बीजगणितीय अंश: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Sort of mathematical expression}} | {{short description|Sort of mathematical expression}} | ||
[[बीजगणित]] में, एक बीजगणितीय अंश एक [[अंश (गणित)]] होता है जिसका अंश और भाजक बीजगणितीय व्यंजक होते हैं। बीजगणितीय भिन्नों के दो उदाहरण हैं <math>\frac{3x}{x^2+2x-3}</math> और <math>\frac{\sqrt{x+2}}{x^2-3}</math>. बीजगणितीय अंश [[अंकगणितीय अंश]] | [[बीजगणित]] में, एक बीजगणितीय अंश एक [[अंश (गणित)]] होता है जिसका अंश और भाजक बीजगणितीय व्यंजक होते हैं। बीजगणितीय भिन्नों के दो उदाहरण हैं <math>\frac{3x}{x^2+2x-3}</math> और <math>\frac{\sqrt{x+2}}{x^2-3}</math>. बीजगणितीय अंश [[अंकगणितीय अंश|अंकगणितीय अंशों]] के समान नियमों के अधीन हैं। | ||
एक परिमेय भिन्न एक बीजगणितीय भिन्न होती है जिसका अंश और हर दोनों [[बहुपद]] होते हैं। इस प्रकार <math>\frac{3x}{x^2+2x-3}</math> एक तर्कसंगत अंश है, किन्तु नहीं <math>\frac{\sqrt{x+2}}{x^2-3},</math> क्योंकि अंश में वर्गमूल फलन होता है। | एक परिमेय भिन्न एक बीजगणितीय भिन्न होती है जिसका अंश और हर दोनों [[बहुपद]] होते हैं। इस प्रकार <math>\frac{3x}{x^2+2x-3}</math> एक तर्कसंगत अंश है, किन्तु नहीं <math>\frac{\sqrt{x+2}}{x^2-3},</math> क्योंकि अंश में वर्गमूल फलन होता है। | ||
Line 9: | Line 9: | ||
एक जटिल अंश एक अंश है जिसका अंश या भाजक, या दोनों में एक अंश होता है। एक साधारण भिन्न के अंश या हर में कोई अंश नहीं होता है। एक अंश सबसे कम शब्दों में होता है यदि अंश और भाजक के लिए एकमात्र सामान्य कारक 1 है। | एक जटिल अंश एक अंश है जिसका अंश या भाजक, या दोनों में एक अंश होता है। एक साधारण भिन्न के अंश या हर में कोई अंश नहीं होता है। एक अंश सबसे कम शब्दों में होता है यदि अंश और भाजक के लिए एकमात्र सामान्य कारक 1 है। | ||
एक व्यंजक जो भिन्नात्मक रूप में नहीं है, एक समाकल व्यंजक है। एक अभिन्न अभिव्यक्ति को हमेशा भिन्नात्मक रूप में लिखा जा सकता | एक व्यंजक जो भिन्नात्मक रूप में नहीं है, एक समाकल व्यंजक है। एक अभिन्न अभिव्यक्ति को भाजक 1 देकर हमेशा भिन्नात्मक रूप में लिखा जा सकता है। एक मिश्रित अभिव्यक्ति एक या एक से अधिक पूर्णांक अभिव्यक्तियों और एक या अधिक भिन्नात्मक शब्दों का बीजगणितीय योग है। | ||
== वाजिब अंश == | == वाजिब अंश == |
Revision as of 21:05, 18 February 2023
बीजगणित में, एक बीजगणितीय अंश एक अंश (गणित) होता है जिसका अंश और भाजक बीजगणितीय व्यंजक होते हैं। बीजगणितीय भिन्नों के दो उदाहरण हैं और . बीजगणितीय अंश अंकगणितीय अंशों के समान नियमों के अधीन हैं।
एक परिमेय भिन्न एक बीजगणितीय भिन्न होती है जिसका अंश और हर दोनों बहुपद होते हैं। इस प्रकार एक तर्कसंगत अंश है, किन्तु नहीं क्योंकि अंश में वर्गमूल फलन होता है।
