नाइट्रोजन -13: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 14: Line 14:
  | decay_symbol =
  | decay_symbol =
  | decay_mass =
  | decay_mass =
  | decay_mode1 =  [[Electron capture]]
  | decay_mode1 =  [[इलेक्ट्रॉन ग्रहण]]
  | decay_energy1 =
  | decay_energy1 =
  | decay_mode2 = [[Positron emission|β<sup>+</sup>]]
  | decay_mode2 = [[पॉज़िट्रॉन उत्सर्जन|β<sup>+</sup>]]
  | decay_energy2 =1.2003
  | decay_energy2 =1.2003
  | decay_mode3 =
  | decay_mode3 =
Line 22: Line 22:
  | decay_mode4 =
  | decay_mode4 =
  | decay_energy4 =
  | decay_energy4 =
  | parent = Oxygen-13
  | parent = ऑक्सीजन-13
  | parent_symbol = O
  | parent_symbol = O
  | parent_mass = 13
  | parent_mass = 13
Line 35: Line 35:


}}
}}
नाइट्रोजन-13 (<sup>13</sup>N) [[पोजीट्रान एमिशन टोमोग्राफी]] (पीईटी) में प्रयुक्त [[नाइट्रोजन]] का [[रेडियो आइसोटोप]] है। इसका आधा जीवन दस मिनट से थोड़ा कम है, इसलिए इसे पीईटी साइट पर बनाया जाना चाहिए। इस उद्देश्य के लिए [[साइक्लोट्रॉन]] का उपयोग किया जा सकता है।
नाइट्रोजन-13 (<sup>13</sup>N) [[पोजीट्रान एमिशन टोमोग्राफी]] (पीईटी) में प्रयुक्त [[नाइट्रोजन]] का [[रेडियो आइसोटोप]] है। इसका अर्ध जीवन दस मिनट से थोड़ा अर्घ्य है, इसलिए इसे पीईटी साइट पर बनाया जाना चाहिए। इस उद्देश्य के लिए [[साइक्लोट्रॉन]] का उपयोग किया जा सकता है।


पीईटी [[मायोकार्डियल परफ्यूजन इमेजिंग]] के लिए [[अमोनिया]] अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है।
पीईटी [[मायोकार्डियल परफ्यूजन इमेजिंग]] के लिए [[अमोनिया]] अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है।


== उत्पादन ==
== उत्पादन ==
नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में 13N-लेबल वाला अमोनिया के रूप में किया जाता है। इथेनॉल की ट्रेस मात्रा के साथ शुद्ध पानी के लक्ष्य का उपयोग करके इसे मेडिकल साइक्लोट्रॉन के साथ उत्पादित किया जा सकता है। अभिकारक ऑक्सीजन -16 (H<sub>2</sub>Oके रूप में मौजूद) एवं प्रोटॉन हैं एवं नाइट्रोजन-13 एवं अल्फा कण (हीलियम(He) -4) उत्पाद हैं।
नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में 13N-लेबल वाला अमोनिया के रूप में किया जाता है। इथेनॉल की ट्रेस मात्रा के साथ शुद्ध पानी के लक्ष्य का उपयोग करके इसे मेडिकल साइक्लोट्रॉन के साथ उत्पादित किया जा सकता है। अभिकारक ऑक्सीजन -16 (H<sub>2</sub>Oके रूप में उपस्थित) एवं प्रोटॉन हैं एवं नाइट्रोजन-13 एवं अल्फा कण (हीलियम(He) -4) उत्पाद हैं।


:<sup>1</sup>H + <sup>16</sup>O → <sup>13</sup>N + <sup>4</sup>He
:<sup>1</sup>H + <sup>16</sup>O → <sup>13</sup>N + <sup>4</sup>He


