Cloud (2003) ''Tensor Analysis'', pp. 81 – 88. | ||
{{Orthogonal coordinate systems}} | {{Orthogonal coordinate systems}} | ||
{{DEFAULTSORT:Orthogonal Coordinates}}[[Category: ओर्थोगोनल कोआर्डिनेट सिस्टम | ओर्थोगोनल कोआर्डिनेट सिस्टम ]] | {{DEFAULTSORT:Orthogonal Coordinates}}[[Category: ओर्थोगोनल कोआर्डिनेट सिस्टम | ओर्थोगोनल कोआर्डिनेट सिस्टम ]] |
Revision as of 17:04, 19 February 2023
गणित में, ऑर्थोगोनल निर्देशांक को सेट के रूप में परिभाषित किया जाता है जहाँ d निर्देशांक जिसमें समन्वय प्रणाली समन्वय सतह सभी समकोण पर मिलती हैं (ध्यान दें कि सुपरस्क्रिप्ट आइंस्टीन संकेतन हैं, न कि घातांक)। किसी विशेष निर्देशांक के लिए समन्वय सतह qk वह वक्र, सतह या अतिसतह है जिस पर qk एक स्थिरांक है। उदाहरण के लिए, त्रि-आयामी कार्टेशियन समन्वय प्रणाली (x, y, z) इसकी समन्वय सतहों के बाद से ऑर्थोगोनल समन्वय प्रणाली है x = नियत, y = स्थिर, और z = स्थिरांक वे तल होते हैं जो एक दूसरे से समकोण पर मिलते हैं, अर्थात् लम्बवत् होते हैं। लंबकोणीय निर्देशांक वक्रीय निर्देशांक का एक विशेष लेकिन अत्यंत सामान्य स्थितियों है।
प्रेरणा
जबकि सदिश संचालन और भौतिक नियम सामान्यतया कार्टेशियन निर्देशांक में प्राप्त करने के लिए सबसे आसान होते हैं, गैर-कार्टेशियन ऑर्थोगोनल निर्देशांक अधिकांशतः विभिन्न समस्याओं के समाधान के लिए उपयोग किए जाते हैं, विशेष रूप से सीमा मूल्य की समस्याएं, जैसे कि क्वांटम यांत्रिकी के क्षेत्र सिद्धांतों में उत्पन्न होने वाली, द्रव प्रवाह, बिजली का गतिविज्ञान, प्लाज्मा (भौतिकी) और रासायनिक प्रजातियों या गर्मी का प्रसार है।
गैर-कार्टेशियन निर्देशांक का मुख्य लाभ यह है कि उन्हें समस्या की समरूपता से मिलान करने के लिए चुना जा सकता है। उदाहरण के लिए, जमीन (या अन्य बाधाओं) से दूर विस्फोट के कारण दबाव तरंग कार्टेशियन निर्देशांक में 3D स्थान पर निर्भर करती है, चूंकि दबाव मुख्य रूप से केंद्र से दूर चला जाता है, जिससे गोलाकार निर्देशांक में समस्या लगभग एक आयामी हो जाती है (चूंकि दबाव तरंग प्रमुख रूप से केवल समय और केंद्र से दूरी पर निर्भर करती है)। अन्य उदाहरण सीधे वृत्ताकार पाइप में (धीमा) द्रव है: कार्टेशियन निर्देशांक में, किसी को आंशिक अंतर समीकरण से जुड़ी (कठिन) दो आयामी सीमा मूल्य समस्या को हल करना होता है, लेकिन बेलनाकार निर्देशांक में समस्या साधारण अंतर के साथ एक आयामी हो जाती है आंशिक अंतर समीकरण के अतिरिक्त समीकरण होते है।
