ऑपरेशन (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{distinguish| | {{distinguish|संक्रियक (गणित)}} | ||
{{Short description|Addition, multiplication, division, ...}} | {{Short description|Addition, multiplication, division, ...}} | ||
[[File:Basic arithmetic operators.svg|thumb|right|[[प्राथमिक अंकगणित|प्राथमिक अंकगणितीय]] संचालन:{{unbulleted list | [[File:Basic arithmetic operators.svg|thumb|right|[[प्राथमिक अंकगणित|प्राथमिक अंकगणितीय]] संचालन:{{unbulleted list | ||
Line 7: | Line 7: | ||
| ÷, ओबेलस (विभाजन) | | ÷, ओबेलस (विभाजन) | ||
| ×, गुणा (गुणन) | | ×, गुणा (गुणन) | ||
}}]]गणित में, '''ऑपरेशन''' एक ऐसा फलन है जो शून्य या अधिक इनपुट मान (जिन्हें "''[[ओपेरंड|संचालन]]''" या "तर्क" भी कहा जाता है) को एक अच्छी तरह से परिभाषित आउटपुट मान पर ले जाता है। | }}]]गणित में, '''ऑपरेशन''' एक ऐसा फलन है जो शून्य या अधिक इनपुट मान (जिन्हें "''[[ओपेरंड|संचालन]]''" या "तर्क" भी कहा जाता है) को एक अच्छी तरह से परिभाषित आउटपुट मान पर ले जाता है। संफलन की संख्या संचालन की [[arity|एरिटी]] होती है। | ||
सबसे अधिक अध्ययन किए जाने वाले संचालन [[बाइनरी ऑपरेशन|बाइनरी संचालन]] | सबसे अधिक अध्ययन किए जाने वाले संचालन [[बाइनरी ऑपरेशन|बाइनरी संचालन]] है (अर्थात, एरिटी 2 के संचालन), जैसे कि जोड़ और गुणा, और यूनरी संचालन (अर्थात, 1 के संचालन), जैसे [[योगज प्रतिलोम]] और [[गुणात्मक प्रतिलोम]]। शून्य संचालन, या अशक्त संचालन, एक नियतांक (गणित) है।<ref name=":1">{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Algebraic_operation|title=Algebraic operation - Encyclopedia of Mathematics|website=www.encyclopediaofmath.org|access-date=2019-12-10}}</ref><ref>{{Cite web|url=http://www.math.hawaii.edu/~williamdemeo/latticetheory/Glossary.pdf|title=Universal Algebra Notes|last=DeMeo|first=William|date=August 26, 2010|website=math.hawaii.edu|access-date=2019-12-09}}</ref> [[मिश्रित उत्पाद]] एरिटी 3 के संचालन का एक उदाहरण है, जिसे त्रिगुट संचालन भी कहा जाता है। | ||
सामान्यतः, परिमित होने के लिए एरिटी लिया जाता है। चूंकि, [[इनफिनिटरी ऑपरेशन|असीमित संचालन]] को कभी-कभी माना जाता है,<ref name=":1" /> जिस स्थिति में परिमित एरिटी के "सामान्य" संचालनों को परिमित संचालन कहा जाता है। | सामान्यतः, परिमित होने के लिए एरिटी लिया जाता है। चूंकि, [[इनफिनिटरी ऑपरेशन|असीमित संचालन]] को कभी-कभी माना जाता है,<ref name=":1" /> जिस स्थिति में परिमित एरिटी के "सामान्य" संचालनों को परिमित संचालन कहा जाता है। | ||
एक आंशिक संचालन को एक संचालन के समान ही परिभाषित किया जाता है, लेकिन एक | एक आंशिक संचालन को एक संचालन के समान ही परिभाषित किया जाता है, लेकिन एक फलन के स्थान पर एक आंशिक फलन के साथ परिभाषित किया जाता है। | ||
== संचालन के प्रकार == | == संचालन के प्रकार == | ||