शब्दावली
बीजगणितीय अंश में भाज्य a को अंश कहते हैं और भाजक b को भाजक कहते हैं। अंश और हर को बीजगणितीय भिन्न का पद कहा जाता है।
एक जटिल अंश एक अंश है जिसका अंश या भाजक, या दोनों में एक अंश होता है। एक साधारण भिन्न के अंश या हर में कोई अंश नहीं होता है। एक अंश सबसे कम शब्दों में होता है यदि अंश और भाजक के लिए एकमात्र सामान्य कारक 1 है।
एक व्यंजक जो भिन्नात्मक रूप में नहीं है, एक समाकल व्यंजक है। एक अभिन्न अभिव्यक्ति को भाजक 1 देकर हमेशा भिन्नात्मक रूप में लिखा जा सकता है। एक मिश्रित अभिव्यक्ति एक या एक से अधिक पूर्णांक अभिव्यक्तियों और एक या अधिक भिन्नात्मक शब्दों का बीजगणितीय योग है।
वाजिब अंश
यदि व्यंजक a और b बहुपद हैं, तो बीजगणितीय भिन्न को परिमेय बीजगणितीय भिन्न कहते हैं[1] या बस तर्कसंगत अंश।[2][3] परिमेय भिन्न को परिमेय व्यंजक के रूप में भी जाना जाता है। एक तर्कसंगत अंश उचित कहा जाता है यदि , और अन्यथा अनुचित। उदाहरण के लिए, तर्कसंगत अंश उचित है, और तर्कसंगत अंश और अनुचित हैं। और अनुचित तर्कसंगत अंश को बहुपद (संभवतः स्थिर) और एक उचित तर्कसंगत अंश के योग के रूप में व्यक्त किया जा सकता है। अनुचित अंश के पहले उदाहरण में किसी के पास है
जहाँ दूसरा पद एक उचित परिमेय भिन्न है। दो उचित परिमेय भिन्नों का योग भी एक उचित परिमेय भिन्न है। एक उचित परिमेय भिन्न को दो या दो से अधिक भिन्नों के योग के रूप में व्यक्त करने की उल्टी प्रक्रिया को आंशिक भिन्नों में इसका समाधान करना कहा जाता है। उदाहरण के लिए,
यहाँ, दाईं ओर के दो पदों को आंशिक भिन्न कहा जाता है।
अपरिमेय अंश
एक अपरिमेय अंश वह होता है जिसमें भिन्नात्मक घातांक के अंतर्गत चर होता है।[4] अपरिमेय अंश का एक उदाहरण है
एक तर्कहीन अंश को एक तर्कसंगत अंश में बदलने की प्रक्रिया को युक्तिकरण (गणित) के रूप में जाना जाता है। प्रत्येक अपरिमेय अंश जिसमें रेडिकल्स एकपद होते हैं, को जड़ों के सूचकांकों के कम से कम सामान्य गुणकों को खोजकर, और कम से कम सामान्य गुणकों के साथ चर को दूसरे चर के लिए प्रतिपादक के रूप में प्रतिस्थापित करके युक्तिसंगत बनाया जा सकता है। दिए गए उदाहरण में, लघुत्तम समापवर्तक 6 है, इसलिए हम स्थानापन्न कर सकते हैं प्राप्त करने के लिए
यह भी देखें
संदर्भ
- ↑ Bansi Lal (2006). Topics in Integral Calculus. p. 53. ISBN 9788131800027.
- ↑ Ėrnest Borisovich Vinberg (2003). A course in algebra. p. 131. ISBN 9780821883945.
- ↑ Parmanand Gupta. Comprehensive Mathematics XII. p. 739. ISBN 9788170087410.
- ↑ Washington McCartney (1844). The principles of the differential and integral calculus; and their application to geometry. p. 203.
- Brink, Raymond W. (1951). "IV. Fractions". College Algebra.