सामान्य घुमावदार निर्देशांक के अतिरिक्त ऑर्थोगोनल निर्देशांक को प्राथमिकता देने का कारण सरलता है: जब निर्देशांक ऑर्थोगोनल नहीं होते हैं तो कई जटिलताएँ उत्पन्न होती हैं। उदाहरण के लिए, ऑर्थोगोनल निर्देशांक में कई समस्याओं को निर्देशांकों में चरों को अलग करके कई द्वारा हल किया जा सकता है। चरों का पृथक्करण एक गणितीय तकनीक है जो एक जटिल डी-आयामी समस्या को डी-एक-आयामी समस्याओं में परिवर्तित करती है जिसे ज्ञात कार्यों के संदर्भ में हल किया जा सकता है। लाप्लास के समीकरण या हेल्महोल्ट्ज़ समीकरण में कई समीकरणों को कम किया जा सकता है। लाप्लास का समीकरण 13 ऑर्थोगोनल कोऑर्डिनेट प्रणाली (14 सूचीबद्ध ऑर्थोगोनल कोऑर्डिनेट्स टेबल ऑफ ऑर्थोगोनल कोऑर्डिनेट्स के साथ टॉरॉयडल निर्देशांक के अपवाद के साथ) में वियोज्य है, और हेल्महोल्त्ज़ समीकरण 11 ऑर्थोगोनल कोऑर्डिनेट सिस्टम में वियोज्य है।[1][2]
ऑर्थोगोनल निर्देशांक में उनके मीट्रिक टेंसर में ऑफ-डायगोनल शब्द नहीं होते हैं। दूसरे शब्दों में, अत्यल्प वर्ग दूरी ds2 को हमेशा वर्गित अतिसूक्ष्म निर्देशांक विस्थापनों के मापित योग के रूप में लिखा जा सकता है
जहां डी आयाम और स्केलिंग फ़ंक्शन (या स्केल कारक) है
मीट्रिक टेन्सर के विकर्ण घटकों के वर्गमूल या स्थानीय आधार वैक्टर की लंबाई के बराबर नीचे वर्णित। ये स्केलिंग कार्य एचi नए निर्देशांक में विभेदक ऑपरेटरों की गणना करने के लिए उपयोग किया जाता है, उदाहरण के लिए, ढाल, वेक्टर लाप्लासियन, विचलन और कर्ल (गणित) हैं।
दो आयामों में ऑर्थोगोनल निर्देशांक प्रणाली उत्पन्न करने के लिए सरल विधि कार्तीय निर्देशांक के मानक द्वि-आयामी ग्रिड के अनुरूप मानचित्रण द्वारा है। (x, y). वास्तविक निर्देशांक x और y से एक जटिल संख्या z = x + iy बनाई जा सकती है, जहाँ i काल्पनिक इकाई का प्रतिनिधित्व करता है। कोई भी होलोमॉर्फिक फ़ंक्शन w = f(z) गैर-शून्य जटिल व्युत्पन्न के साथ अनुरूप मानचित्रण का उत्पादन करेगा; यदि परिणामी सम्मिश्र संख्या लिखी जाती है w = u + iv, तो अचर u और v के वक्र समकोण पर प्रतिच्छेद करते हैं, ठीक वैसे ही जैसे अचर x और y की मूल रेखाओं ने किया था।
तीन और उच्च आयामों में ऑर्थोगोनल निर्देशांक ऑर्थोगोनल द्वि-आयामी समन्वय प्रणाली से उत्पन्न किया जा सकता है, या तो इसे नए आयाम (बेलनाकार निर्देशांक) में प्रक्षेपित करके या इसकी समरूपता अक्षों में से एक के बारे में द्वि-आयामी प्रणाली को घुमाकर। चूंकि, तीन आयामों में अन्य ऑर्थोगोनल समन्वय प्रणालियाँ हैं जिन्हें द्वि-आयामी प्रणाली को प्रक्षेपित या घुमाकर प्राप्त नहीं किया जा सकता है, जैसे कि दीर्घवृत्तीय निर्देशांक कुछ आवश्यक समन्वय सतहों से प्रारंभ करके और उनके ऑर्थोगोनल प्रक्षेपवक्र पर विचार करके अधिक सामान्य ऑर्थोगोनल निर्देशांक प्राप्त किए जा सकते हैं।