प्रोटॉन को 5.66 MeV से अधिक कुल ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए दहलीज ऊर्जा है,<ref name=13Nplos>{{cite journal |last1=Islam |first1=M. R. |last2=Beni |first2=M. S. |last3=Ng |first3=C |display-authors=et al. |date=2022 |title=Proton range monitoring using <sup>13</sup>N peak for proton therapy applications |journal=PLoS ONE |volume=17 |issue=2 |pages=e0263521-1–e0263521-18 |doi=10.1371/journal.pone.0263521|doi-access=free }}</ref> चूंकि यह [[एन्दोठेर्मिक]] है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए [[ऊर्जा]] की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, [[परमाणु प्रतिक्रिया]] को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है।
प्रोटॉन को 5.66 MeV से अधिक ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए सीमा ऊर्जा है,<ref name=13Nplos>{{cite journal |last1=Islam |first1=M. R. |last2=Beni |first2=M. S. |last3=Ng |first3=C |display-authors=et al. |date=2022 |title=Proton range monitoring using <sup>13</sup>N peak for proton therapy applications |journal=PLoS ONE |volume=17 |issue=2 |pages=e0263521-1–e0263521-18 |doi=10.1371/journal.pone.0263521|doi-access=free }}</ref> चूंकि यह [[एन्दोठेर्मिक]] है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए [[ऊर्जा]] की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, [[परमाणु प्रतिक्रिया]] को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है।


ऊर्जा अंतर वास्तव में 5.22 MeV है, किन्तु अगर प्रोटॉन केवल इस ऊर्जा की आपूर्ति करता है, तो अभिकारक बिना [[गति]]ज ऊर्जा के बनेंगे। जैसा कि संवेग के रूप में [[संरक्षण कानून|संरक्षित किया जाना]] चाहिए, प्रोटॉन द्वारा आपूर्ति की जाने वाली वास्तविक ऊर्जा निम्न द्वारा दी गई है:
ऊर्जा अंतर वास्तव में 5.22 MeV है, किन्तु अगर प्रोटॉन केवल इस ऊर्जा की आपूर्ति करता है, तो अभिकारक बिना [[गति]]ज ऊर्जा के बनेंगे। जैसा कि संवेग के रूप में [[संरक्षण कानून|संरक्षित किया जाना]] चाहिए, प्रोटॉन द्वारा आपूर्ति की जाने वाली वास्तविक ऊर्जा निम्न द्वारा दी गई है:


:<math>K =(1+m/M) |E|</math>
:<math>K =(1+m/M) |E|</math>
जलीय घोल में इथेनॉल (~5mM/लीटर की सांद्रता पर) की उपस्थिति अमोनिया के सुविधाजनक गठन की अनुमति देती है क्योंकि नाइट्रोजन -13 का उत्पादन होता है। उत्पादन के अन्य मार्ग  <sup>13</sup>N-लेबल अमोनिया मौजूद है, जिनमें से कुछ डायग्नोस्टिक इमेजिंग के लिए अन्य प्रकाश रेडियोन्यूक्लाइड्स के सह-उत्पादन की सुविधा प्रदान करते हैं।<ref>{{cite web | last=Biricova | first=Veronika | last2=Kuruc | first2= Jozef | title=Synthesis of the radiopharmaceuticals for positron emission tomography | url=https://www.osti.gov/etdeweb/servlets/purl/20895812 | date=2007 | publisher=U.S. Department of Energy, Office of Scientific and Technical Information | access-date=4 August 2022}}</ref><ref>{{cite journal | journal=EJNMMI Radiopharm Chem. | volume=5 | issue=11 | pages= | doi=10.1186/s41181-020-00097-7 | date=13 May 2020 | pmid=32405797 | access-date=4 August 2022 | last1=Yokell | first1=Daniel L. | last2=Rice |first2=Peter A. | last3=Neelamegam | first3=Ramesh | last4=El Fakhri | first4=Georges | title=Development, validation and regulatory acceptance of improved purification and simplified quality control of [<sup>13</sup>N] Ammonia | url=https://pubmed.ncbi.nlm.nih.gov/32405797/| doi-access=free }}</ref>
जलीय घोल में इथेनॉल (~5mM/लीटर की सांद्रता पर) की उपस्थिति अमोनिया के सुविधाजनक गठन की अनुमति देती है, क्योंकि नाइट्रोजन -13 का उत्पादन होता है। उत्पादन के अन्य मार्ग  <sup>13</sup>N-लेबल अमोनिया उपस्थित है, जिनमें से कुछ डायग्नोस्टिक इमेजिंग के लिए अन्य प्रकाश रेडियोन्यूक्लाइड्स के सह-उत्पादन की सुविधा प्रदान करते हैं।<ref>{{cite web | last=Biricova | first=Veronika | last2=Kuruc | first2= Jozef | title=Synthesis of the radiopharmaceuticals for positron emission tomography | url=https://www.osti.gov/etdeweb/servlets/purl/20895812 | date=2007 | publisher=U.S. Department of Energy, Office of Scientific and Technical Information | access-date=4 August 2022}}</ref><ref>{{cite journal | journal=EJNMMI Radiopharm Chem. | volume=5 | issue=11 | pages= | doi=10.1186/s41181-020-00097-7 | date=13 May 2020 | pmid=32405797 | access-date=4 August 2022 | last1=Yokell | first1=Daniel L. | last2=Rice |first2=Peter A. | last3=Neelamegam | first3=Ramesh | last4=El Fakhri | first4=Georges | title=Development, validation and regulatory acceptance of improved purification and simplified quality control of [<sup>13</sup>N] Ammonia | url=https://pubmed.ncbi.nlm.nih.gov/32405797/| doi-access=free }}</ref>