[[File:Binary operations as black box.svg|thumb|एक बाइनरी संचालन में दो तर्क होते | [[File:Binary operations as black box.svg|thumb|एक बाइनरी संचालन में दो तर्क होते है <math>x</math> और <math>y</math>, और परिणाम देता है <math>x\circ y</math>.]]संचालन के दो सामान्य प्रकार होते है: यूनरी संचालन और बाइनरी संचालन। एकात्मक संचालनों में केवल एक मान सम्मलित होता है, जैसे कि निषेध फलन और त्रिकोणमितीय फलन।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Unary Operation|url=https://mathworld.wolfram.com/UnaryOperation.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> दूसरी ओर, द्विआधारी संचालनएं दो मान लेती है, और इसमें जोड़, [[घटाव]], गुणा, भाग और [[घातांक]] सम्मलित होते है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Binary Operation|url=https://mathworld.wolfram.com/BinaryOperation.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> | ||
संचालनों में संख्याओं के अतिरिक्त अन्य गणितीय वस्तुएँ सम्मलित हो सकती | संचालनों में संख्याओं के अतिरिक्त अन्य गणितीय वस्तुएँ सम्मलित हो सकती है। तार्किक मान सही और गलत [[तर्क संचालन]] का उपयोग करके जोड़ा जा सकता है, जैसे कि और, या, और नहीं। [[वेक्टर (ज्यामितीय)|सदिशों]] को जोड़ा और घटाया जा सकता है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=वेक्टर|url=https://mathworld.wolfram.com/वेक्टर.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en|quote=वेक्टरs can be added together (vector addition), subtracted (vector subtraction) ...}}</ref> फलन रचना संचालन का उपयोग करके घुमावों को जोड़ा जा सकता है, पहला घुमाव और फिर दूसरा घुमाव। [[सेट (गणित)|सेट]] पर संचालन में बाइनरी संचालन यूनियन और चौराहे और [[पूरकता (गणित)|पूरकता]] के यूनरी संचालन सम्मलित होते है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=मिलन|url=https://mathworld.wolfram.com/मिलन.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=चौराहा|url=https://mathworld.wolfram.com/चौराहा.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=पूरक|url=https://mathworld.wolfram.com/पूरक.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> फलनों की संचालनों में रचना और [[कनवल्शन]] सम्मलित होते है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=संघटन|url=https://mathworld.wolfram.com/संघटन.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=कनवल्शन|url=https://mathworld.wolfram.com/कनवल्शन.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> | ||
संचालनों को इसके डोमेन के हर संभावित मूल्य के लिए परिभाषित नहीं किया जा सकता है। उदाहरण के लिए, वास्तविक संख्याओं में शून्य से विभाजित नहीं किया जा सकता है<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Division by Zero|url=https://mathworld.wolfram.com/DivisionbyZero.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> या ऋणात्मक संख्याओं का वर्गमूल नहीं लिया जा सकता है। वे मान जिनके लिए किसी संचालन को परिभाषित किया जाता है, एक समुच्चय होता है जिसे उसकी परिभाषा का डोमेन या सक्रिय डोमेन कहा जाता है। जिस सेट में उत्पादित मूल्य होते | संचालनों को इसके डोमेन के हर संभावित मूल्य के लिए परिभाषित नहीं किया जा सकता है। उदाहरण के लिए, वास्तविक संख्याओं में शून्य से विभाजित नहीं किया जा सकता है<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Division by Zero|url=https://mathworld.wolfram.com/DivisionbyZero.