आधार वैक्टर
सहपरिवर्ती आधार
कार्टेशियन निर्देशांक में, आधार वैक्टर निश्चित (स्थिर) होते हैं। घुमावदार निर्देशांक की अधिक सामान्य सेटिंग में, अंतरिक्ष में बिंदु निर्देशांक द्वारा निर्दिष्ट किया जाता है, और ऐसे प्रत्येक बिंदु पर आधार वैक्टर का सेट होता है, जो सामान्यतः स्थिर नहीं होते हैं: यह सामान्य रूप से घुमावदार निर्देशांक का सार है और है एक बहुत ही महत्वपूर्ण अवधारणा है। ओर्थोगोनल कोऑर्डिनेट्स में क्या अंतर है, चूंकि आधार वैक्टर भिन्न होते हैं, वे हमेशा एक दूसरे के संबंध में ऑर्थोगोनल होते हैं। दूसरे शब्दों में,
ये आधार वैक्टर परिभाषा के अनुसार वक्रों के विभेदक ज्यामिति हैं निर्देशांक को अलग करके प्राप्त वक्रों के स्पर्शरेखा वैक्टर, दूसरों को स्थिर रखते हुए:
:
जहाँ r कोई बिंदु है और qi वह निर्देशांक है जिसके लिए आधार सदिश निकाला जाता है। दूसरे शब्दों में, निर्देशांक को छोड़कर सभी को स्थिर करके वक्र प्राप्त किया जाता है; पैरामीट्रिक वक्र के रूप में अनिर्धारित निर्देशांक भिन्न होता है,और पैरामीटर (अलग-अलग समन्वय) के संबंध में वक्र का व्युत्पन्न उस समन्वय के लिए आधार वेक्टर होता है।
ध्यान दें कि जरूरी नहीं कि वेक्टर समान लंबाई के हों। निर्देशांक के मापन कारक के रूप में जाना जाने वाला उपयोगी कार्य केवल लंबाई है आधार वैक्टर की (नीचे दी गई तालिका देखें)। मापन के कारकों को कभी-कभी लैम गुणांक कहा जाता है, लैम पैरामीटर (ठोस यांत्रिकी) से भ्रमित नहीं होना चाहिए।
इकाई वेक्टर आधार वैक्टर को टोपी के साथ नोट किया जाता है और लंबाई से विभाजित करके प्राप्त किया जाता है:
वेक्टर क्षेत्र को इसके घटकों द्वारा आधार वैक्टर या सामान्यीकृत आधार वैक्टर के संबंध में निर्दिष्ट किया जा सकता है, और किसी को यह सुनिश्चित करना चाहिए कि कौन सा स्थितियों है। मात्राओं की स्पष्टता के लिए अनुप्रयोगों में सामान्यीकृत आधार में घटक सबसे साधारण हैं (उदाहरण के लिए, कोई स्केल कारक के स्पर्शरेखा वेग के अतिरिक्त स्पर्शरेखा वेग से बदल सकता है); व्युत्पत्तियों में सामान्यीकृत आधार कम साधारण है क्योंकि यह अधिक जटिल है।
प्रतिपरिवर्ती आधार
ऊपर दिखाए गए आधार वैक्टर सहप्रसरण और वैक्टर आधार वैक्टर के विपरीत हैं (क्योंकि वे वैक्टर के साथ सह-भिन्न होते हैं) ऑर्थोगोनल निर्देशांकों के स्थितियों में, प्रतिपरिवर्ती आधार सदिशों को खोजना सरल है क्योंकि वे सहपरिवर्ती सदिशों के समान दिशा में होंगे लेकिन पारस्परिक लंबाई (इस कारण से, आधार सदिशों के दो सेटों को प्रत्येक के संबंध में व्युत्क्रम कहा जाता है ।