[[File:CNO Cycle.svg|300px|right|thumb|CNO चक्र में N-13 की भूमिका।]][[सीएनओ चक्र|सीएनओ(CNO) चक्र]] में नाइट्रोजन -13 महत्वपूर्ण भूमिका निभाता है, जो सूर्य के [[सौर द्रव्यमान]] के 1.5 गुना से अधिक बड़े पैमाने पर मुख्य-अनुक्रम सितारों में ऊर्जा का प्रमुख स्रोत है।<ref>{{cite book|author=Phillips, A.C. |title=The Physics of Stars |publisher=John Wiley & Sons |year=1994|isbn=0-471-94057-7}}  
[[File:CNO Cycle.svg|300px|right|thumb|CNO चक्र में N-13 की भूमिका।]][[सीएनओ चक्र|सीएनओ(CNO) चक्र]] में नाइट्रोजन -13 महत्वपूर्ण भूमिका निभाता है, जो सूर्य के [[सौर द्रव्यमान]] के 1.5 गुना से अधिक बड़े पैमाने पर मुख्य-अनुक्रम सितारों में ऊर्जा का प्रमुख स्रोत है।<ref>{{cite book|author=Phillips, A.C. |title=The Physics of Stars |publisher=John Wiley & Sons |year=1994|isbn=0-471-94057-7}}  

Revision as of 12:11, 25 February 2023

नाइट्रोजन -13, 13N
General
Symbol13N
Namesनाइट्रोजन -13, 13N, N-13
Protons (Z)7
Neutrons (N)6
Nuclide data
Half-life (t1/2)9.97 min
Parent isotopes13O (β+)
Decay modes
Decay modeDecay energy (MeV)
β+1.2003
Isotopes of nitrogen
Complete table of nuclides

नाइट्रोजन-13 (13N) पोजीट्रान एमिशन टोमोग्राफी (पीईटी) में प्रयुक्त नाइट्रोजन का रेडियो आइसोटोप है। इसका अर्ध जीवन दस मिनट से थोड़ा अर्घ्य है, इसलिए इसे पीईटी साइट पर बनाया जाना चाहिए। इस उद्देश्य के लिए साइक्लोट्रॉन का उपयोग किया जा सकता है।

पीईटी मायोकार्डियल परफ्यूजन इमेजिंग के लिए अमोनिया अणुओं को टैग करने के लिए नाइट्रोजन -13 का उपयोग किया जाता है।

उत्पादन

नाइट्रोजन-13 का उपयोग मेडिकल पीईटी इमेजिंग में 13N-लेबल वाला अमोनिया के रूप में किया जाता है। इथेनॉल की ट्रेस मात्रा के साथ शुद्ध पानी के लक्ष्य का उपयोग करके इसे मेडिकल साइक्लोट्रॉन के साथ उत्पादित किया जा सकता है। अभिकारक ऑक्सीजन -16 (H2Oके रूप में उपस्थित) एवं प्रोटॉन हैं एवं नाइट्रोजन-13 एवं अल्फा कण (हीलियम(He) -4) उत्पाद हैं।