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> या ऋणात्मक संख्याओं का वर्गमूल नहीं लिया जा सकता है। वे मान जिनके लिए किसी संचालन को परिभाषित किया जाता है, एक समुच्चय होता है जिसे उसकी परिभाषा का डोमेन या सक्रिय डोमेन कहा जाता है। जिस सेट में उत्पादित मूल्य होते है उसे [[कोडोमेन]] कहा जाता है, लेकिन संचालन द्वारा प्राप्त वास्तविक मूल्यों का सेट इसकी परिभाषा, सक्रिय कोडोमेन, छवि या श्रेणी का कोडोमेन है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=कार्यक्षेत्र|url=https://mathworld.wolfram.com/कार्यक्षेत्र.html|access-date=2020-08-08|website=mathworld.wolfram.com|language=en}}</ref> उदाहरण के लिए, वास्तविक संख्या में, वर्गाकार संचालन केवल गैर-ऋणात्मक संख्याएँ उत्पन्न करती है, कोडोमेन वास्तविक संख्याओं का समुच्चय है, लेकिन श्रेणी गैर-ऋणात्मक संख्या है। | ||
संचालनों में असमान वस्तुएं सम्मलित हो सकती | संचालनों में असमान वस्तुएं सम्मलित हो सकती है: एक सदिश को एक [[अदिश (गणित)]] से गुणा करके दूसरा सदिश बनाया जा सकता है (एक संचालन जिसे स्केलर गुणन के रूप में जाना जाता है),<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Scalar Multiplication|url=https://mathworld.wolfram.com/ScalarMultiplication.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> और दो सदिशों पर आंतरिक उत्पाद संचालन एक मात्रा उत्पन्न करता है जो स्केलर होता है।<ref>{{Cite book|last1=Jain|first1=P. K.|url=https://books.google.com/books?id=yZ68h97pnAkC&pg=PA203|title=Functional Analysis|last2=Ahmad|first2=Khalil|last3=Ahuja|first3=Om P.|date=1995|publisher=New Age International|isbn=978-81-224-0801-0|language=en}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Inner Product|url=https://mathworld.wolfram.com/InnerProduct.html|access-date=2020-07-27|website=mathworld.wolfram.com|language=en}}</ref> एक संचालन में कुछ गुण हो सकते है या नहीं भी हो सकते है, उदाहरण के लिए यह साहचर्य, [[विनिमेय|क्रमविनिमेय]], एंटीकोम्यूटेटिव, आइडेम्पोटेंट, और इसी तरह हो सकता है। | ||
संयुक्त मूल्यों को | संयुक्त मूल्यों को , तर्क या इनपुट कहा जाता है, और उत्पादित मूल्य को मूल्य, परिणाम या आउटपुट कहा जाता है। संचालन में दो से अधिक इनपुट हो सकते है (शून्य इनपुट और असीम रूप से कई इनपुट<ref name=":1" /> के स्थिति सहित) कई इनपुट हो सकते है। | ||
एक | एक संक्रियक एक संचालन के समान है जिसमें यह प्रतीक या संचालन को निरूपित करने के लिए उपयोग की जाने वाली प्रक्रिया को संदर्भित करता है, इसलिए उनका दृष्टिकोण अलग होता है। उदाहरण के लिए, जब आप संफलन और परिणाम पर ध्यान केंद्रित करते है, तो अधिकांशतः "जोड़ने के संचालन" के बारे में बात करता है, लेकिन प्रक्रिया पर ध्यान केंद्रित करते समय "अतिरिक्त संक्रियक" (संभवतः ही कभी "जोड़ने का संक्रियक") पर बदलता है, या अधिक प्रतीकात्मक दृष्टिकोण से, फलन {{nowrap|+: ''X'' × ''X'' → ''X''}} होता है। | ||
== परिभाषा == | == परिभाषा == | ||