यह इस तथ्य से अनुसरण करता है कि, परिभाषा के अनुसार, , क्रोनकर डेल्टा का उपयोग करना। ध्यान दें कि:
अब हम तीन अलग-अलग आधार सेटों का सामना करते हैं जिनका उपयोग सामान्यतया ऑर्थोगोनल निर्देशांक में वैक्टर का वर्णन करने के लिए किया जाता है: सहसंयोजक आधार ei, , विरोधाभासी आधार ei, और सामान्यीकृत आधार êi.जबकि वेक्टर एक उद्देश्य मात्रा है, जिसका अर्थ है कि इसकी पहचान किसी भी समन्वय प्रणाली से स्वतंत्र है, एक वेक्टर के घटक इस बात पर निर्भर करते हैं कि वेक्टर किस आधार पर प्रदर्शित होता है।
भ्रम से बचने के लिए, वेक्टर 'x' के घटक 'e' के संबंध मेंi आधार को x के रूप में दर्शाया गया हैi, जबकि 'e' के संबंध में घटकi आधार को 'x' के रूप में प्रदर्शित किया जाता हैi:
सूचकांकों की स्थिति दर्शाती है कि घटकों की गणना कैसे की जाती है (ऊपरी सूचकांकों को घातांक के साथ भ्रमित नहीं होना चाहिए)। ध्यान दें कि योग चिह्न Σ (कैपिटल सिग्मा (पत्र)अक्षर)) और योग श्रेणी, जो सभी आधार सदिशों (i = 1, 2, ..., d) पर योग दर्शाता है, अधिकांशतः आइंस्टीन संकेतन होते हैं। घटक बस इससे संबंधित हैं:
सामान्यीकृत आधार के संबंध में सदिश घटकों के उपयोग में कोई विशिष्ट व्यापक संकेतन नहीं है; इस लेख में हम वेक्टर घटकों के लिए सबस्क्रिप्ट का उपयोग करेंगे और ध्यान दें कि घटकों की गणना सामान्यीकृत आधार पर की जाती है।
वेक्टर बीजगणित
वेक्टर जोड़ और निषेध को घटक-वार किया जाता है जैसे कार्टेशियन निर्देशांक में कोई जटिलता नहीं होती है। अन्य वेक्टर परिचालनों के लिए अतिरिक्त विचार आवश्यक हो सकते हैं।
चूंकि, ध्यान दें कि ये सभी ऑपरेशन मानते हैं कि वेक्टर क्षेत्र में दो वैक्टर एक ही बिंदु से बंधे हैं (दूसरे शब्दों में, वैक्टर की पूंछ मेल खाती है)। चूँकि आधार वैक्टर सामान्यतः पर ऑर्थोगोनल निर्देशांक में भिन्न होते हैं, यदि दो वैक्टर जोड़े जाते हैं जिनके घटकों की गणना अंतरिक्ष में विभिन्न बिंदुओं पर की जाती है, तो अलग-अलग आधार वैक्टर पर विचार करने की आवश्यकता होती है।
डॉट उत्पाद
कार्टेशियन निर्देशांक में डॉट उत्पाद (ऑर्थोनॉर्मल बेस सेट के साथ यूक्लिडियन अंतरिक्ष) केवल घटकों के उत्पादों का योग है। ऑर्थोगोनल निर्देशांक में, दो वैक्टर x और y का डॉट उत्पाद इस परिचित रूप को लेता है जब वैक्टर के घटकों की सामान्यीकृत आधार पर गणना की जाती है:
यह इस तथ्य का एक तात्कालिक परिणाम है कि किसी बिंदु पर सामान्यीकृत आधार कार्टेशियन समन्वय प्रणाली बना सकता है: आधार सेट ऑर्थोनॉर्मल है।
सहपरिवर्ती या प्रतिपरिवर्ती आधारों में घटकों के लिए,
इसे घटकों के रूप में वैक्टरों को लिखकर, आधार वैक्टरों को सामान्य करके और डॉट उत्पाद लेकर आसानी से प्राप्त किया जा सकता है। उदाहरण के लिए, 2D में:
जहां तथ्य यह है कि सामान्यीकृत सहपरिवर्ती और प्रतिपरिवर्ती आधार समान हैं, का उपयोग किया गया है।
क्रॉस उत्पाद
3D कार्टेशियन निर्देशांक में क्रॉस उत्पाद है:
उपरोक्त सूत्र तब ऑर्थोगोनल निर्देशांक में मान्य रहता है यदि घटकों की सामान्यीकृत आधार पर गणना की जाती है।
सहसंयोजक या विपरीत आधारों के साथ ऑर्थोगोनल निर्देशांक में क्रॉस उत्पाद का निर्माण करने के लिए हमें फिर से आधार वैक्टर को सामान्य बनाना चाहिए, उदाहरण के लिए:
जो, लिखित रूप से विस्तारित,
क्रॉस उत्पाद के लिए संक्षिप्त संकेतन, जो गैर-ऑर्थोगोनल निर्देशांक और उच्च आयामों के लिए सामान्यीकरण को सरल करता है, लेवी-सिविटा टेंसर के साथ संभव है, जिसमें शून्य के अलावा अन्य घटक होंगे और यदि स्केल कारक सभी एक के बराबर नहीं हैं।
वेक्टर कलन
भेद
किसी बिंदु से एक अतिसूक्ष्म विस्थापन को देखते हुए, यह स्पष्ट है कि
ग्रेडिएंट और डेरिवेटिव या डिफरेंशियल द्वारा, किसी फ़ंक्शन के ग्रेडिएंट को संतुष्ट करना चाहिए (यह परिभाषा सही रहती है यदि ƒ कोई टेन्सर है।
इसके बाद यह है कि डेल ऑपरेटर होना चाहिए:
और यह सामान्य वक्रीय निर्देशांकों में सही रहता है। ग्रेडिएंट और लाप्लासियन जैसी मात्राएँ इस ऑपरेटर के उचित अनुप्रयोग के माध्यम से अनुसरण करती हैं।
आधार वेक्टर सूत्र
डॉ और सामान्यीकृत आधार वैक्टर ê सेi, निम्नलिखित का निर्माण किया जा सकता है।[3][4]
विभेदक तत्व | वैक्टर | अदिश |
---|---|---|
रेखा तत्व | वक्र समन्वय करने के लिए स्पर्शरेखा सदिश qi
|
अनंत लंबाई
|
भूतल तत्व | सतह के समन्वय के लिए सामान्य qk = स्थिरांक:
|
अनंत सतह
|
मात्रा तत्व | लागू नहीं | अनंत मात्रा
|
जहाँ
जेकोबियन निर्धारक है, जिसमें ऑर्थोगोनल निर्देशांक में अनंत घन dxdydz से अनंतिम घुमावदार आयतन तक आयतन में विकृति की ज्यामितीय व्याख्या है।
एकीकरण
ऊपर दिखाए गए रेखा तत्व का उपयोग करते हुए, रेखा पथ के साथ समाकलित होती है एक वेक्टर F का है:
निर्देशांक q धारण करके वर्णित सतह के लिए क्षेत्र का अतिसूक्ष्म तत्वkस्थिर है:
इसी प्रकार, मात्रा तत्व है:
जहां बड़ा प्रतीक Π (कैपिटल पाई (अक्षर)) उत्पाद (गणित) को उसी तरह इंगित करता है जिस तरह एक बड़ा Σ योग को इंगित करता है। ध्यान दें कि सभी मापन कारकों का उत्पाद जैकबियन निर्धारक है।
उदाहरण के रूप में, q पर सदिश फलन F का पृष्ठीय समाकलन1 = स्थिर सतह 3d में है:
ध्यान दें कि H1/H1 सतह के लिए सामान्य F का घटक है।
तीन आयामों में विभेदक ऑपरेटर
चूंकि ये ऑपरेशन अनुप्रयोग में सामान्य हैं, इस खंड में सभी वेक्टर घटकों को सामान्यीकृत आधार के संबंध में प्रस्तुत किया गया है: .
