पूर्णतया अवयव: Difference between revisions
No edit summary |
No edit summary |
||
Line 33: | Line 33: | ||
| एन-से-एन वर्ग [[matrix (mathematics)|आव्यूह]] | | एन-से-एन वर्ग [[matrix (mathematics)|आव्यूह]] | ||
| || [[Matrix multiplication|आव्यूह गुणन]] | | || [[Matrix multiplication|आव्यूह गुणन]] | ||
| || [[zero matrix| | | || [[zero matrix|सभी शून्यों का मैट्रिक्स]] | ||
|- | |- | ||
| rowspan=2 | [[Extended real number line|विस्तारित वास्तविक संख्या]] | | rowspan=2 | [[Extended real number line|विस्तारित वास्तविक संख्या]] | ||
Line 44: | Line 44: | ||
| [[Set (mathematics)|समुच्चयों]] | | [[Set (mathematics)|समुच्चयों]] | ||
| ∩ || प्रतिच्छेदन | | ∩ || प्रतिच्छेदन | ||
| ∅ || [[Empty set]] | | ∅ || [[Empty set|खाली सेट]] | ||
|- | |- | ||
| एक समुच्चय एम के उपसमुच्चय | | एक समुच्चय एम के उपसमुच्चय | ||
Line 51: | Line 51: | ||
|- | |- | ||
| rowspan=2 | [[Boolean algebra|बूलियन तर्क]] | | rowspan=2 | [[Boolean algebra|बूलियन तर्क]] | ||
| ∧ || [[Logical conjunction| | | ∧ || [[Logical conjunction|तार्किक और]] | ||
| ⊥ || | | ⊥ || असत्यता | ||
|- | |- | ||
| ∨ || [[Logical disjunction| | | ∨ || [[Logical disjunction|तार्किक या]] | ||
| ⊤ || | | ⊤ || सत्य | ||
|} | |} | ||
Revision as of 19:47, 1 March 2023
गणित में, एक शोषक तत्व (या नष्ट करने वाला तत्व) उस समुच्चय पर बाइनरी ऑपरेशन के संबंध में एक समुच्चय (गणित) का एक विशेष प्रकार का तत्व है। समुच्चय के किसी भी तत्व के साथ अवशोषक तत्व के संयोजन का परिणाम अवशोषी तत्व ही है। अर्धसमूह सिद्धांत में, अवशोषक तत्व को शून्य तत्व कहा जाता है[1][2] क्योंकि उल्लेखनीय अपवाद के साथ, शून्य तत्व के साथ भ्रम का कोई खतरा नहीं है: योगात्मक संकेतन के अनुसार शून्य स्वाभाविक रूप से, एक मोनोइड के तटस्थ तत्व को निरूपित कर सकता है। इस लेख में शून्य तत्व और शोषक तत्व पर्यायवाची हैं।
परिभाषा
औपचारिक रूप से, चलो (S, •) एक समुच्चय S है जिसमें एक बंद बाइनरी ऑपरेशन • (मैग्मा (बीजगणित) के रूप में जाना जाता है) हैं। 'शून्य तत्व' एक ऐसा तत्व z है, जो S, z • s = s • z = z में सभी s के लिए है। इस धारणा को बाएँ शून्य की धारणाओं में परिष्कृत किया जा सकता है, जहाँ किसी को केवल z • s = z, और दाएँ शून्य उसकी आवश्यकता होती है, जहाँ s • z = z है।[2]
शोषक करने वाले तत्व विशेष रूप से उपसमूह, विशेष रूप से अर्धवलय के गुणक उपसमूह के लिए रोचक होते हैं। 0 के साथ अर्धवलय के स्थिति में, अवशोषक तत्व की परिभाषा कभी-कभी निश्चित होती है ताकि 0 को शोषक करने की आवश्यकता न हो; अन्यथा, 0 ही एकमात्र अवशोषक तत्व होगा।[3]
गुण
- यदि किसी मैग्मा में बायाँ शून्य z और दायाँ शून्य z′ हैं, तो z = z • z′ = z′ के बाद से इसका शून्य होगा।
- मैग्मा में अधिकतम एक शून्य तत्व हो सकता है।
उदाहरण
- अवशोषक तत्व का सबसे प्रसिद्ध उदाहरण प्राथमिक बीजगणित से आता है, जहां किसी भी संख्या को शून्य से गुणा करने पर शून्य के बराबर होता है। शून्य इस प्रकार एक अवशोषक तत्व है।
- किसी भी वलय (गणित) का शून्य भी अवशोषक तत्व होता है। वलय R के एक तत्व r के लिए, r0=r(0+0)=r0+r0, इसलिए 0=r0, क्योंकि शून्य अद्वितीय तत्व a है जिसके लिए r-r=a वलय R में किसी भी r के लिए है। यह गुण धारण करता है rng (गणित) में भी सत्य है क्योंकि गुणात्मक पहचान की आवश्यकता नहीं है।
- आईईईई-754 मानक में परिभाषित फ़्लोटिंग पॉइंट अंकगणित में विशेष मान होता है जिसे Not-a-Number ( NaN ) कहा जाता है। यह हर ऑपरेशन के लिए अवशोषक तत्व है; अर्थात।, x + NaN = NaN + x = NaN, x − NaN = NaN − x = NaN, आदि।
- समुच्चय एक्स पर बाइनरी संबंधों का समुच्चय, संबंधों की संरचना के साथ शून्य के साथ मोनोइड बनाता है, जहां शून्य तत्व खाली संबंध (खाली समुच्चय) होता है।
- बंद अंतराल H = [0, 1] साथ x • y = min(x, y) भी शून्य के साथ मोनोइड है, और शून्य तत्व 0 है।
- और अधिक उदाहरण के लिये:
अनुक्षेत्र | कार्यवाही | अवशोषका | ||
---|---|---|---|---|
वास्तविक संख्या | ⋅ | गुणन | 0 | |
पूर्णांकों | महत्तम सामान्य भाजक | 1 | ||
एन-से-एन वर्ग आव्यूह | आव्यूह गुणन | सभी शून्यों का मैट्रिक्स | ||
विस्तारित वास्तविक संख्या | न्यूनतम/अनंत | −∞ | ||
अधिकतम/सर्वोच्च | +∞ | |||
समुच्चयों | ∩ | प्रतिच्छेदन | ∅ | खाली सेट |
एक समुच्चय एम के उपसमुच्चय | ∪ | यूनियन | M | |
बूलियन तर्क | ∧ | तार्किक और | ⊥ | असत्यता |
∨ | तार्किक या | ⊤ | सत्य |
यह भी देखें
- Idempotent (अंगूठी सिद्धांत) – रिंग का एक तत्व x ऐसा है कि x2</सुप> = एक्स
- पहचान तत्व
- अशक्त अर्धसमूह
टिप्पणियाँ
संदर्भ
- Howie, John M. (1995). Fundamentals of Semigroup Theory. Clarendon Press. ISBN 0-19-851194-9.
- M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7.
- Golan, Jonathan S. (1999). Semirings and Their Applications. Springer. ISBN 0-7923-5786-8.
बाहरी संबंध
- Absorbing element at PlanetMath