एक n-एरी संचालन ω से X1, …, Xn से Y एक | एक n-एरी संचालन ω से X1, …, Xn से Y एक फलन ω: X1 × … × Xn → Y होता है। सेट X1 × … × Xn को संचालन का डोमेन कहा जाता है, सेट Y को कोडोमेन कहा जाता है, संचालन और निश्चित गैर-ऋणात्मक पूर्णांक n (संफलन की संख्या) को संचालन की एरिटी कहा जाता है। इस प्रकार एक एकरी संचालन में एरिटी एक होती है, और एक द्विआधारी संचालन में एरिटी दो होती है। एरीटी शून्य का एक संचालन होता है, जिसे शून्य संचालन कहा जाता है, केवल कोडोमेन Y का एक तत्व होता है। एक n-एरी संचालन को एक {{nowrap|(''n'' + 1)}}-एरी [[परिमित संबंध|संबंध]] के रूप में भी देखा जा सकता है जो इसके n इनपुट डोमेन पर कुल है और आउटपुट डोमेन पर अद्वितीय है। | ||
एक n-एरी आंशिक संचालन ω से {{nowrap|''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>}} से Y एक आंशिक फलन {{nowrap|''ω'': ''X''<sub>1</sub> × … × ''X''<sub>''n''</sub> → ''Y''}} है। एक n-एरी आंशिक संचालन को {{nowrap|(''n'' + 1)}}-ऐरी संबंध के रूप में भी देखा जा सकता है अपने आउटपुट डोमेन पर अद्वितीय है। | एक n-एरी आंशिक संचालन ω से {{nowrap|''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>}} से Y एक आंशिक फलन {{nowrap|''ω'': ''X''<sub>1</sub> × … × ''X''<sub>''n''</sub> → ''Y''}} है। एक n-एरी आंशिक संचालन को {{nowrap|(''n'' + 1)}}-ऐरी संबंध के रूप में भी देखा जा सकता है अपने आउटपुट डोमेन पर अद्वितीय है। | ||
उपरोक्त वर्णन करता है कि सामान्यतः | उपरोक्त वर्णन करता है कि सामान्यतः संफलन की परिमित संख्या (मान 'n'') का संदर्भ देते हुए, जिसे सामान्यतः एक परिमित संचालन कहा जाता है। ऐसे स्पष्ट विस्तार है जहां एरिटी को अनंत क्रमिक संख्या या प्रमुख संख्या के रूप में लिया जाता है,<ref name=":1" />या संफलन को अनुक्रमणित करने वाला एक मनमाना सेट भी लिया जाता है। उपरोक्त वर्णन करता है कि सामान्यतः संफलन की परिमित संख्या (मान n) का संदर्भ देते हुए, जिसे सामान्यतः एक परिमित संचालन कहा जाता है। ऐसे स्पष्ट विस्तार है जहां एरिटी को एक अनंत क्रमसूचक या प्रमुख,<ref name=":1" />'' ''या यहां तक कि एक मनमाना सेट जो कि संफलनों को अनुक्रमणित करता है।'' | ||
अधिकांशतः, संचालन शब्द के प्रयोग का मतलब है कि | अधिकांशतः, संचालन शब्द के प्रयोग का मतलब होता है कि फलन के डोमेन में कोडोमेन की शक्ति सम्मलित होती है (अर्थात कोडोमेन की एक या एक से अधिक प्रतियों का कार्टेशियन उत्पाद),<ref>{{cite book|chapter=Chapter II, Definition 1.1|first1=S. N.|last1=Burris|first2=H. P.|last2=Sankappanavar|title=A Course in Universal Algebra|publisher=Springer|date=1981|url=http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html}}</ref> चूंकि यह किसी भी तरह से सार्वभौमिक नहीं है, जैसा कि [[डॉट उत्पाद]] की स्थिति, जहां सदिश को गुणा किया जाता है और परिणामस्वरूप एक स्केलर होता है। एक n-एरी संचालन {{nowrap|''ω'': ''X''<sup>''n''</sup> → ''X''}} एक आंतरिक संचालन कहलाती है। एक n-एरी संचालन {{nowrap|''ω'': ''X''<sup>''i''</sup> × ''S'' × ''X''<sup>''n'' − ''i'' − 1</sup> → ''X''}} जहां {{nowrap|0 ≤ ''i'' < ''n''}} को स्केलर सेट या संक्रियक सेट S द्वारा बाहरी संचालन कहा जाता है। विशेष रूप से बाइनरी संचालन के लिए, {{nowrap|''ω'': ''S'' × ''X'' → ''X''}} को S द्वारा बाएँ-बाहरी संचालन कहा जाता है, और {{nowrap|''ω'': ''X'' × ''S'' → ''X''}} को S द्वारा दाएँ-बाहरी संचालन कहा जाता है। बाहरी संचालन का एक उदाहरण [[वेक्टर जोड़|अदिश गुणन]] होता है, जहां एक सदिश को एक अदिश से गुणा किया जाता है और परिणाम सदिश होता है। | ||