1H + 16O → 13N + 4He

प्रोटॉन को 5.66 MeV से अधिक ऊर्जा प्राप्त करने के लिए त्वरित किया जाना चाहिए। यह इस प्रतिक्रिया के लिए सीमा ऊर्जा है,[1] चूंकि यह एन्दोठेर्मिक है (यानी, उत्पादों का द्रव्यमान अभिकारकों से अधिक है, इसलिए ऊर्जा की आपूर्ति की आवश्यकता होती है जो द्रव्यमान में परिवर्तित हो जाती है)। इस कारण से, परमाणु प्रतिक्रिया को प्रेरित करने के लिए प्रोटॉन को अतिरिक्त ऊर्जा ले जाने की आवश्यकता होती है।

ऊर्जा अंतर वास्तव में 5.22 MeV है, किन्तु अगर प्रोटॉन केवल इस ऊर्जा की आपूर्ति करता है, तो अभिकारक बिना गतिज ऊर्जा के बनेंगे। जैसा कि संवेग के रूप में संरक्षित किया जाना चाहिए, प्रोटॉन द्वारा आपूर्ति की जाने वाली वास्तविक ऊर्जा निम्न द्वारा दी गई है:

जलीय घोल में इथेनॉल (~5mM/लीटर की सांद्रता पर) की उपस्थिति अमोनिया के सुविधाजनक गठन की अनुमति देती है, क्योंकि नाइट्रोजन -13 का उत्पादन होता है। उत्पादन के अन्य मार्ग 13N-लेबल अमोनिया उपस्थित है, जिनमें से कुछ डायग्नोस्टिक इमेजिंग के लिए अन्य प्रकाश रेडियोन्यूक्लाइड्स के सह-उत्पादन की सुविधा प्रदान करते हैं।[2][3]

CNO चक्र में N-13 की भूमिका।

सीएनओ(CNO) चक्र में नाइट्रोजन -13 महत्वपूर्ण भूमिका निभाता है, जो सूर्य के सौर द्रव्यमान के 1.5 गुना से अधिक बड़े पैमाने पर मुख्य-अनुक्रम सितारों में ऊर्जा का प्रमुख स्रोत है।[4]

नाइट्रोजन-13 के उत्पादन में बिजली की भूमिका हो सकती है।[5][6]


बाहरी संबंध


संदर्भ

  1. Islam, M. R.; Beni, M. S.; Ng, C; et al. (2022). "Proton range monitoring using 13N peak for proton therapy applications". PLoS ONE. 17 (2): e0263521-1–e0263521-18. doi:10.1371/journal.pone.0263521.
  2. Biricova, Veronika; Kuruc, Jozef (2007). "Synthesis of the radiopharmaceuticals for positron emission tomography". U.S. Department of Energy, Office of Scientific and Technical Information. Retrieved 4 August 2022.
  3. Yokell, Daniel L.; Rice, Peter A.; Neelamegam, Ramesh; El Fakhri, Georges (13 May 2020). "Development, validation and regulatory acceptance of improved purification and simplified quality control of [13N] Ammonia". EJNMMI Radiopharm Chem. 5 (11). doi:10.1186/s41181-020-00097-7. PMID 32405797. Retrieved 4 August 2022.
  4. Phillips, A.C. (1994). The Physics of Stars. John Wiley & Sons. ISBN 0-471-94057-7.
  5. "Lightning, with a chance of antimatter". Phys.org. ScienceX. November 22, 2017. Retrieved November 24, 2017. The gamma rays emitted in lightning have enough energy to knock a neutron out of atmospheric nitrogen
  6. Castelvecchi, Davide (November 22, 2017). "Lightning makes new isotopes". Nature. doi:10.1038/nature.2017.23033. Retrieved November 29, 2017.


Lighter:
नाइट्रोजन-12
नाइट्रोजन -13 is an
isotope of नाइट्रोजन
Heavier:
नाइट्रोजन-14
Decay product of:
ऑक्सीजन-13 (electron capture)
Decay chain
of नाइट्रोजन -13
Decays to:
कार्बन-13 (EC)