नाइट्रोजन -13: Difference between revisions
(Created page with "{{Short description|Isotope of nitrogen}} {{Infobox isotope | alternate_names = | symbol =N | mass_number =13 | mass = | num_neutrons =6 | num_protons =7 | abundance =...") |
No edit summary |
||
Line 35: | Line 35: | ||
}} | }} | ||
नाइट्रोजन-13 (<sup>13</sup>N) [[पोजीट्रान एमिशन टोमोग्राफी]] ( | नाइट्रोजन-13 (<sup>13</sup>N) [[पोजीट्रान एमिशन टोमोग्राफी]] (पीईटी) में प्रयुक्त [[नाइट्रोजन]] का [[रेडियो आइसोटोप]] है। इसका आधा जीवन दस मिनट से थोड़ा कम है, इसलिए इसे पीईटी साइट पर बनाया जाना चाहिए। इस उद्देश्य के लिए [[साइक्लोट्रॉन]] का उपयोग किया जा सकता है। | ||
पीईटी [[मायोकार्डियल परफ्यूजन इमेजिंग]] के लिए [[अमोनिया]] अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है। | पीईटी [[मायोकार्डियल परफ्यूजन इमेजिंग]] के लिए [[अमोनिया]] अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है। | ||
== उत्पादन == | == उत्पादन == | ||
नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में | नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में 13N-लेबल वाला अमोनिया के रूप में किया जाता है।इथेनॉल की ट्रेस मात्रा के साथ शुद्ध पानी के लक्ष्य का उपयोग करके इसे मेडिकल साइक्लोट्रॉन के साथ उत्पादित किया जा सकता है। अभिकारक ऑक्सीजन -16 हैं (एच के रूप में मौजूद हैंH<sub>2</sub>O) और एक प्रोटॉन, और उत्पाद नाइट्रोजन -13 और एक अल्फा कण (हीलियम -4) हैं। | ||
:<sup>1</sup> | :<sup>1</sup>H + <sup>16</sup>O → <sup>13</sup>N + <sup>4</sup>He | ||
प्रोटॉन को 5.66 MeV से अधिक कुल ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए दहलीज ऊर्जा है,<ref name=13Nplos>{{cite journal |last1=Islam |first1=M. R. |last2=Beni |first2=M. S. |last3=Ng |first3=C |display-authors=et al. |date=2022 |title=Proton range monitoring using <sup>13</sup>N peak for proton therapy applications |journal=PLoS ONE |volume=17 |issue=2 |pages=e0263521-1–e0263521-18 |doi=10.1371/journal.pone.0263521|doi-access=free }}</ref> चूंकि यह [[एन्दोठेर्मिक]] है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए [[ऊर्जा]] की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, [[परमाणु प्रतिक्रिया]] को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है। | प्रोटॉन को 5.66 MeV से अधिक कुल ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए दहलीज ऊर्जा है,<ref name=13Nplos>{{cite journal |last1=Islam |first1=M. R. |last2=Beni |first2=M. S. |last3=Ng |first3=C |display-authors=et al. |date=2022 |title=Proton range monitoring using <sup>13</sup>N peak for proton therapy applications |journal=PLoS ONE |volume=17 |issue=2 |pages=e0263521-1–e0263521-18 |doi=10.1371/journal.pone.0263521|doi-access=free }}</ref> चूंकि यह [[एन्दोठेर्मिक]] है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए [[ऊर्जा]] की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, [[परमाणु प्रतिक्रिया]] को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है। |
Revision as of 09:36, 25 February 2023
General | |
---|---|
Symbol | 13N |
Names | नाइट्रोजन -13, 13N, N-13 |
Protons (Z) | 7 |
Neutrons (N) | 6 |
Nuclide data | |
Half-life (t1/2) | 9.97 min |
Parent isotopes | 13O (β+) |
Decay modes | |
Decay mode | Decay energy (MeV) |
β+ | 1.2003 |
Isotopes of nitrogen Complete table of nuclides |