एक n-एरी | एक n-एरी बहुफलन या बहुसंचालन ω एक सेट के कार्टेशियन पावर से उस सेट के सबसेट में एक मैपिंग है, औपचारिक रूप से {{math|''ω'': ''X''<sup>''n''</sup> → {{mathcal|P}}(''X'')}} होता है।<ref>{{cite journal |last1=Brunner |first1=J. |last2=Drescher |first2=Th. |last3=Pöschel |first3=R. |last4=Seidel |first4=H. |date=Jan 1993 |title=Power algebras: clones and relations |url=https://wwwpub.zih.tu-dresden.de/~poesch-r/poePUBLICATIONSpdf/1993_Brunner_Dre_Poe_Sei.pdf |journal=EIK (Elektronische Informationsverarbeitung und Kybernetik) |volume=29 |issue= |pages=293-302 |doi= |access-date=2022-10-25}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* परिमित संबंध | * परिमित संबंध | ||
* [[हाइपरऑपरेशन|हाइपरसंचालन]] | * [[हाइपरऑपरेशन|हाइपरसंचालन]] | ||
* [[इंफिक्स नोटेशन]] | * [[इंफिक्स नोटेशन]] | ||
* [[ऑपरेटर (गणित)]] | * [[ऑपरेटर (गणित)|संक्रियक (गणित)]] | ||
* [[कार्रवाई के आदेश]] | * [[कार्रवाई के आदेश]] | ||
Revision as of 16:48, 18 February 2023
गणित में, ऑपरेशन एक ऐसा फलन है जो शून्य या अधिक इनपुट मान (जिन्हें "संचालन" या "तर्क" भी कहा जाता है) को एक अच्छी तरह से परिभाषित आउटपुट मान पर ले जाता है। संफलन की संख्या संचालन की एरिटी होती है।
सबसे अधिक अध्ययन किए जाने वाले संचालन बाइनरी संचालन है (अर्थात, एरिटी 2 के संचालन), जैसे कि जोड़ और गुणा, और यूनरी संचालन (अर्थात, 1 के संचालन), जैसे योगज प्रतिलोम और गुणात्मक प्रतिलोम। शून्य संचालन, या अशक्त संचालन, एक नियतांक (गणित) है।[1][2] मिश्रित उत्पाद एरिटी 3 के संचालन का एक उदाहरण है, जिसे त्रिगुट संचालन भी कहा जाता है।
सामान्यतः, परिमित होने के लिए एरिटी लिया जाता है। चूंकि, असीमित संचालन को कभी-कभी माना जाता है,[1] जिस स्थिति में परिमित एरिटी के "सामान्य" संचालनों को परिमित संचालन कहा जाता है।
एक आंशिक संचालन को एक संचालन के समान ही परिभाषित किया जाता है, लेकिन एक फलन के स्थान पर एक आंशिक फलन के साथ परिभाषित किया जाता है।
संचालन के प्रकार
संचालन के दो सामान्य प्रकार होते है: यूनरी संचालन और बाइनरी संचालन। एकात्मक संचालनों में केवल एक मान सम्मलित होता है, जैसे कि निषेध फलन और त्रिकोणमितीय फलन।[3] दूसरी ओर, द्विआधारी संचालनएं दो मान लेती है, और इसमें जोड़, घटाव, गुणा, भाग और घातांक सम्मलित होते है।[4]
संचालनों में संख्याओं के अतिरिक्त अन्य गणितीय वस्तुएँ सम्मलित हो सकती है। तार्किक मान सही और गलत तर्क संचालन का उपयोग करके जोड़ा जा सकता है, जैसे कि और, या, और नहीं। सदिशों को जोड़ा और घटाया जा सकता है।[5] फलन रचना संचालन का उपयोग करके घुमावों को जोड़ा जा सकता है, पहला घुमाव और फिर दूसरा घुमाव। सेट पर संचालन में बाइनरी संचालन यूनियन और चौराहे और पूरकता के यूनरी संचालन सम्मलित होते है।[6][7][8] फलनों की संचालनों में रचना और कनवल्शन सम्मलित होते है।[9][10]