ऑपरेटर | व्यंजक |
---|---|
अदिश क्षेत्र का ग्रेडिएंट | |
सदिश क्षेत्र का विचलन | |
सदिश क्षेत्र का कर्ल | |
अदिश क्षेत्र का लाप्लासियन |
उपरोक्त अभिव्यक्तियों को लेवी-सिविता प्रतीक का उपयोग करके अधिक कॉम्पैक्ट रूप में लिखा जा सकता है और याकूब निर्धारक , दोहराए गए सूचकांकों पर योग मानते हुए:
ऑपरेटर | व्यंजक |
---|---|
अदिश क्षेत्र का ग्रेडिएंट | |
सदिश क्षेत्र का विचलन | |
सदिश क्षेत्र का कर्ल (केवल 3D) | |
अदिश क्षेत्र का लाप्लासियन |
यह भी ध्यान दें कि अदिश क्षेत्र की प्रवणता को कैनोनिकल आंशिक डेरिवेटिव वाले जैकबियन मैट्रिक्स J के संदर्भ में व्यक्त किया जा सकता है:
आधार बदलने पर:
जहां रोटेशन और स्केलिंग मेट्रिसेस हैं:
ऑर्थोगोनल निर्देशांक की तालिका
सामान्य कार्तीय निर्देशांक के अलावा, कई अन्य नीचे सारणीबद्ध हैं।[5] निर्देशांक कॉलम में कॉम्पैक्टनेस के लिए मध्यवर्ती टिप्पणी का उपयोग किया जाता है।
वक्रीय निर्देशांक (q1, q2, q3) | कार्तीय (x, y, z) से रूपांतरण | स्केल कारक |
---|---|---|
गोलाकार ध्रुवीय निर्देशांक
|
||
बेलनाकार ध्रुवीय निर्देशांक
|
||
परवलयिक बेलनाकार निर्देशांक
|
||
परवलयिक निर्देशांक
|
||
परवलयिक निर्देशांक
|
where |
|
दीर्घवृत्त निर्देशांक
|
where |
|
अण्डाकार बेलनाकार निर्देशांक
|
||
प्रोलेट गोलाकार निर्देशांक
|
||
चपटा गोलाकार निर्देशांक
|
||
द्विध्रुवीय बेलनाकार निर्देशांक
|
||
टॉरॉयडल निर्देशांक
|
||
बिस्फेरिकल निर्देशांक
|
||
शंक्वाकार निर्देशांक
|
यह भी देखें
- वक्रीय निर्देशांक
- जियोडेटिक निर्देशांक
- टेंसर
- वेक्टर क्षेत्र
- तिरछा निर्देशांक
टिप्पणियाँ
- ↑ Eric W. Weisstein. "Orthogonal Coordinate System". MathWorld. Retrieved 10 July 2008.
- ↑ Morse and Feshbach 1953, Volume 1, pp. 494-523, 655-666.
- ↑ Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M.R. Spiegel, J. Liu, Schuam's Outline Series, 2009, ISBN 978-0-07-154855-7.
- ↑ Vector Analysis (2nd Edition), M.R. Spiegel, S. Lipschutz, D. Spellman, Schaum’s Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-161545-7
- ↑ Vector Analysis (2nd Edition), M.R. Spiegel, S. Lipschutz, D. Spellman, Schaum’s Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-161545-7
संदर्भ
- Korn GA and Korn TM. (1961) Mathematical Handbook for Scientists and Engineers, McGraw-Hill, pp. 164–182.
- Morse and Feshbach (1953). "Methods of Theoretical Physics, Volume 1". McGraw-Hill.
{{cite journal}}
: Cite journal requires|journal=
(help)
- Margenau H. and Murphy GM. (1956) The Mathematics of Physics and Chemistry, 2nd. ed., Van Nostrand, pp. 172–192.
- Leonid P. Lebedev and Michael J. Cloud (2003) Tensor Analysis, pp. 81 – 88.