नाइट्रोजन-13 (13N) पोजीट्रान एमिशन टोमोग्राफी (पीईटी) में प्रयुक्त नाइट्रोजन का रेडियो आइसोटोप है। इसका आधा जीवन दस मिनट से थोड़ा कम है, इसलिए इसे पीईटी साइट पर बनाया जाना चाहिए। इस उद्देश्य के लिए साइक्लोट्रॉन का उपयोग किया जा सकता है।
पीईटी मायोकार्डियल परफ्यूजन इमेजिंग के लिए अमोनिया अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है।
उत्पादन
नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में 13N-लेबल वाला अमोनिया के रूप में किया जाता है।इथेनॉल की ट्रेस मात्रा के साथ शुद्ध पानी के लक्ष्य का उपयोग करके इसे मेडिकल साइक्लोट्रॉन के साथ उत्पादित किया जा सकता है। अभिकारक ऑक्सीजन -16 हैं (एच के रूप में मौजूद हैंH2O) और एक प्रोटॉन, और उत्पाद नाइट्रोजन -13 और एक अल्फा कण (हीलियम -4) हैं।
- 1H + 16O → 13N + 4He
प्रोटॉन को 5.66 MeV से अधिक कुल ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए दहलीज ऊर्जा है,[1] चूंकि यह एन्दोठेर्मिक है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए ऊर्जा की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, परमाणु प्रतिक्रिया को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है।
ऊर्जा अंतर वास्तव में 5.22 MeV है, लेकिन अगर प्रोटॉन केवल इस ऊर्जा की आपूर्ति करता है, तो अभिकारक बिना गतिज ऊर्जा के बनेंगे। संवेग के रूप में संरक्षण कानून होना चाहिए, प्रोटॉन द्वारा आपूर्ति की जाने वाली वास्तविक ऊर्जा निम्न द्वारा दी गई है:
जलीय घोल में इथेनॉल (~5mM/लीटर की सांद्रता पर) की उपस्थिति अमोनिया के सुविधाजनक गठन की अनुमति देती है क्योंकि नाइट्रोजन -13 का उत्पादन होता है। उत्पादन के अन्य मार्ग 13एन-लेबल अमोनिया मौजूद है, जिनमें से कुछ डायग्नोस्टिक इमेजिंग के लिए अन्य प्रकाश रेडियोन्यूक्लाइड्स के सह-उत्पादन की सुविधा प्रदान करते हैं।[2][3]
सीएनओ चक्र में नाइट्रोजन -13 एक महत्वपूर्ण भूमिका निभाता है, जो सूर्य के सौर द्रव्यमान के 1.5 गुना से अधिक बड़े पैमाने पर मुख्य-अनुक्रम सितारों में ऊर्जा का प्रमुख स्रोत है।[4]
नाइट्रोजन-13 के उत्पादन में बिजली की भूमिका हो सकती है।[5][6]
बाहरी संबंध
- PET site of the University of Melbourne
संदर्भ
- ↑ Islam, M. R.; Beni, M. S.; Ng, C; et al. (2022). "Proton range monitoring using 13N peak for proton therapy applications". PLoS ONE. 17 (2): e0263521-1–e0263521-18. doi:10.1371/journal.pone.0263521.
- ↑ Biricova, Veronika; Kuruc, Jozef (2007). "Synthesis of the radiopharmaceuticals for positron emission tomography". U.S. Department of Energy, Office of Scientific and Technical Information. Retrieved 4 August 2022.
- ↑ Yokell, Daniel L.; Rice, Peter A.; Neelamegam, Ramesh; El Fakhri, Georges (13 May 2020). "Development, validation and regulatory acceptance of improved purification and simplified quality control of [13N] Ammonia". EJNMMI Radiopharm Chem. 5 (11). doi:10.1186/s41181-020-00097-7. PMID 32405797. Retrieved 4 August 2022.
- ↑ Phillips, A.C. (1994). The Physics of Stars. John Wiley & Sons. ISBN 0-471-94057-7.
- ↑ "Lightning, with a chance of antimatter". Phys.org. ScienceX. November 22, 2017. Retrieved November 24, 2017.
The gamma rays emitted in lightning have enough energy to knock a neutron out of atmospheric nitrogen
- ↑ Castelvecchi, Davide (November 22, 2017). "Lightning makes new isotopes". Nature. doi:10.1038/nature.2017.23033. Retrieved November 29, 2017.