संचालनों को इसके डोमेन के हर संभावित मूल्य के लिए परिभाषित नहीं किया जा सकता है। उदाहरण के लिए, वास्तविक संख्याओं में शून्य से विभाजित नहीं किया जा सकता है[11] या ऋणात्मक संख्याओं का वर्गमूल नहीं लिया जा सकता है। वे मान जिनके लिए किसी संचालन को परिभाषित किया जाता है, एक समुच्चय होता है जिसे उसकी परिभाषा का डोमेन या सक्रिय डोमेन कहा जाता है। जिस सेट में उत्पादित मूल्य होते है उसे कोडोमेन कहा जाता है, लेकिन संचालन द्वारा प्राप्त वास्तविक मूल्यों का सेट इसकी परिभाषा, सक्रिय कोडोमेन, छवि या श्रेणी का कोडोमेन है।[12] उदाहरण के लिए, वास्तविक संख्या में, वर्गाकार संचालन केवल गैर-ऋणात्मक संख्याएँ उत्पन्न करती है, कोडोमेन वास्तविक संख्याओं का समुच्चय है, लेकिन श्रेणी गैर-ऋणात्मक संख्या है।
संचालनों में असमान वस्तुएं सम्मलित हो सकती है: एक सदिश को एक अदिश (गणित) से गुणा करके दूसरा सदिश बनाया जा सकता है (एक संचालन जिसे स्केलर गुणन के रूप में जाना जाता है),[13] और दो सदिशों पर आंतरिक उत्पाद संचालन एक मात्रा उत्पन्न करता है जो स्केलर होता है।[14][15] एक संचालन में कुछ गुण हो सकते है या नहीं भी हो सकते है, उदाहरण के लिए यह साहचर्य, क्रमविनिमेय, एंटीकोम्यूटेटिव, आइडेम्पोटेंट, और इसी तरह हो सकता है।
संयुक्त मूल्यों को , तर्क या इनपुट कहा जाता है, और उत्पादित मूल्य को मूल्य, परिणाम या आउटपुट कहा जाता है। संचालन में दो से अधिक इनपुट हो सकते है (शून्य इनपुट और असीम रूप से कई इनपुट[1] के स्थिति सहित) कई इनपुट हो सकते है।
एक संक्रियक एक संचालन के समान है जिसमें यह प्रतीक या संचालन को निरूपित करने के लिए उपयोग की जाने वाली प्रक्रिया को संदर्भित करता है, इसलिए उनका दृष्टिकोण अलग होता है। उदाहरण के लिए, जब आप संफलन और परिणाम पर ध्यान केंद्रित करते है, तो अधिकांशतः "जोड़ने के संचालन" के बारे में बात करता है, लेकिन प्रक्रिया पर ध्यान केंद्रित करते समय "अतिरिक्त संक्रियक" (संभवतः ही कभी "जोड़ने का संक्रियक") पर बदलता है, या अधिक प्रतीकात्मक दृष्टिकोण से, फलन +: X × X → X होता है।
परिभाषा
एक n-एरी संचालन ω से X1, …, Xn से Y एक फलन ω: X1 × … × Xn → Y होता है। सेट X1 × … × Xn को संचालन का डोमेन कहा जाता है, सेट Y को कोडोमेन कहा जाता है, संचालन और निश्चित गैर-ऋणात्मक पूर्णांक n (संफलन की संख्या) को संचालन की एरिटी कहा जाता है। इस प्रकार एक एकरी संचालन में एरिटी एक होती है, और एक द्विआधारी संचालन में एरिटी दो होती है। एरीटी शून्य का एक संचालन होता है, जिसे शून्य संचालन कहा जाता है, केवल कोडोमेन Y का एक तत्व होता है। एक n-एरी संचालन को एक (n + 1)-एरी संबंध के रूप में भी देखा जा सकता है जो इसके n इनपुट डोमेन पर कुल है और आउटपुट डोमेन पर अद्वितीय है।
एक n-एरी आंशिक संचालन ω से X1, …, Xn से Y एक आंशिक फलन ω: X1 × … × Xn → Y है। एक n-एरी आंशिक संचालन को (n + 1)-ऐरी संबंध के रूप में भी देखा जा सकता है अपने आउटपुट डोमेन पर अद्वितीय है।
उपरोक्त वर्णन करता है कि सामान्यतः संफलन की परिमित संख्या (मान 'n) का संदर्भ देते हुए, जिसे सामान्यतः एक परिमित संचालन कहा जाता है। ऐसे स्पष्ट विस्तार है जहां एरिटी को अनंत क्रमिक संख्या या प्रमुख संख्या के रूप में लिया जाता है,[1]या संफलन को अनुक्रमणित करने वाला एक मनमाना सेट भी लिया जाता है। उपरोक्त वर्णन करता है कि सामान्यतः संफलन की परिमित संख्या (मान n) का संदर्भ देते हुए, जिसे सामान्यतः एक परिमित संचालन कहा जाता है। ऐसे स्पष्ट विस्तार है जहां एरिटी को एक अनंत क्रमसूचक या प्रमुख,[1] या यहां तक कि एक मनमाना सेट जो कि संफलनों को अनुक्रमणित करता है।
अधिकांशतः, संचालन शब्द के प्रयोग का मतलब होता है कि फलन के डोमेन में कोडोमेन की शक्ति सम्मलित होती है (अर्थात कोडोमेन की एक या एक से अधिक प्रतियों का कार्टेशियन उत्पाद),[16] चूंकि यह किसी भी तरह से सार्वभौमिक नहीं है, जैसा कि डॉट उत्पाद की स्थिति, जहां सदिश को गुणा किया जाता है और परिणामस्वरूप एक स्केलर होता है। एक n-एरी संचालन ω: Xn → X एक आंतरिक संचालन कहलाती है। एक n-एरी संचालन ω: Xi × S × Xn − i − 1 → X जहां 0 ≤ i < n को स्केलर सेट या संक्रियक सेट S द्वारा बाहरी संचालन कहा जाता है। विशेष रूप से बाइनरी संचालन के लिए, ω: S × X → X को S द्वारा बाएँ-बाहरी संचालन कहा जाता है, और ω: X × S → X को S द्वारा दाएँ-बाहरी संचालन कहा जाता है। बाहरी संचालन का एक उदाहरण अदिश गुणन होता है, जहां एक सदिश को एक अदिश से गुणा किया जाता है और परिणाम सदिश होता है।
एक n-एरी बहुफलन या बहुसंचालन ω एक सेट के कार्टेशियन पावर से उस सेट के सबसेट में एक मैपिंग है, औपचारिक रूप से ω: Xn → P(X) होता है।[17]
यह भी देखें
- परिमित संबंध
- हाइपरसंचालन
- इंफिक्स नोटेशन
- संक्रियक (गणित)
- कार्रवाई के आदेश
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 "Algebraic operation - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2019-12-10.
- ↑ DeMeo, William (August 26, 2010). "Universal Algebra Notes" (PDF). math.hawaii.edu. Retrieved 2019-12-09.
- ↑ Weisstein, Eric W. "Unary Operation". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "Binary Operation". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "वेक्टर". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
वेक्टरs can be added together (vector addition), subtracted (vector subtraction) ...
- ↑ Weisstein, Eric W. "मिलन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "चौराहा". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "पूरक". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "संघटन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "कनवल्शन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "Division by Zero". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Weisstein, Eric W. "कार्यक्षेत्र". mathworld.wolfram.com (in English). Retrieved 2020-08-08.
- ↑ Weisstein, Eric W. "Scalar Multiplication". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Jain, P. K.; Ahmad, Khalil; Ahuja, Om P. (1995). Functional Analysis (in English). New Age International. ISBN 978-81-224-0801-0.
- ↑ Weisstein, Eric W. "Inner Product". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
- ↑ Burris, S. N.; Sankappanavar, H. P. (1981). "Chapter II, Definition 1.1". A Course in Universal Algebra. Springer.
- ↑ Brunner, J.; Drescher, Th.; Pöschel, R.; Seidel, H. (Jan 1993). "Power algebras: clones and relations" (PDF). EIK (Elektronische Informationsverarbeitung und Kybernetik). 29: 293–302. Retrieved 2022-10-25.